### Which of the following is a hypothesis?

- a) Bubbles form when a liquid is heated in a tea pot.
- b) The bubbles are the gas state of the original liquid.
- c) The molecules in the liquid have enough energy to escape.
- d) We can test whether the bubbles are the gas state of the liquid by removing the heat, at which point the gas should condense.





 $H_2O(g)$ 



### Which of the following is a hypothesis?

- a) Bubbles form when a liquid is heated in a tea pot.
- b) The bubbles are the gas state of the original liquid.
- c) The molecules in the liquid have enough energy to escape.
- d) We can test whether the bubbles are the gas state of the liquid by removing the heat, at which point the gas should condense.





 $H_2O(g)$ 



# Which of the following is correct for the material pictured?

- a) A gaseous pure substance
- b) A liquid pure substance
- c) A gaseous mixture
- d) A solid mixture
- e) None of the above



# Which of the following is correct for the material pictured?

### a) A gaseous pure substance

- b) A liquid pure substance
- c) A gaseous mixture
- d) A solid mixture
- e) None of the above



### Which of the following is a pure substance?

- a) Sweat
- b) Beef stew
- c) Coffee
- d) Apple juice
- e) Ice

### Which of the following is a pure substance?

- a) Sweat
- b) Beef stew
- c) Coffee
- d) Apple juice
- e) Ice

### Which of the following is a heterogeneous mixture?

- a) Seawater
- b) Chicken soup
- c) Coffee
- d) Hydrogen peroxide
- e) Ice

## Which of the following is a heterogeneous mixture?

a) Seawater

## b) Chicken soup

- c) Coffee
- d) Hydrogen peroxide
- e) Ice

# Which of the following mixtures is separated best by decanting?

- a) Two aqueous liquids
- b) A solid and a liquid
- c) A volatile liquid and a non-volatile liquid
- d) Two solids

# Which of the following mixtures is separated best by decanting?

a) Two aqueous liquids

## b) A solid and a liquid

- c) A volatile liquid and a non-volatile liquid
- d) Two solids

## Which of the following represents a chemical change?

- a) Freezing water to make ice cubes
- b) Dry ice evaporating at room temperature
- c) Toasting a piece of bread
- d) Dissolving sugar in hot coffee
- e) Crushing an aluminum can



## Which of the following represents a chemical change?

- a) Freezing water to make ice cubes
- b) Dry ice evaporating at room temperature
- c) Toasting a piece of bread
- d) Dissolving sugar in hot coffee
- e) Crushing an aluminum can







### Which of the following is a chemical property?

- a) Squeezing oranges to make orange juice
- b) Melting butter for popcorn
- c) Separating sand from gravel
- d) Hydrogen peroxide decomposing to water and oxygen
- e) Ozone as a gas at room temperature

### Which of the following is a chemical property?

- a) Squeezing oranges to make orange juice
- b) Melting butter for popcorn
- c) Separating sand from gravel
- d) Hydrogen peroxide decomposing to water and oxygen
- e) Ozone as a gas at room temperature

### Which of the following is true?

- a) Energy is always conserved in a physical or chemical change.
- b) Systems with low potential energy tend to change in a direction of high potential energy spontaneously.
- c) Thermal energy is a form of potential energy.
- d) Objects with high potential energy are stable.
- e) Chemical potential energy is a form of kinetic energy.

### Which of the following is true?

- a) Energy is always conserved in a physical or chemical change.
- b) Systems with low potential energy tend to change in a direction of high potential energy spontaneously.
- c) Thermal energy is a form of potential energy.
- d) Objects with high potential energy are stable.
- e) Chemical potential energy is a form of kinetic energy.

## Which of the following is NOT a base unit?

- a) Meter
- b) Kilogram
- c) Liter
- d) Kelvin
- e) Ampere

## Which of the following is NOT a base unit?

- a) Meter
- b) Kilogram
- c) Liter
- d) Kelvin
- e) Ampere

## Chlorine vaporizes at –34.4 ° C. What is this temperature in degrees Fahrenheit?

- a) -34.4 ° F
- b) -29.9° F
- c) 238.75° F
- d) 307.55 ° F
- e) 273.15° F

Chlorine vaporizes at –34.4 ° C. What is this temperature in degrees Fahrenheit?

