
INTRODUÇÃO ROBÔS MÓVEIS PMR3502

DEPARTAMENTO DE ENGENHARIA MECATRÔNICA

Arturo Forner-Cordero [aforner@usp.br]
Thiago de Castro Martins

BIOMECHATRONICS LAB

PERGUNTAS

- 1) Usaríamos um motor de passo em malha aberta para controlar um robô em ambiente não estruturados? Vantagens e desvantagens.
- 2) Temos um robô com patas. Considerando que o robô tem (pelo menos) uma pata no chão. Teria alguma ideia para calcular os possíveis pontos de contato no chão? Descreva.
- 3) Sistemas dinâmicos: Dois motores DC estão controlando as duas rodas de um robô. Qual seria o modelo dinâmico do mesmo? Isto é, tenho que controlar o deslocamento, quais tensões/correntes teria que dar aos motores para ir onde eu quero.
- 4) Tenho um robô bípede antropomórfico (humanoide). Como faço para ele não cair? Posso aplicar algum critério sobre onde deve a projeção no chão do seu centro de massas? Fiquem em pé... Tem que realizar algum tipo de atividade muscular com as pernas para não cair?

DESCRIÇÃO DA DISCIPLINA

Essa disciplina apresenta uma introdução aos robôs móveis e às abordagens atuais para implementar robôs autônomos.

Fornece uma visão geral dos componentes relacionados aos robôs móveis com ênfase na autonomia do robô.

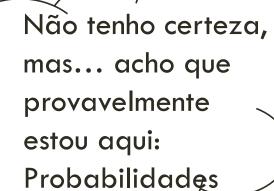
Será dado enfoque:

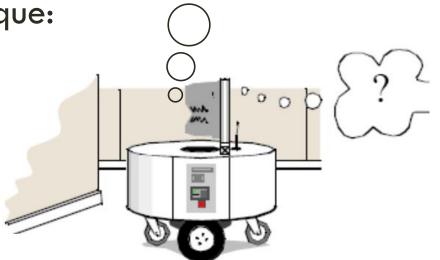
Mais sobre como fazer os robôs serem autônomos;

Menos sobre como construir robôs.

Será visto como deve ser o controle de um robô para que ele realize uma tarefa de forma autônoma:

Projeto do sistema de controle está intimamente relacionado à mecânica/eletrônica do robô => tecnologias utilizadas no projeto mecânico/eletrônica serão discutidas.


DESCRIÇÃO DA DISCIPLINA

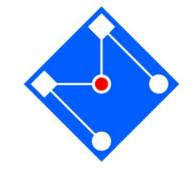

As três principais questões da robótica móvel:

- Onde estou?
- Onde estou indo?
- Como chegar lá?

Para responder a essas perguntas o robô tem que:

- Monitorar e analisar o ambiente;
- Obter sua localização no ambiente;
- Planejar e executar o movimento;
- Ter um modelo do ambiente (dado ou criado).

P
R
0
G
R
A
M
A


Aula	Data	Conteúdo
1	19/02	INTRODUÇÃO-MODELAGEM GEOMÉTRICA
2	21/02	Robôs móveis – introdução
3	28/02	Cinemática de robôs móveis
4	4/03	TRANSFORMAÇÃO DE COORDENADAS
5	6/03	Sensores de robôs móveis
6	11/03	TRANSFORMAÇÃO DE COORDENADAS
7	13/03	Revisão de probabilidades
8	18/03	TRANSFORMAÇÃO DE COORDENADAS
9	20/03	Intr. Sist. Estocásticos
10	25/03	TRANSFORMAÇÃO DE COORDENADAS
11	27/03	Estimação Baesyana
12	1/04	CINEMÁTICA DIRETA DE MANIPULADORES
13	3/04	Filtro de Kalman
14	15/04	CINEMÁTICA DIRETA DE MANIPULADORES
15	17/04	Filtros não-paramétricos DATA LIMITE P.1
16	22/04	CINEMÁTICA DIRETA DE MANIPULADORES

Aula	Data	Conteúdo
1	19/02	INTRODUÇÃO-MODELAGEM GEOMÉTRICA
2	21/02	Robôs móveis – introdução
3	28/02	Cinemática de robôs móveis
4	4/03	TRANSFORMAÇÃO DE COORDENADAS
5	6/03	Sensores de robôs móveis
6	11/03	TRANSFORMAÇÃO DE COORDENADAS
7	13/03	Revisão de probabilidades
8	18/03	TRANSFORMAÇÃO DE COORDENADAS
9	20/03	Intr. Sist. Estocásticos
10	25/03	TRANSFORMAÇÃO DE COORDENADAS
11	27/03	Estimação Baesyana
12	1/04	CINEMÁTICA DIRETA DE MANIPULADORES
13	3/04	Filtro de Kalman
14	15/04	CINEMÁTICA DIRETA DE MANIPULADORES
	17/04	Filtros não-paramétricos
15		DATA LIMITE P.1
16	22/04	CINEMÁTICA DIRETA DE MANIPULADORES

