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Elements of Stability Theory
Lagrangian formulation (recalling)

d(or)_or _ov

dt\oq, ) 0q, 0q,

=N,,r=12,..,n

System of second-order differential equations (holonomic constraints)

q= h(q’q’t) g =h (qliqZ""’Qn’ql’QZ""’qn’t)

Example: SDOF linear oscillator

U=7/(t)_a)2u_2§a)u with 7,(:[):@, a)=\/E’ §=L

m 2M@
Example: MDOF linear system

U=M"[R(t)-KU-CU]




Elements of Stability Theory

Hamiltonian formulation (recalling)

. oT
Generalized momenta: p,=_—

0d,
Hamiltonian: H = qu p,—T+V
=1

System of first-order differential equations (holonomic constraints)

oH

qr = apr
oH
pr = 0




Elements of Stability Theory

Hamiltonian formulation (recalling)

Example: SDOF linear oscillator

p=2" —mg 1
oq q=ap
p* kg’ —>
H = —-T+V = C
Pa= TV =om ™ |O=R(t)—kq—ap

N =R(t)-cq= R(t)—c%




Elements of Stability Theory

Lagrangian formulation:
from second- to first-order system of differential equations through change of variables

A, =, (0, Gpsevrs G Gy, Bpsves G )

yr = qr yr = yr+n
—>

yr+n =qr yr+n =hr(y1’y2""’y2n’t)

y=g(y.t)

Example: SDOF linear oscillator

Y1=4 :> Vi =Y,

Y, =9 Y, =7(t)- @’y, — 2lwy,




Elements of Stability Theory

Phase space

Autonomous systems Non-autonomous systems

y=9(y) y=9(y.t)

n-dimensional space : :
P (n+1)-dimensional space

Yi X ¥oueX Yon Yo X Ypuu X ¥y X1

Y A

- IS
S

N




Elements of Stability Theory

Phase space properties for SDOF autonomous systems
Singular phase points (equilibrium points) Y = g(y) =0

Regular phase points Yy = g(y) 30

dy : ,
Phase trajectory tangent Y2 g2(y1 y2) 9, (Y1)
dy, gl(ym 2) Y,
Tangent at singular phase points is indeterminate 92(y1’ 2) 9
dyl gl(yl’ 2) 0

Tangent at regular phase points with 9. (Y1, ¥,)=Y,=0and g,(y,,y,)#0
Is orthogonal to the Y, axis

Through a regular phase point passes just one phase trajectory
(Theorem of Cauchy-Lipschitz)




Elements of Stability Theory

Non-perturbed solution: =Y, (t) r=12,..

Perturbed solution: =y, (t)+3y, (1), r=12,.

Y =0 (¥ + Y1 Vs +6Y50s You + 8 Yopst) = Y7

5Y, = f,(5Y1,6Y5,,6Yon,t)

Perturbation equations:

&y = f(dy,t)
oy = A(t)dy + N(dy,t) with A(t)_a; and N(8y,t) =f(dy,t)— A(t)dy

Note: the non-perturbed solution corresponds to the
trivial solution ¢y = () of the perturbation equations




Elements of Stability Theory

Example: SDOF linear oscillator

5371 — 5)/2
6y, =—w'sy, - 25w by,

oy =f(dy) or oy = Ady




Elements of Stability Theory

Stability concept (Leipholz)

A non-perturbed solution y°(t) is stable if the distance 8y (t)
to the perturbed solutions remains within prescribed bounds for all times and
arbitrarily defined perturbations

_ Equilibrium y° = const.
Non-perturbed solution _
Motion y°(t)

Kinematical (initial conditions): 8y (0) = 0
“Type” of perturbation _ _
Topological (perturbation of parameters or

perturbation of mathematical model)




Elements of Stability Theory

Stability concept (Leipholz)

Local
Perturbation “size” Hﬁy(O)H <o

Global
Global S Global | Global Global |

Local | Local S Local S Local I




Elements of Stability Theory

Stability concept (Leipholz)

