Which of the following is a hypothesis?

a) Bubbles form when a liquid is heated in a tea pot.
b) The bubbles are the gas state of the original liquid.
c) The molecules in the liquid have enough energy to escape.
d) We can test whether the
 bubbles are the gas state of the liquid by removing the heat, at which point the gas should condense.

Which of the following is a hypothesis?
a) Bubbles form when a liquid is heated in a tea pot.
b) The bubbles are the gas state of the original liquid.
c) The molecules in the liquid have enough energy to escape.
d) We can test whether the
 bubbles are the gas state of the liquid by removing the heat, at which point the gas should condense.

Which of the following is correct for the material pictured?
a) A gaseous pure substance
b) A liquid pure substance
c) A gaseous mixture
d) A solid mixture
e) None of the above

Which of the following is correct for the material pictured?
a) A gaseous pure substance
b) A liquid pure substance
c) A gaseous mixture
d) A solid mixture
e) None of the above

Which of the following is a pure substance?

a) Sweat
b) Beef stew
c) Coffee
d) Apple juice
e) Ice

Which of the following is a pure substance?

a) Sweat
b) Beef stew
c) Coffee
d) Apple juice
e) Ice

Which of the following is a heterogeneous mixture?

a) Seawater
b) Chicken soup
c) Coffee
d) Hydrogen peroxide
e) Ice

Which of the following is a heterogeneous mixture?

a) Seawater
b) Chicken soup
c) Coffee
d) Hydrogen peroxide
e) Ice

Which of the following mixtures is separated best by decanting?

a) Two aqueous liquids
b) A solid and a liquid
c) A volatile liquid and a non-volatile liquid
d) Two solids

Which of the following mixtures is separated best by decanting?
a) Two aqueous liquids
b) A solid and a liquid
c) A volatile liquid and a non-volatile liquid
d) Two solids

Which of the following represents a chemical change?

a) Freezing water to make ice cubes
b) Dry ice evaporating at room temperature
c) Toasting a piece of bread
d) Dissolving sugar in hot coffee
e) Crushing an aluminum can

Which of the following represents a chemical change?

a) Freezing water to make ice cubes
b) Dry ice evaporating at room temperature
c) Toasting a piece of bread
d) Dissolving sugar in hot coffee
e) Crushing an aluminum can
Propane gas burning:
$\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow$
$3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
Chemical composition altered
Chemical change

$\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(g)$
Carbon dioxide and water

Which of the following is a chemical property?

a) Squeezing oranges to make orange juice
b) Melting butter for popcorn
c) Separating sand from gravel
d) Hydrogen peroxide decomposing to water and oxygen
e) Ozone as a gas at room temperature

Which of the following is a chemical property?

a) Squeezing oranges to make orange juice
b) Melting butter for popcorn
c) Separating sand from gravel
d) Hydrogen peroxide decomposing to water and oxygen
e) Ozone as a gas at room temperature

Which of the following is true?

a) Energy is always conserved in a physical or chemical change.
b) Systems with low potential energy tend to change in a direction of high potential energy spontaneously.
c) Thermal energy is a form of potential energy.
d) Objects with high potential energy are stable.
e) Chemical potential energy is a form of kinetic energy.

Which of the following is true?

a) Energy is always conserved in a physical or chemical change.
b) Systems with low potential energy tend to change in a direction of high potential energy spontaneously.
c) Thermal energy is a form of potential energy.
d) Objects with high potential energy are stable.
e) Chemical potential energy is a form of kinetic energy.

Which of the following is NOT a base unit?

a) Meter
b) Kilogram
c) Liter
d) Kelvin
e) Ampere

Which of the following is NOT a base unit?

a) Meter
b) Kilogram
c) Liter
d) Kelvin
e) Ampere

Chlorine vaporizes at -34.4° C. What is this temperature in degrees Fahrenheit?
a) $-34.4^{\circ} \mathrm{F}$
b) $-29.9^{\circ} \mathrm{F}$
c) $238.75^{\circ} \mathrm{F}$
d) $307.55^{\circ} \mathrm{F}$
e) $273.15^{\circ} \mathrm{F}$

Chlorine vaporizes at $-34.4^{\circ} \quad$ C. What is this temperature in degrees Fahrenheit?
a) $-34.4^{\circ} \mathrm{F}$
b) $-29.9^{\circ} \mathrm{F}$
c) $238.75^{\circ} \mathrm{F}$
d) $307.55^{\circ} \mathrm{F}$
e) $273.15^{\circ} \mathrm{F}$

Temperatures in Death Valley can rise above $120^{\circ} \mathrm{F}$. What is this temperature in Kelvin?
a) 393 K
b) -153 K
c) 322 K
d) 234 K

Temperatures in Death Valley can rise above $120^{\circ} \mathrm{F}$. What is this temperature in Kelvin?
a) 393 K
b) -153 K
c) 322 K
d) 234 K

Which of the following would NOT be considered an intensive property describing an unknown sample?
a) It is a solid at $25^{\circ} \mathrm{C}$.
b) It has a density of $1.38 \mathrm{~g} / \mathrm{cm}^{3}$.
c) It melts at $62.0^{\circ} \mathrm{C}$.
d) It has a volume of $0.52 \mathrm{~cm}^{3}$.
e) It is shiny.

Which of the following would NOT be considered an intensive property describing an unknown sample?
a) It is a solid at $25^{\circ} \mathrm{C}$.
b) It has a density of $1.38 \mathrm{~g} / \mathrm{cm}^{3}$.
c) It melts at $62.0^{\circ} \mathrm{C}$.
d) It has a volume of $0.52 \mathbf{~ c m}^{\mathbf{3}}$.
e) It is shiny.