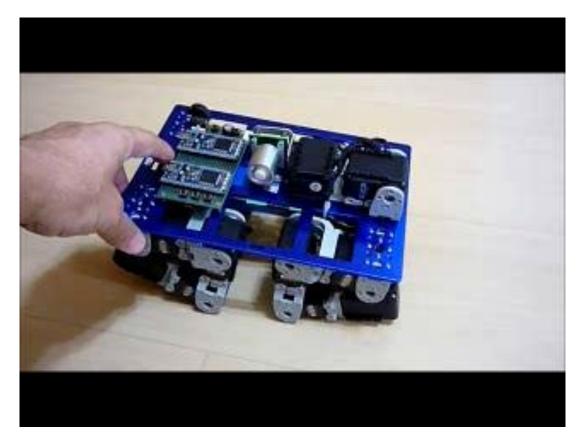
17	24/04	Navegação (loc.) de robôs
18	29/04	CINEMÁTICA DIRETA DE MANIPULADORES
19	6/05	CINEMÁTICA INVERSA DE MANIPULADORES
20	8/05	Mapeamento
21	13/05	CINEMÁTICA INVERSA DE MANIPULADORES
22	15/05	SLAM
23	20/05	CINEMÁTICA INVERSA DE MANIPULADORES
	20/25	Controle de robôs móveis
24	22/05	DATA LIMITE P.2
25	27/05	ANÁLISE ESTÁTICA DE MANIPULADORES
26	03/06	Planejamento de trajetórias
27	10/06	ANÁLISE ESTÁTICA DE MANIPULADORES
28	17/06	Tópicos avançados de robótica móvel
29	24/06	ANÁLISE ESTÁTICA DE MANIPULADORES
30	26/06	PROVA
	/	REVISÃO-EXERCÍCIOS
31	01/07	DATA LIMITE ENTREGA PROBL. 3
32	03/07	SUB COM JUSTIFICATIVA

PROGRAMA DA DISCIPLINA

Introdução;

Tipos de robôs móveis, locomoção;

Cinemática de robôs móveis;


Sensores e atuadores;

Visão computacional;

Navegação:

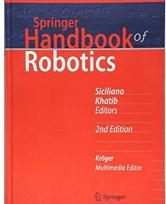
Arquiteturas de controle:

Estudo de casos.

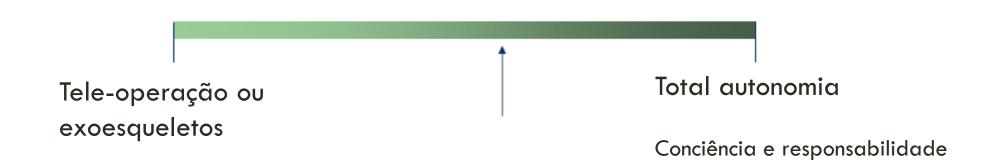
BIBLIOGRAFIA


Livros texto:

- "An Introduction to Autonomous Robots", Roland SIEGWART and Illah R. NOURBAKHSH, MIT Press, 2004.
- "Probabilistic Robotics", Thrun, Sebastian, Wolfram Burgard, and Dieter Fox.. Cambridge: MIT press, 2000. Sebastian Thrun.


Livros complementares:

- "An Introduction to Al Robotics", Robin MURPHY, The MIT Press, 2000.
- "Behavior-Based Robotics", Ronald C. ARKIN, MIT Press, 1998.
- "Principles of Robot Motion", CHOSET et. al., MIT Press, 2005.
- Robótica Médica. Consorcio Opensurg. Cyted. 2013.
 (http://roboticamedica.umh.es)
- Wearable Robots: Biomechatronic Exoskeletons. Editor: J. L. Pons (2008) John Wiley & Sons, Ltd.
 - Chapter 2. Basis for Bioinspiration and Biomimetism in Wearable Robots. A. Forner-Cordero, J.L. Pons, M. Wisse.
 - Chapter 3. Kinematics and dynamics of wearable robots. A. Forner–Cordero, J.L. Pons, E.A. Turowska.
- Handbook of Robotics, Siciliano, Khatib. Eds. Springer.

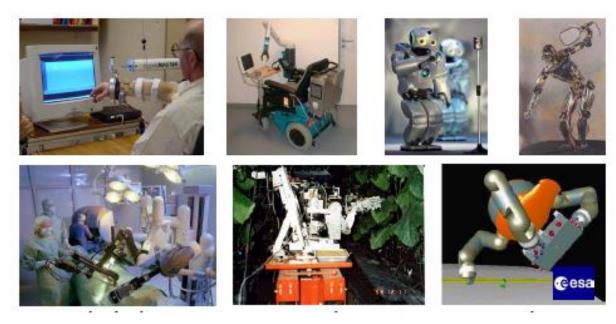

OBJETIVOS

Estudar métodos de fornecer aos robôs a habilidade de realizar tarefas de forma autônoma.

Autonomia?

Níveis diferentes dependendo da aplicação.

O QUE É UM ROBÔ?



Atualmente a maioria dos robôs realizam tarefas "obrigatórias" em ambientes totalmente controlados:

- São os robôs industriais;
- Aplicados na automação da manufatura (ex. montagem de veículos);
- Para a indústria um robô é um mecanismo especializado programável para realizar uma série de tarefas em um ambiente controlado.
- \succ Mas a robótica não é somente isso \Rightarrow a tendência e o futuro são muito mais promissores e interessantes.
- O sonho da Robótica era imitar ao ser humano.... Agora é superar-lo

NOVA GERAÇÃO DE ROBÔS

Rehabilitação, entretenimento, cirugía, agricultura, aplicações espaciais

Nova geração de atuadores, sensores e controladores

O QUE É UM ROBÔ?

Definição da Associação das Indústrias de Robôs (1985):

- Robô é um manipulador multifuncional re-programável projetado para movimentar materiais, partes, ferramentas ou dispositivos especializados, projetado para a execução de diversas tarefas.
- ➤O que falta nessa definição?
- Noções de inteligência, de raciocínio, de capacidade de resolver problemas, de emoção e de consciência.

O QUE É DE FATO UM ROBÔ? E AUTÔNOMO?

Robô é uma máquina capaz de extrair informação do seu ambiente e usar conhecimentos para agir de forma segura para atingir um determinado objetivo (Ron Arkin, 1998).