_ Deterministic
“Character” of perturbation _
Stochastic

Example: definition of stability in the quadratic mean:

lim E, i‘)y(’[)H2 <g O = _I Sy (@)do< ¢

Stability x Confiability x Integrity




Elements of Stability Theory

Stability concept (Leipholz)

_ Asymptotic
Tendency of perturbed solution
Non-asymptotic

5y, o>




Elements of Stability Theory

Stability concept (Leipholz)

- _ _ Kinetic
Admissible region for perturbed solution _
Geometric
V a
L4 :
ay(r) “ 3y (1)

¥ (1)




Elements of Stability Theory

Stability definitions

Liapunov
Stability of equilibrium of autonomous systems in the sense:
kinematical, local, deterministic, non-asymptotic, kinetic

Poincare
Stability of motion of autonomous systems in the sense:
Kinematical, local, deterministic, non-asymptotic,geometric

Particular case: orbital stability of periodic motions
Structural
Stability of equilibrium or motion in the sense:
topological, local, deterministic, asymptotic

Particular cases: parametric stability; Mathieu stability




Elements of Stability Theory

Liapunov stability

Given >0 , there exists §(<)> 0, such that,
if |8y(0)|<5(e)then [By(t)|<efor t>0

Liapunov’s methods

First method (indirect)
Second method (direct)




Elements of Stability Theory

Liapunov’s first method

Perturbation equation for the analysis of the
stability of equilibrium of the trivial solution oy =0

8y =f(dy) = Ady + N(8y)

with A=% and  N(dy)=f(3y)— Ady

0

Consider the associated linearized problem
oy = Ady

Solucéo geral
dy = dy "




Elements of Stability Theory

Liapunov’s first method
(A-21)dy,=0

For non-trivial solutions it is required that
A-A4ll=0

It is the classic eigenvalue problem for matrix A

b A" +b A"+ ... +b, A+b, =0

In the general case, there exists 2n complex roots for the characteristic equation

A =R +1l, R, and I, are real numbers




Elements of Stability Theory

Liapunov’s first method

Theorem 1 (Liapunov): If R <0 Vk=12..2n= 8y =0 is L-stable

Theorem 2 (Liapunov): If 3R, >0 =8y =0 Is L-unstable

Definition of L-critical case: there exists at least one eigenvalue with
zero real part R, =0, yet none of them with positive real part.

Theorem 3 (Leipholz): In the critical case, if the multiplicity p, of all the
eigenvalues with null real part (R, =0) is equal to the rank decrement d,

of the matrix A— A4, 1, then the solution &y = 0 is L-stable for the linear system.
If p, >d,, then the solution 8y =0 is L-unstable for the linear system.




Elements of Stability Theory
Liapunov’s first method

Theorem 4 (Routh-Hurwitz): If all principal minors of the matrix
B (below) are positive, then the solution &y =0 is L-stable.
The reciprocal is also true.

b bb 0 0 0 O 0
b, bb b b, 0 O 0
0

b_,.=0 and

r>2n

r<0 =




Elements of Stability Theory

Liapunov’s first method

Theorem 5 (Liapunov): Except for the L-critical case, the conclusions drawn from
Theorems 1 and 2 for the linearized system oy = Ady can be extended to the
non-linear system &y = Ady + N(3y)

Dynamical systems theory

Theorem 5° (Hartman-Grobman): If a singularity of the linear system

oy = Ady Is hyperbolic , then the linearized system is topologically equivalent
to the non-linear system &y = Ady + N(6y) In the singularity neighbourhood,
that Is, between the phase space flows of the non-linear and the linear systems

there exists a diffeomorphism (transformation that is continuous with continuous
derivative)