- a) -34.4 ° F
- b) -29.9° F
- c) 238.75° F
- d) 307.55 ° F
- e) 273.15° F

## Temperatures in Death Valley can rise above 120 ° F. What is this temperature in Kelvin?

- a) 393 K
- b) -153 K
- c) 322 K
- d) 234 K



## Temperatures in Death Valley can rise above 120 ° F. What is this temperature in Kelvin?

- a) 393 K
- b) -153 K
- c) 322 K
- d) 234 K



# Which of the following would NOT be considered an *intensive property* describing an unknown sample?

- a) It is a solid at 25  $^{\circ}$  C.
- b) It has a density of 1.38 g/cm<sup>3</sup>.
- c) It melts at 62.0 °C.
- d) It has a volume of  $0.52 \text{ cm}^3$ .
- e) It is shiny.

# Which of the following would NOT be considered an *intensive property* describing an unknown sample?

- a) It is a solid at 25  $^{\circ}$  C.
- b) It has a density of 1.38 g/cm<sup>3</sup>.
- c) It melts at 62.0 °C.
- d) It has a volume of 0.52 cm<sup>3</sup>.
- e) It is shiny.

## What is the density of a solution that has a mass of 13.5 g and a volume of 15.8 mL?

- a) 1.17 g/mL
- b) 0.213 g/mL
- c) 4.69 g/mL
- d) 0.854 g/mL

## What is the density of a solution that has a mass of 13.5 g and a volume of 15.8 mL?

- a) 1.17 g/mL
- b) 0.213 g/mL
- c) 4.69 g/mL
- d) 0.854 g/mL

#### Which of the following has the largest density?

- a) A material that has a mass
  of 10.0 g and a volume of
  2.00 L
- b) A material that has a mass of 5.00 g and a volume of 10.0 cm<sup>3</sup>
- c) A material that sinks in ethanol but floats on water

### TABLE 1.4 The Density of SomeCommon Substances at 20 °C

| Substance                    | Density (g/cm <sup>3</sup> ) |
|------------------------------|------------------------------|
| Charcoal (from oak)          | 0.57                         |
| Ethanol                      | 0.789                        |
| Ice                          | 0.917 (at 0 °C)              |
| Water                        | 1.00 (at 4 °C)               |
| Sugar (sucrose)              | 1.58                         |
| Table salt (sodium chloride) | 2.16                         |
| Glass                        | 2.6                          |
| Aluminum                     | 2.70                         |
| Titanium                     | 4.51                         |
| Iron                         | 7.86                         |
| Copper                       | 8.96                         |
| Lead                         | 11.4                         |
| Mercury                      | 13.55                        |
| Gold                         | 19.3                         |
| Platinum                     | 21.4                         |

#### Which of the following has the largest density?

- a) A material that has a mass
  of 10.0 g and a volume of
  2.00 L
- b) A material that has a mass of 5.00 g and a volume of 10.0 cm<sup>3</sup>
- c) A material that sinks in ethanol but floats on water

### TABLE 1.4 The Density of SomeCommon Substances at 20 °C

| Substance                    | Density (g/cm <sup>3</sup> ) |
|------------------------------|------------------------------|
| Charcoal (from oak)          | 0.57                         |
| Ethanol                      | 0.789                        |
| Ice                          | 0.917 (at 0 °C)              |
| Water                        | 1.00 (at 4 °C)               |
| Sugar (sucrose)              | 1.58                         |
| Table salt (sodium chloride) | 2.16                         |
| Glass                        | 2.6                          |
| Aluminum                     | 2.70                         |
| Titanium                     | 4.51                         |
| Iron                         | 7.86                         |
| Copper                       | 8.96                         |
| Lead                         | 11.4                         |
| Mercury                      | 13.55                        |
| Gold                         | 19.3                         |
| Platinum                     | 21.4                         |

## When reading a graduated cylinder, read the volume at the bottom of the meniscus.

What volume of liquid is in the graduated cylinder?

- a) 4 mL
- b) 5 mL
- c) 4.5 mL
- d) 4.6 mL
- e) 4.56 mL



## When reading a graduated cylinder, read the volume at the bottom of the meniscus.

What volume of liquid is in the graduated cylinder?