Robô é um sistema autônomo inserido no mundo físico que pode perceber seu ambiente e pode agir e adaptarse sobre ele para alcançar um dado objetivo.

Robôs "inteligentes":

- Autonomia
- Capaces de adaptar as ações ao ambiente

O QUE É A ROBÓTICA?

A Robótica é o estudo dos robôs, que são sistemas físicos autônomos que interagem com o ambiente.

A Robótica lida com percepção, interação e ação no ambiente.

TIPOS DE ROBÔS

Robôs industriais;

Robôs semi-autônomos;

Robôs autônomos.

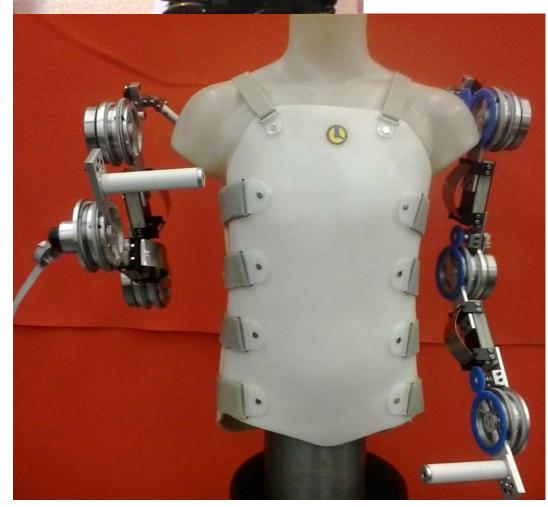
Estudaremos os robôs autônomos

ROBÔS SEMI-AUTÔNOMOS

Controle remoto:

- nós controlamos o robô;
- podemos ver o robô e a sua interação com o ambiente;
- controlamos a interação do robô com o ambiente.

Tele-operação:


- Nós controlamos o robô sempre ou em algumas ocasiões;
- Enviamos comandos para o robô;
- Vemos o ambiente do robô somente através dos "olhos" do robô.

Exoesqueleto (autônomo ou semi-autônomo?):

- Colabora com o ser humano na realização de uma tarefa;
- Interação física direta;
- Multiplas aplicações: reabilitação, militar, industria;

ESTRATÉGIAS DE TELE-OPERAÇÃO

Controle supervisório:

- Operador está envolvido ⇒ parte das ações de rotina ou de "segurança" são realizadas de forma autônoma pelo robô;
- Controle compartilhado ⇒ operador inicia a ação, interage remotamente introduzindo entradas de sensores ou realimentando o controle e pode interromper a execução quando necessário;

Iniciativa mista (controle guardião):

- O operador somente opera o robô se avisá-lo antes;
- Quem (robô/operador) toma a iniciativa realiza.

ROBÔS AUTÔNOMOS

Operam em ambientes não estruturados e não previsíveis, tais como, Marte, nossa sala de visita, ou qualquer lugar onde as pessoas vivem.

Sensoriamento não é mais opcional, se torna uma necessidade obrigatória.

Autônomos em todos os aspectos: fonte de energia, computação, sensoriamento, atuação.

ROBÔS AUTÔNOMOS

A mobilidade impede o uso de hipóteses simplificadoras sobre o ambiente.

Métodos da engenharia utilizados nos robôs industriais não se aplicam e falham totalmente.

O desafio se enquadra na área da Inteligência Artificial combinada com métodos da engenharia.

ROBÔS AUTONOMOS

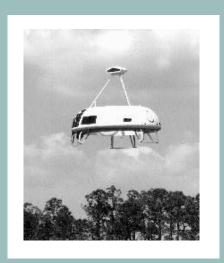
"Métodos da engenharia utilizados nos robôs industriais não se aplicam e falham miseravelmente".

E.g, primeiros protótipos de Honda:

- Trajetórias articulares prescritas;
- Os robôs caiam:

Critério de estabilidade:

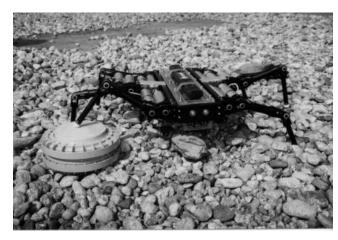
- Zero moment point
- Manter a projeção do centro de massas do robô no polígono definido pelos pés



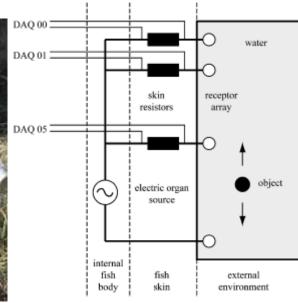
ROBÔS AUTÔNOMOS

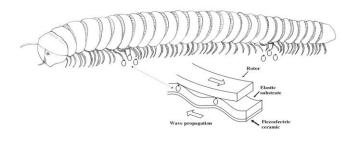
Termos alternativos:


- UAV: unmanned aerial vehicle (veículo aéreo não tripulado);
- UGV (rover): unmanned ground vehicle (veículo terrestre não tripulado);
- UUV: unmanned undersea vehicle (veículo submarino não tripulado).



ROBÔS BIOINSPIRADOS- BIOMIMÉTICOS


BIOMIMETISMO


- A aproximação biomimética no desenvolvimento de dispositivos artificiais busca inspiração da Natureza para obter uma concepção otimizada ou melhorada dos mesmos.
- Exemplo clásico: Velcro (G. de Mestral)
 - sementes que grudam na roupa e no pêlo do cão

SCORPION. Univ de Bremen

Peixe elétrico. Maciver&Nelson (2001) Autonomous Robots 11, 263–66

Movimento de un milípede: Motores ultrasónicos. (Pons, 2005. Emerging Actuator Technologies. Wiley.