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

5Y1=5y2

5Y, =—a’Sy, — 2£wdY,

250 >b  o° —>cC

bel cell

characteristic equation A2 +bl+c=0 = A= _

oy = Aoy
0 1
,A\zq = 5
oy, [-o° -2fw
)
A =
—Cc -b
b+ b —4c




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator
Let 0x=Bdy such that 8y = Ady = oXx=Cox

with C being a Jordan canonical form
Remark: B must be suchthat CB=BA=C=BAB™

Case (@ A el,Lel, L#4 > C=|:/z)1 O}

b°—4c>0 A
Case (b): h=A=4ell > C=|:/1 O:| ou C=|:/1 1:|

: - : A 0
Case (0): A =A=a+ifel, L,=A=a—-ifel > C=|: ]
b*—4c<0




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

5x, Case () o%,

OX. = ox e

-

O Y O L
Vv V VV Y
Q,

w

e
~ Y
ox,
i O A

A, <A4=0 A, <0< 4 0=A4, < 4




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

Case (bl)
Sx =oxe" = o) =(5XZZ]
o(ox) \ox
ox,
; ; ox,
A =4=0
Case (b2)
. ox = (X +t5x5)e™  5x, = 5xge”
o(5x%,) _ 5 _ 1
ZCARPN (A Pr -
A,=4<0 ) sttt

ox,




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator
Case (C)

+i 0 ) 1+i 1—i
6X=[aoﬂ a—iﬁ}”‘ Change variables... 5V=[1_i 1+J5X
. [1+i 1—1 _ [1+i 1—i:H:a+i,B 0 }[1“ 1—T l:a —ﬁ}
oV = . lox = . . . . | ov= ov

1-i1 1+i 1-1 1+1 0 a+i1fg|[1-1 141 L «
av, K fi Ve
Define vector ov =0V, +10V, in Argand’s plane ... ~
&V =(a+iB)dv = dv=2dv,ee” ff
d'.?mh Sv. A av
- ,.,-v""# 2 A

\
(A L
G

G

a>0

T N
N~




Elements of Stability Theory

A b (cavemne)
1 1 1

. w!—a -t b’:l.c
INFLECTED  FOCUS

NODE

—

(STIFFNESS)




Elements of Stability Theory

Conservative SDOF oscillator

U+g(u)=0=udu+g(u)du=0=uudt+g(u)du=0

u2 u
Integrating: 5 * [9(n)dn = E = const.
el 0

mechanical energy

kinetic energy
potential energy

| . 2
Define: G(U)=£9(’7)d’7 =u=£2E-Glu)]=T - 2 U(Io) J2E-GW)]

period of motion

EG(u)
() /
saddle
saddle-node 2
LN o
Nl centres




Elements of Stability Theory

Liapunov’s second method

3y =1(dy) = Ady + N(dy)
where A = 2:/ and  N(8y)="f(8y)— Ady
0

Theorem 6 (Liapunov): if there exists a function F (6y) : E — [1 such that:

F>0 Voy
F=0&0y=0 then oy =0 is L-stable
oF oF

F= 5y =— <0
00Y, o8y,




Elements of Stability Theory

Liapunov’s second method

Theorem 7 (Liapunov): if there exists a function (5y) -E — [] such that:
F>0 Voy

F=0&0y=0 then &y =0 is asymptotically stable

. In Liapunov’s sense

F =6—F5yr =6—Ffr <0

00Y, 00Y,

Theorem 8 (Chetayev): if there exists a function F (ﬁy) ‘E — [ such that:
F>0 Voy

F=0&6y=0 then oy = 0 is L-unstable

F =6_F5yr =a_|:fIr >0

00Y, 00Y,




Elements of Stability Theory

Liapunov’s second method

AF(ﬁﬁ’)

F (6y) Is called Liapunov’s function




Elements of Stability Theory

Attractor

Subset of the phase space to which a solution of the dynamical system tends when
t — oo for initial conditions in a non-localized subset of the phase space
(basin of attraction)