- a) 4 mL
- b) 5 mL
- c) 4.5 mL
- d) 4.6 mL
- e) 4.56 mL



# Which of the following numbers has four significant figures?

- a) 0.003
- b) 0.7180
- c) 0.10251
- d) 0.508



# Which of the following numbers has four significant figures?

- a) 0.003
- b) 0.7180
- c) 0.10251
- d) 0.508



# Calculate the following with the correct number of significant figures.

$$\frac{(1.428 - 1.08)}{0.288} + (2.83 \times 0.360) =$$

- a) 2
- b) 1.4
- c) 2.2
- d) 1.36
- e) 2.23

A student measures the mass of a penny four times and records the following data. What can be said about the data if the actual mass of the penny is 2.4987 g?

- a) The data is both accurate and precise.
- b) The data is neither accurate nor precise.
- c) The data is accurate, but not precise.
- d) The data is not accurate, but it is precise.

| Trial  | Mass,  |
|--------|--------|
| Number | g      |
| 1      | 2.5104 |
| 2      | 2.5106 |
| 3      | 2.5102 |
| 4      | 2.5109 |

A student measures the mass of a penny four times and records the following data. What can be said about the data if the actual mass of the penny is 2.4987 g?

- a) The data is both accurate and precise.
- b) The data is neither accurate nor precise.
- c) The data is accurate, but not precise.
- d) The data is not accurate, but it is precise.

| Trial  | Mass,  |
|--------|--------|
| Number | g      |
| 1      | 2.5104 |
| 2      | 2.5106 |
| 3      | 2.5102 |
| 4      | 2.5109 |

How many ounces of mercury are in 1.0 cubic meters of mercury? Hint: the density of mercury is  $13.55 \text{ g/cm}^3$ and 1 ounce = 28.35g.

- a)  $6.5 \times 10^6$  ounces
- b)  $4.8 \times 10^5$  ounces
- c) 5.2  $\times$  10<sup>4</sup> ounces
- d)  $6.5 \times 10^4$  ounces
- e) 48 ounces

Relationship between Length and Volume



How many ounces of mercury are in 1.0 cubic meters of mercury? Hint: the density of mercury is  $13.55 \text{ g/cm}^3$  and 1 ounce = 28.35g.

- a)  $6.5 \times 10^6$  ounces
- b)  $4.8 \times 10^5$  ounces
- c) 5.2  $\times$  10<sup>4</sup> ounces
- d)  $6.5 \times 10^4$  ounces
- e) 48 ounces

Relationship between Length and Volume



## A cube has an edge length of 6.4 in. What is the volume of the cube in cm<sup>3</sup>?

- a)  $4.3 \times 10^3 \text{ cm}^3$
- b)  $6.7 \times 10^2 \text{ cm}^3$
- c) 16 cm<sup>3</sup>
- d)  $1.0 \times 10^2 \text{ cm}^3$

A cube has an edge length of 6.4 in. What is the volume of the cube in cm<sup>3</sup>?

- a)  $4.3 \times 10^3 \text{ cm}^3$
- b)  $6.7 \times 10^2 \text{ cm}^3$
- c) 16 cm<sup>3</sup>
- d)  $1.0 \times 10^2 \text{ cm}^3$

## Determine the mass of 2.5 cups of water if the density of water is 1.00 g/ cm<sup>3</sup> and 1 cup = 240 mL.

- a) 2.5 g
- b)  $6.0 \times 10^2 \, g$
- c)  $1.0 \times 10^{-2} \, \text{g}$
- d)  $2.4 \times 10^2 \, g$
- e)  $1.0 \times 10^2$  g



## Determine the mass of 2.5 cups of water if the density of water is 1.00 g/ cm<sup>3</sup> and 1 cup = 240 mL.

- a) 2.5 g
- b)  $6.0 \times 10^2 \, g$
- c)  $1.0 \times 10^{-2} \, \text{g}$
- d)  $2.4 \times 10^2 \, g$
- e)  $1.0 \times 10^2$  g



## A cube of aluminum (density = 2.70 g/mL) has a mass of 17.2 g. What is the edge length of the cube?

- a) 6.34 cm
- b) 1.85 cm
- c) 2.58 cm
- d) 3.59 cm

## A cube of aluminum (density = 2.70 g/mL) has a mass of 17.2 g. What is the edge length of the cube?

- a) 6.34 cm
- b) 1.85 cm
- c) 2.58 cm
- d) 3.59 cm