BIOINSPIRAÇÃO VS BIOMIMETISMO

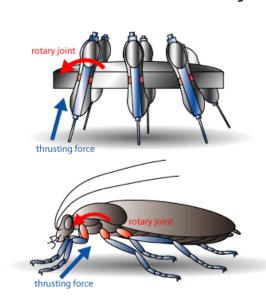
Bioinspiration is defined by the ISO/TC266 as a design method based on the observation of biological systems [3].

This approach does not need to understand the goals and mechanisms of the biological system.

Biomimetism does require a deep understanding of the biological system to solve a technological problem.

• The biomimetic approach uses models of biological systems in order to transfer these models to appropriate solutions.

Qual é o interesse do biomimetismo? (Why bother?)


A Natureza ofrece soluções "quase-ótimas" que foram ensaiadas e melhoradas durante a evolução

Sistemas biológicos:

- Entornos naturais e hosteis
- Baixo consumo energético
- Alta estabilidade
- Capacidade de adaptação

Interacção robot-humano

• Segurança e biocompatibilidade

ROBÔS HUMANÓIDES



Robonaut (NASA)

DIVERSOS TIPOS DE HUMANOIDES

ESBiRRo

AUTONOMIA

Autonomia é a habilidade de tomar decisões e agir sobre elas:

Para um robô é tomar a ação apropriada dada uma determinada situação.

Autonomia pode ser **completa** (R2D2) ou **parcial** (robôs teleoperados).

Na autonomia completa o robô toma as decisões, nenhum homem está no controle (oposto da tele-operação);

Os sistemas de controle permitem que os robôs sejam autônomos ⇒fazem o papel de "cérebro".

Ética robótica

NAVEGAÇÃO

Para ter um comportamento autônomo um robô móvel precisa ter a habilidade de navegar no ambiente.

Para navegar é necessário:

- Aprender (conhecer) o ambiente \Rightarrow modelo do ambiente;
- Estimar a sua localização no ambiente ⇒ auto-localização;
- Mover em direção à posições desejadas no ambiente.

NAVEGAÇÃO

Problemas envolvidos na navegação:

- Ambiente pode ser conhecido ou desconhecido;
- Ambiente pode ser estático ou dinâmico;
 - Ambiente dinâmico ⇒ pode mudar de forma inesperada;
- Ambiente pode ser estruturado ou não-estruturado;
 - Ambiente não-estruturado \Rightarrow não foi projetado especialmente para fazer a tarefa do robô se tornar mais fácil;
- Ambiente pode ser parcialmente observável;
 - O robô não consegue obter informação completa do estado do ambiente;
- Incertezas ⇒ leituras de sensores e saída dos atuadores apresentam ruídos.

INCERTEZAS E RUÍDOS

Incerteza: uma propriedade intrínseca do mundo físico.

Sensores fornecem informações limitadas, inacuradas e com ruído;

Atuadores produzem ações limitadas, inacuradas e com ruído;

A incerteza associada aos sensores e atuadores em geral não é bem caracterizada, portanto não se tem disponível um modelo.

INCERTEZAS E RUÍDOS

Causas de ruído de sensores:

- Resolução limitada;
- Reflexão, absorção e espalhamento do sinal emitido pelo sensor
- Condições ruins para o funcionamento do sensor (ex. baixa luminosidade para câmeras).

Causas de ruídos nos atuadores:

- Atrito: constante ou variável (ex. carpetes versus piso de vinil versus madeira versus chão sujo);
- Deslizamento das rodas (ex. em curvas ou em superfície com pó ou areia);
- Nível de carga da bateria variável (bateria vai sendo descarregada durante a tarefa).


Impacto:

- Informações de sensores é difícil de interpretar;
- Somente se tem informação incompleta para se tomar decisões.

TIPOS DE AMBIENTES

Estruturado:

Ambientes especialmente projetados para tornar as tarefas dos robôs mais fáceis.

Não estruturado:

■ Quase todos os ambientes naturais (não feitos pelo homem) ⇒ desertos, florestas, campos etc.

Semi-estruturado:

- Em geral são construídos pelo homem;
- Ambientes construídos pelo homem mas não projetados especificamente para os robôs.

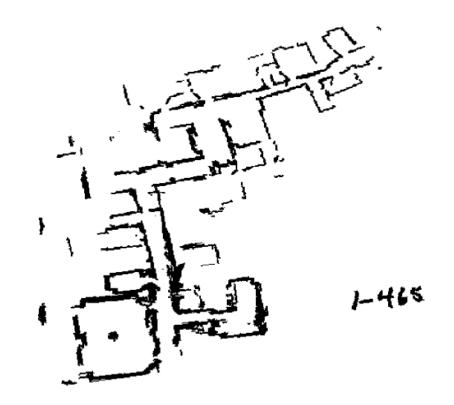
AMBIENTES DINÂMICOS

Ambiente dinâmico \Rightarrow se altera de forma inesperada.

Fontes de mudanças no ambiente:

- Outros robôs na área:
 - Companheiros;
 - Adversários;
 - Agentes neutros.
- Presença de pessoas;
- Eventos naturais (ex. chuva, fumaça, sol se movendo etc);
- Objetos móveis (ex. portas, elevadores etc).
- Perturbações

AMBIENTES NÃO ESTRUTURADOS


Impacto de ambientes não estruturados:

- Difícil de fazer hipóteses sobre expectativas das informações dos sensores;
- Difícil de fazer hipóteses sobre as características do ambiente;
- Hipóteses feitas no início da tarefa podem se tornar inválidas;
- Malha sensor/ação deve ser bem definida para que mudanças no ambiente não invalidem decisões.