Fixed point (stable equilibrium point): asymptotically stable singularity
Limit cycle (periodic attractor): asymptotically stable orbit in the phase space
with one dominating frequency or more than one commensurate dominating

frequencies

Limit torus: asymptotically stable manifold in the phase space, with more than
one non-commensurate dominating frequency

Strange attractor (chaos): coexistence of some of the previous attractors with non-
compact (fractal) basins of attraction




Elements of Stability Theory

Periodic attractor in autonomous dynamical system y = ¢ (y)

Example: van der Pol equation

u—u+u+(u2+u2)u=0
-

Trivial solution U (t) = 0 is unstable Q

5
B

Periodic attractor U (t) =Ssint s stable

u

L
Ll




Elements of Stability Theory

Dynamical Systems

Hirsch & Smale: Differential Equations, Dynamical Systems
and Linear Algebra
Guckenheimer & Holmes: Nonlinear Oscillations, Dynamical Systems
And Bifurcation of Vector Fields




Elements of Stability Theory

Orbital stability of autonomous SDOF oscillators

 First Poincaré-Bendixson’s Theorem:
If a phase trajectory C remains within a finite region without approaching
a singularity, then C is a limit cycle or it tends to one.

« Second Poincaré-Bendixson’s Theorem:

Given a region D of the phase space, bounded by two curves C’ and C”,
without a singularity in D, C* ¢ C”, if all phase trajectories enter (exit)

In D through the boundaries C’ ¢ C”, then there exists at least a stable (unstable)
limit cycle in D.




Elements of Stability Theory

Poincaré’s section (map)

« Let y=f(y) be aflow of an autonomous system in [ 2" and
¥:f(y)-N =0 a section with normal N . Consider the mapping
Yo, = P(Y,) defined by the intersection of the flow y =f(y) with =.
P(Y,) is termed a “Poincaré’s section” of the flow y = f (y) through y,

» If the system is non-autonomous, defined by the flow y =f (y,t), an
associated autonomous one Yy = f(y) defined inJ **** can be proposed

with the addition of y, , =1, so that the Poincaré’s sections can be defined
orthogonally to the axis Y,,,, =t at t=t,+IT, 1=12,..




Elements of Stability Theory

Poincaré’s section (map)

Analyse the complex eigenvalues A, = Re;+ilm;
of linearized mapping DP(y, ) to test stability.

Im A
Stability for |4, <1 7\
1
2y

Instability for |4;|>1




Elements of Stability Theory

Example of Poincaré’s section (map)

U+(—1+u2+u2)u+u=0

s [ e
v =0f T a1 1 T (v2v2)ys

In polar co-ordinates

y, =rsiné

}:> r =0 corresponds to an unstable focus
y, =rcosé

{ r:—r(rz—l)coszﬁ
forrz0=< . _
0 =1+(r2 —1)S|n 0cos 6

It is readily seen that r=1and &=t are a limit cycle




Elements of Stability Theory

Example of Poincaré’s section (map)

Poincaré’s section: 6=6,

h=1l+g, >r=1l+tg for0=0,+27] ]=12,.

Mapping: r =& =—(1+gj)[(l+gj )2—1}:032 o,

J J

S 2 3 2
£ = (2(9j +3¢; -|-8j)COS o,

—477jcos? G,

. . - Coa 2 _
Linearizing: &, =—(2c0s6,)s; = ¢, = &,¢

—47rcos’ G,

Mapping in[1*: r; -1, =P(r;)=1+(r,-1)e

DP = dP(rJ) _ e—47r003260
dr.

J

asymptotic stability for g, = % or%ﬁ, since |1] <1

stability for 6, =% or%ﬂ, since &, =0= ¢, =¢,




Elements of Stability Theory

Periodic attractor in non-autonomous dynamical system y =( (y,t)

Example: forced Duffing’s equation

U+ 260 + o5u + sau’ = ek cos(aw, + eo )t with 0<e<<1
There exist periodic attractors
u(t) =acos| (@, +£o)t+y]+0(¢)

o

Estudo recai em estabilidade de singularidades...




