

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA DEPARTAMENTO DE ENGENHARIA DE MATERIAIS - Demar

Disciplina LOM3011 – Ensaios Mecânicos

Professor Associado: Cassius Olívio Figueiredo Terra Ruchert (cassiusterra@usp.br)

PARTE I – MECÂNICA DA FRATURA

1) Observe a figura 1 (considere F=1):

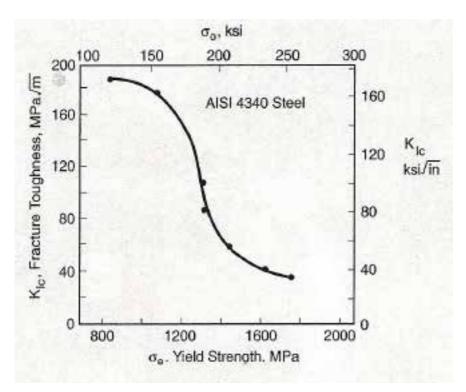


Figura 1 – Tenacidade a fratura versus tensão de escoamento.

- a) Obtenha valores aproximados de tenacidade à fratura K_{IC} para o aço AISI 4340, tratado termicamente para as tensões de escoamento 800MPa e 1600MPa.
- b) Para cada uma das tensões de escoamento, determinar o tamanho de trinca a, e comente os valores.
- 2) Observe a figura 2 (considere F=1):

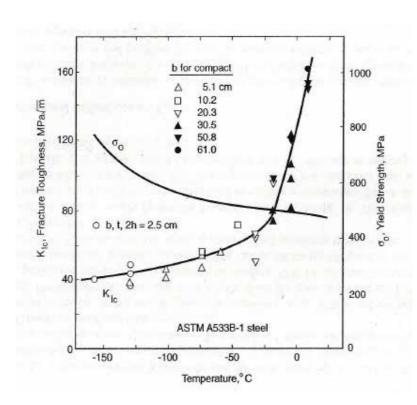
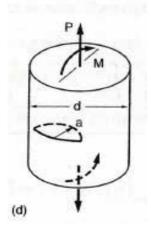



Figura 2 – Tenacidade à fratura versus temperatura.

- a) Obtenha valores aproximados de K_{IC} e tensão de escoamento para o aço ASTM A533B à temperaturas de -150 °C e +10 °C.
- b) Para cada temperatura, faça um gráfico de tensão versus comprimento de trinca e mostre os limites impostos para a fratura frágil e escoamento.
- 3) Um sólido circular de 50mm de diâmetro é fabricado a partir do aço 300M e está sujeito ao momento fletor de 80kN.m. O eixo possui uma trinca superficial como mostra a figura 3. Qual o tamanho crítico de trinca a_c para causar fratura frágil.

Case	S_t	S_b	F for small a	Limits for $\pm 10\%$ on F
(a)	$\frac{P}{4bt}$		$\frac{2}{\pi} = 0.637$	$\frac{a}{t}$, $\frac{a}{b} < 0.5$
(b)	$\frac{P}{2bt}$	$\frac{3M}{bt^2}$	0.728	$\frac{a}{t} < 0.4, \frac{a}{b} < 0.3$
(c)	$\frac{P}{bt}$	$\frac{6M}{bt^2}$	0.722	$\frac{a}{t} < 0.35, \frac{a}{b} < 0.2$
(d)	$\frac{4P}{\pi d^2}$	$\frac{32M}{\pi d^3}$	0.728	$\frac{a}{d} < 0.2 \text{ or } 0.35^1$

Figura 3

PARTE II – MÉTODO S-N

- 4) Determine pela equação de Goodman, a tensão alternada permitida (\$\mathbf{s}_a\$) se um componente é submetido a uma tensão média de 50ksi e estará em serviço no mínimo 1000 ciclos. Considere Su=158 ksi.
- 5) Os valores mostrados abaixo correspondem ao ensaio de fadiga de alto (>10⁷ ciclos) para um aço. Determinar a tensão média para cada ensaio. Utilizando Goodman, Gerber e Morrow. Dado Su=123 kSi, S_f= 173ksi, e Se=61,5ksi.

$s_{max}(ksi)$	60	68	66	83	96	100	101
S _{min} (ksi)	-60	-54	-44	-33	0	29	51

6) Um corpo de prova de aço laminado a quente AISI 1045 é ensaiado com tensão média igual a zero e a curva S-N possui os seguintes dados. Calcule os valores das constantes A e B usando os mínimos quadrados (Lembrar que S_a=AN^B):

s (MPa)	Nf
524	257
459	1494
410	6749
352	19090
315	36930
270	321500
241	2451000

PARTE III – MÉTODO da/dN

- 7) Considere uma chapa plana fabricada a partir de liga de titânio, a qual deve ser exposta a ciclos alternados de tração e compressão com amplitude de tensão de 100MPa. Se no início o comprimento da maior trinca nesta amostra é de 0,30mm e a tenacidade a fratura da liga em deformação plana é de 55MPa.m^{1/2}, enquanto os valores de m e C são respectivamente 3 e 2x10⁻¹¹(mm/ciclo)/(MPa.m^{1/2})^m, estime a vida em fadiga nesta chapa. Assuma F=1,45.
- 8) Considere um componente metálico que se encontra exposto a tensões cíclicas de tração e compressão, para qual a tensão média é de 25MPa. Se os comprimentos de trinca superficiais inicial e crítico forem de 0,15 e 4,5mm, respectivamente, e os valores de m e C são 3,5 e $2x10^{-14} \, (\text{mm/ciclo})/(\text{MPa.m}^{1/2})^{\text{m}}$. Estime a tensão de tração máxima para produzir uma vida em fadiga de 2,5x10⁷ ciclos. Assuma F=1,4.
- 9) Considere uma chapa metálica fina com 20 mm de largura, que contém uma trinca através da espessura e que se encontra em posição central. Esta chapa pode ser alternada de tração e compressão com amplitude de tensão de 125 MPa. Se os comprimentos inicial e crítico das trincas forem de 0,20 e 8 mm, respectivamente, e os valores de m e C forem 4 e 5x10⁻¹² (mm/ciclo)/(MPa.m^{1/2})^m, respectivamente, estime a vida em fadiga desta chapa. Assuma F=1.