AMBIENTE SEMI-ESTRUTURADO

Se em prédios assumirmos que as paredes são perpendiculares \Rightarrow pode-se usar essa informação para acertar as paredes do prédio, que durante um processo de mapeamento aparecem tortas em razão de propagação de erros.

AMBIENTE PARCIALMENTE OBSERVÁVEL

Causas de ambiente parcialmente observável:

- Sensores com resolução limitada;
- Efeitos de reflexão, oclusão, absorção etc ⇒ dificultam interpretação dos dados de sensores.

Impacto de ambiente parcialmente observável:

 A mesma ação, no mesmo estado, pode resultar em resultados diferentes.

Example: Glass walls--laser sensors tricked

DESAFIOS I

Onde estou? [localização]

O que acabei de fazer? [memória]

Como interpretar as informações provenientes dos sensores para determinar o estado atual e o ambiente? [processamento/percepção de informação de sensores]

Como obter informações coerentes de leituras de sensores com ruídos? [gerenciamento de incertezas]

Como conciliar informações de vários sensores para melhorar a estimativa do estado atual? ["sensor fusion"]

Que hipóteses fazer sobre o ambiente? [estruturado/não estruturado]

Como saber a o que prestar atenção? [foco da atenção]

Como tomar decisões? ["reasoning", decisão de tarefa]

DESAFIOS II

Como deve ser a estratégia de controle para garantir que o robô responda de forma satisfatória? [arquitetura de controle]

Onde quer se chegar e como chegar? [planejamento de trajetórias e navegação]

Das várias possibilidades de ação a tomar, qual deve ser tomada no estado atual? [seleção da ação]

Como responder rapidamente a ambientes dinâmicos? [aprendizado, adaptação]

Porque uma ação que funcionou nessa situação antes não funciona agora? [estados escondidos]

Como se deve trabalhar com outros robôs? [cooperação e comunicação entre múltiplos robôs]

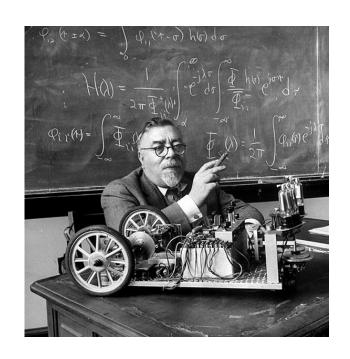
EXEMPLOS HISTÓRICOS

Conhecer/entender os precursores históricos dos robôs autônomos atuais:

- Cibernética;
- Inteligência artificial;
- Robótica.

CIBERNÉTICA

Cibernética é a combinação de:


- Teoria de controle;
- Ciência da informação;
- Biologia.

Procura explicar princípios de controle nos animais e nas máquinas.

Usa teoria de sistemas de controle para expressar os comportamentos naturais.

Ênfase é data no acoplamento entre organismo e seu ambiente.

Expoente no campo da cibernética: Norbert Wiener no final da década de 1940.

INTELIGÊNCIA ARTIFICIAL (IA)

Sete problemas clássicos de IA:

- Representação de conhecimento;
- Entendimento de linguagem natural;
- Aprendizado;
- Planejamento e solução de problemas;
- Raciocínio; Busca; Visão.

Robôs são plataformas de teste/desenvolvimento para a IA:

- Fornecem um objetivo para a pesquisa em IA;
- Ex. Visão: qual deve ser o resultado da pesquisa em visão?
- Os robôs mudaram a forma como que se enxerga a IA.

lA pode ser vista como uma abordagem diferente para resolver os problemas de fazer os robôs autônomos:

- Como controlar um robô com muitos graus de liberdade?
- Como fazer um robô navegar em um ambiente de forma autônoma?

WALTER GREY - ROBÔ TORTOISES

Respeitado neurofisiologista que construía robôs como passa-tempo.

Construiu o primeiro robô autônomo.

Seu robô era parecido com uma tartaruga e se chamava "tortoises".

Publicou artigos na Scientific American em 1950 e 1951:

- Walter, W. G. An imitation of life. Scientific American 182(5), 42–45. (1950);
- Walter, W. G. A machine that learns. Scientific American 185(5), 60–63. (1951).

W. Grey Walter s Tortoises

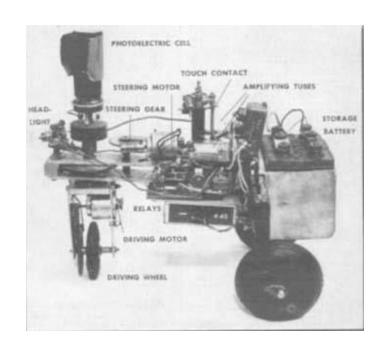
- ¥ Two motors
 - -continuously scanning steering
 - -drive motor on steering column
- ¥ Vacuum tubes, relays, and neon tubes
- ¥ A few sensors
 - —single bump sensor
 - -light sensor on steering column
 - -(some had) a microphone
- ¥ Two versions
 - -machina speculatrix
 - -machine docilis

mbodied Intelligence

01 Artificial Creatures

Brooks & Breazeal

MIT EECS 6.836



Intensidade de luz captada por um sensor de luz define as ações do robô.

Sensor de luz segue a direção da roda frontal.

Comportamentos:

- Sem luz \Rightarrow gira com velocidade normal;
- Meia luz ⇒ parado;
- ullet Muita luz \Rightarrow gira com o dobro da velocidade normal.

VEÍCULO DE BRAITENBERG

Introduzido em um livro clássico de Valentino Braitenberg publicado em 1984.

Valentino Braitenberg é um:

- -Ciberneticista;
- -Neurologista;
- -Músico.

Procurava entender como as estruturas do cérebro constituíam uma máquina que nos capacita a exibir habilidades como tocar música.

Idéia ⇒ "Vamos projetar robôs simples e ver o que fazem e como nós interpretamos o que eles fazem".

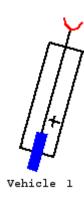
VEÍCULO DE BRAITENBERG

Veículo de Braitenberg utiliza acoplamento direto (excitatório ou inibidor) entre sensor e motor das rodas:

- ullet Sensores sensíveis a características do ambiente \Rightarrow calor, luz, obstáculos etc;
- Motores movem o veículo em resposta aos sinais dos sensores;
- Conexões diretas entre os sinais dos sensores e os motores;
- Cada conexão causa uma ação \Rightarrow rotação do veículo, inibição da rotação do veículo, movimento para frente.

VEÍCULO 1 — ANDANDO AO ACASO

O veículo mais simples possível, equipado com um sensor e um motor.

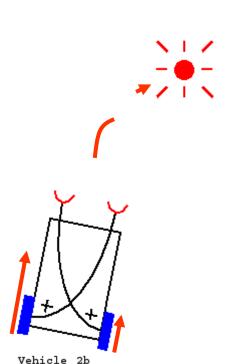

O sensor é conectado diretamente ao motor.

A saída do sensor é maior quanto mais perto da fonte de luz.

A velocidade do veículo aumenta quando está claro e diminui quando está escuro.

O veículo passa a maior parte do tempo em áreas escuras e tenta escapar de áreas claras.

VEÍCULO 2 — AGRESSÃO



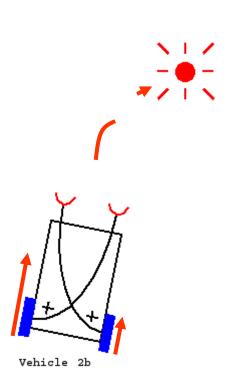
Dois sensores e dois motores.

Cada sensor é conectado ao motor do outro lado do veículo.

O veículo:

- Se dirige para fontes de luz;
- Aumenta velocidade em áreas claras e diminui a velocidade em áreas escuras;
- Passa a maior parte do tempo em áreas escuras e menos tempo em áreas claras.
- O veículo não gosta da luz.
- O veículo é agressivo \Rightarrow ele "ataca" a luz.

VEÍCULO 3 — AMOR

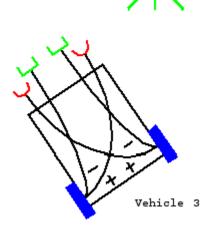

Por default os motores sempre estão girando.

Cada sensor é conectado ao motor do mesmo lado do veículo e inibem a rotação do motor.

O veículo:

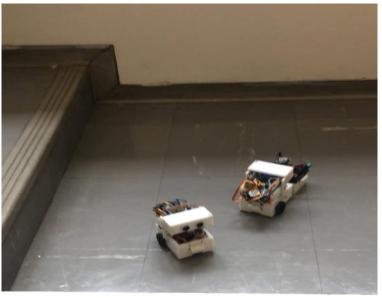
- Se dirige para áreas claras;
- Aumenta a velocidade em áreas escuras e diminui em áreas claras;
- Passa maior tempo em áreas em áreas claras e menos tempo no escuro..

O veículo "ama" a luz.



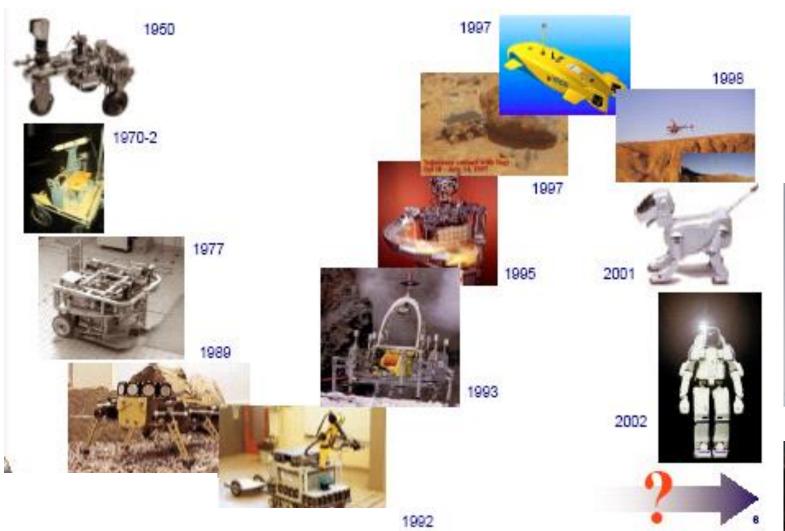
VEÍCULO DE BRAITENBERG

- Outro veículo 3.
- O veículo tem dois tipos de sensores: um para luz vermelho e outro para verde.
- Como é o comportamento do veículo?


- Ilustra como um controle reativo simples pode produzir um comportamento complexo:
 - Complexidade pode ser um reflexo de um ambiente complexo;
 - Pode-se definir objetivos complexos para o veículo de Braitenberg;
 - Mas não existe uma representação interna de objetivos.

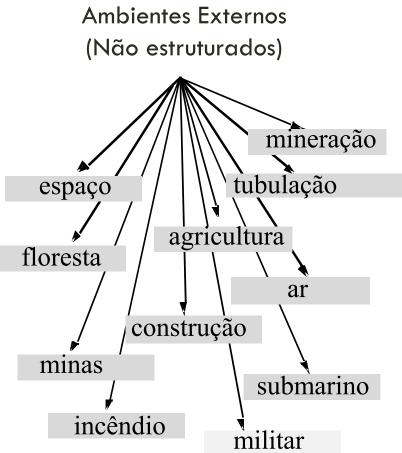
SWARM ROBOTS

E se agora temos uma bandada de robôs com rodas relativamente simples?


Podemos definir comportamentos complexos a partir de comportamentos simples de cada um deles:

- Robôs com "medo" um dos outros: vão longe ums dos outros. Exploram o ambiente;
- Acham um objeto que "amam": se juntam a ese objeto;
- Pode usar para transportar cargas pesadas a partir de robôs simples e leves.

EVOLUÇÃO DOS ROBÔS MÓVEIS



APLICAÇÕES DE ROBÔS MÓVEIS

Ambientes Internos (Estruturados ou Semi estruturados) transporte indústria & serviço ajuda ao cliente museus, lojas ... limpeza .. grandes áreas pesquisa, entretenimento, vigilância brinquedos

Carros autônomos!!!!

GANHANDO DINHEIRO COM ROBÔS AUTÔNOMOS

Monitoramento de segurança;

Aspirador de pó;

Visita virtual;

Aspirador de piscina;

Cortador de grama;

Companhia;

Brinquedos;

Carros;

Etc.

ENTRETENIMENTO

ROBÔS MÓVEIS ATUAIS

Muitas aplicações de robôs móveis \Rightarrow realizam as mais diversas funções.

Surgem robôs novos a cada dia.

Alguns exemplos:

Robô Khepera, robô educacional;

Helpmate, robô para hospital;

Pioneer, robô para uso genérico;

Asimo, robô humanóide da Sony;

Sojourner, primeiro robô em Marte;

GuideCane, robô guia de cego;

• Qrio, robô humanóide da Honda;

Robôs para limpar piscina.

- Robôs para limpeza pesada;

- AGVs para as indústrias;

ROV, robô submarino;

- Robô NOMAD, NASA;

Aibo, robô cachorro da Sony;

Robôs guia de visitantes;

Robôs para aspirar pó;

VEÍCULOS AUTÔNOMOS AUTO-GUIADOS

Muito utilizados para transportar materiais.

Guiados por fio elétrico, faixa magnética etc instalados no piso.

Capazes de deixar a guia para evitar obstáculos.

Existem mais do que 4000 AGV's somente nas fábricas da Volvo.

Outros AGVs: transporte de containeres, patrulhamento etc.

Odyssey AGV.

ROBÔ HELPMATE

HELPMATE é um robô móvel usado em hospitais para transporte de materiais.

Possui vários sensores para navegação autônoma em corredores.

O sensor principal para localização é uma câmera dirigida para o teto \Rightarrow ela pode detectar as lâmpadas e utilizá-las como pontos de referência ("landmark").

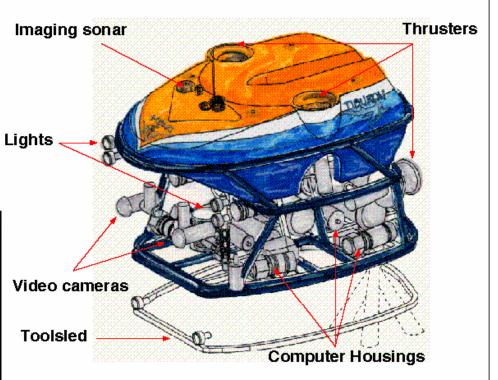
http://br.youtube.com/watch?v=jwYNXS3S8kw

ROBÔS DE LIMPEZA

Robô BR700 desenvolvido pela Kärcher Inc., Alemanha ⇒ sistema de navegação é composto por um sonar e um giroscópio.

Diversos robôs existentes.

BR700, Intellibot, Fuji, Jumbo etc.


ROBÔ SUBMARINO ROV TIBURON

Robô tele-operado utilizado para inspeção submarina (arqueologia).

Utilizado pela MBARI para pesquisa em águas profundas.

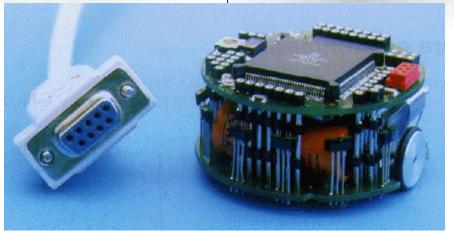
ROBÔ PIONEER

Robô PIONEER 1 é um robô móvel modular que oferece várias opções: garra, câmera, braço robótico etc.

É equipado com algoritmos sofisticados de navegação desenvolvidos no Instituto de Pesquisa de Stanford (SRI).

http://www.mobilerobots.com/ Vídeo.

ROBÔ KHEPERA


KHEPERA é um robô móvel pequeno utilizado para pesquisa e ensino.

Diâmetro de 60mm.

Vídeo.

SOJOURNER, PRIMEIRO ROBÔ EM MARTE

O robô móvel Sojourner foi utilizado na primeira missão de exploração de Marte em 1997.

Ele era totalmente teleoperado da Terra, mas os seus sensores permitiam detecção de obstáculos.

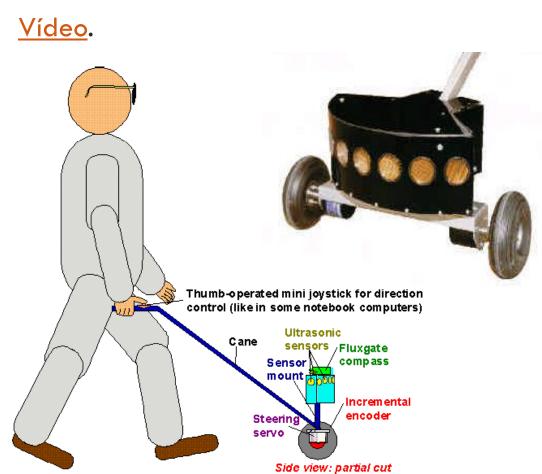
Vídeo.

NOMAD, CARNEGIE MELLON / NASA

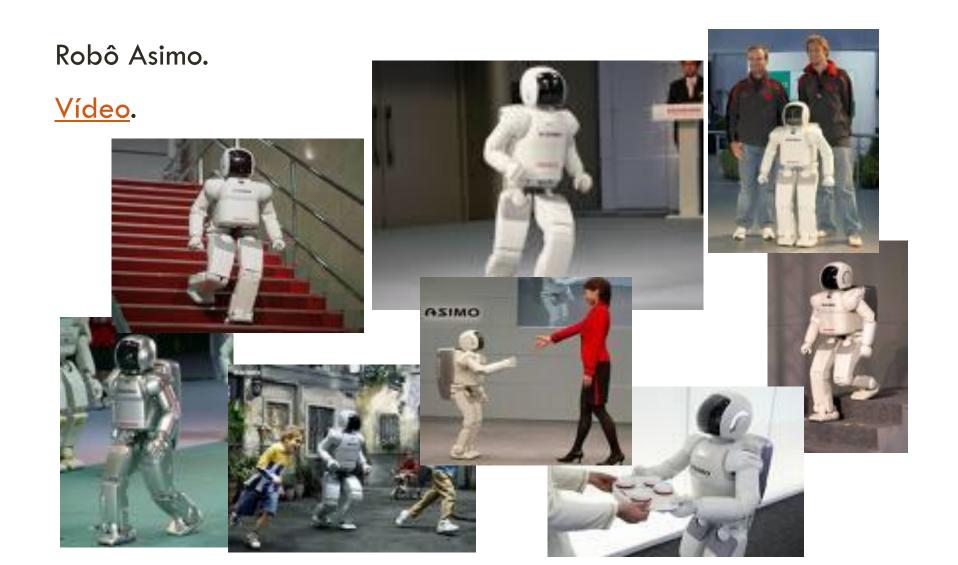
Robô para pesquisa em Marte.

Testado no deserto de Atacama, Chile.

Vídeo.



ROBÔ GUIA DE CEGO



Robô para guia de cegos.

ROBÔ HUMANÓIDE DA HONDA

ROBÔ HUMANÓIDE DA SONY

Robô Qrio.

Primeiro robô humanóide capaz de correr.

Vídeos: <u>dança</u>, <u>caminhada</u>, <u>força</u>.

ROBÔ AIBO DA SONY

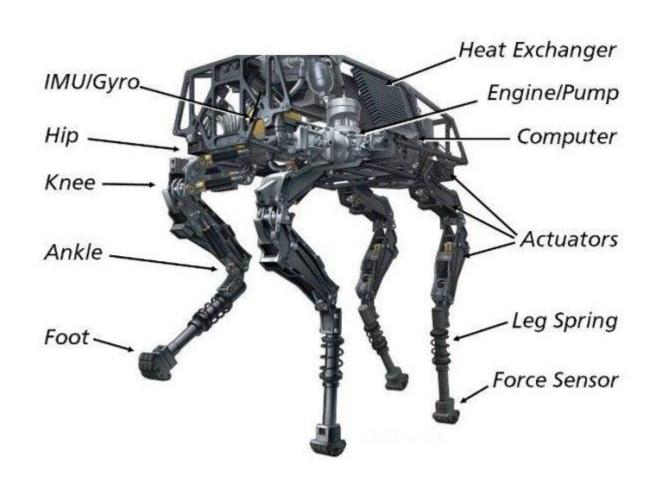
Tamanho:

• Comprimento de cerca de 25 cm.

Sensores:

- Câmera colorida;
- Microfone estéreo.

Futebol de Aibos.





BIG DOG BOSTON DYNAMICS

ROBÔS GUIA DE VISITANTES

Utilizados para guiar turistas em museus, exposições, feiras.

Diversos robôs:

• Enon da Fujitsu, Rhino, Atlas etc.

Rhino, EPFL.

ROBÔS ASPIRADOR DE PÓ

Utilizados para aspirar pó em ambientes domésticos.

Diversos robôs existentes:

Roomba.

Roomba, RoboMaxx, Ubot, Hanool etc.

ROBÔS LIMPADOR DE PISCINA

Utilizado para limpar piscinas tanques de água.

Diversos robôs existentes; Verro, Aquabot, Storm etc

Aquabot.

PERGUNTAS

- 1) Usaríamos um motor de passo em malha aberta para controlar um robô em ambiente não estruturados? Vantagens e desvantagens.
- 2) Temos um robô com patas. Considerando que o robô tem (pelo menos) uma pata no chão. Teria alguma ideia para calcular os possíveis pontos de contato no chão? Descreva.
- 3) Sistemas dinâmicos: Dois motores DC estão controlando as duas rodas de um robô. Qual seria o modelo dinâmico do mesmo? Isto é, tenho que controlar o deslocamento, quais tensões/correntes teria que dar aos motores para ir onde eu quero.
- 4) Tenho um robô bípede antropomórfico (humanoide). Como faço para ele não cair? Posso aplicar algum critério sobre onde deve a projeção no chão do seu centro de massas? Fiquem em pé... Tem que realizar algum tipo de atividade muscular com as pernas para não cair?

FIM