What is the density of a solution that has a mass of 13.5 g and a volume of 15.8 mL ?
a) $1.17 \mathrm{~g} / \mathrm{mL}$
b) $0.213 \mathrm{~g} / \mathrm{mL}$
c) $4.69 \mathrm{~g} / \mathrm{mL}$
d) $0.854 \mathrm{~g} / \mathrm{mL}$

What is the density of a solution that has a mass of 13.5 g and a volume of 15.8 mL ?
a) $1.17 \mathrm{~g} / \mathrm{mL}$
b) $0.213 \mathrm{~g} / \mathrm{mL}$
c) $4.69 \mathrm{~g} / \mathrm{mL}$
d) $0.854 \mathrm{~g} / \mathrm{mL}$

Which of the following has the largest density?

a) A material that has a mass of 10.0 g and a volume of 2.00 L
b) A material that has a mass of 5.00 g and a volume of $10.0 \mathrm{~cm}^{3}$
c) A material that sinks in ethanol but floats on water

TABLE 1.4 The Density of Some Common Substances at $\mathbf{2 0}{ }^{\circ} \mathbf{C}$ Substance	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Charcoal (from oak)	0.57
Ethanol	0.789
Ice	$0.917\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$
Water	$1.00\left(\right.$ at $\left.\mathrm{a}^{\circ} \mathrm{C}\right)$
Sugar (sucrose)	1.58
Table salt (sodium chloride)	2.16
Glass	2.6
Aluminum	2.70
Titanium	4.51
Iron	7.86
Copper	8.96
Lead	11.4
Mercury	13.55
Gold	19.3
Platinum	21.4

Which of the following has the largest density?

a) A material that has a mass of 10.0 g and a volume of 2.00 L
b) A material that has a mass of 5.00 g and a volume of $10.0 \mathrm{~cm}^{3}$
c) A material that sinks in ethanol but floats on water

TABLE 1.4 The Density of Some Common Substances at $\mathbf{2 0}{ }^{\circ} \mathbf{C}$ Substance	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Charcoal (from oak)	0.57
Ethanol	0.789
Ice	$0.917\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$
Water	$1.00\left(\right.$ at $\left.\mathrm{a}^{\circ} \mathrm{C}\right)$
Sugar (sucrose)	1.58
Table salt (sodium chloride)	2.16
Glass	2.6
Aluminum	2.70
Titanium	4.51
Iron	7.86
Copper	8.96
Lead	11.4
Mercury	13.55
Gold	19.3
Platinum	21.4

When reading a graduated cylinder, read the volume at the bottom of the meniscus.

What volume of liquid is in the graduated cylinder?
a) 4 mL
b) 5 mL
c) 4.5 mL
d) 4.6 mL
e) 4.56 mL

When reading a graduated cylinder, read the volume at the bottom of the meniscus.

What volume of liquid is in the graduated cylinder?
a) 4 mL
b) 5 mL
c) 4.5 mL
d) 4.6 mL
e) 4.56 mL

Which of the following numbers has four significant

 figures?a) 0.003
b) 0.7180
c) 0.10251
d) 0.508

Which of the following numbers has four significant

 figures?a) 0.003
b) 0.7180
c) 0.10251
d) 0.508

Calculate the following with the correct number of significant figures.

$$
\frac{(1.428-1.08)}{0.288}+(2.83 \times 0.360)=
$$

a) 2
b) 1.4
c) 2.2
d) 1.36
e) 2.23

A student measures the mass of a penny four times and records the following data. What can be said about the data if the actual mass of the penny is 2.4987 g ?
a) The data is both accurate and precise.
b) The data is neither accurate nor precise.
c) The data is accurate, but not precise.
d) The data is not accurate, but it is precise.

Trial Number	Mass, \mathbf{g}
1	2.5104
2	2.5106
3	2.5102
4	2.5109

A student measures the mass of a penny four times and records the following data. What can be said about the data if the actual mass of the penny is 2.4987 g ?
a) The data is both accurate and precise.
b) The data is neither accurate nor precise.
c) The data is accurate, but not precise.
d) The data is not accurate, but it is precise.

Trial Number	Mass, g
1	2.5104
2	2.5106
3	2.5102
4	2.5109

How many ounces of mercury are in 1.0 cubic meters of mercury? Hint: the density of mercury is $13.55 \mathrm{~g} / \mathrm{cm}^{3}$ and 1 ounce $=\mathbf{2 8 . 3 5 g}$.
a) 6.5×10^{6} ounces
b) 4.8×10^{5} ounces
c) 5.2×10^{4} ounces
d) 6.5×10^{4} ounces
e) 48 ounces

Relationship between
Length and Volume

A 10 cm cube contains 10001 cm cubes.

How many ounces of mercury are in 1.0 cubic meters of mercury? Hint: the density of mercury is $13.55 \mathrm{~g} / \mathrm{cm}^{3}$ and 1 ounce $=\mathbf{2 8 . 3 5 g}$.
a) 6.5×10^{6} ounces
b) 4.8×10^{5} ounces
c) 5.2×10^{4} ounces
d) 6.5×10^{4} ounces
e) 48 ounces

Relationship between
Length and Volume

A 10 cm cube contains 10001 cm cubes.

A cube has an edge length of 6.4 in . What is the volume of the cube in cm^{3} ?
a) $4.3 \times 10^{3} \mathrm{~cm}^{3}$
b) $6.7 \times 10^{2} \mathrm{~cm}^{3}$
c) $16 \mathrm{~cm}^{3}$
d) $1.0 \times 10^{2} \mathrm{~cm}^{3}$

A cube has an edge length of 6.4 in . What is the volume of the cube in cm^{3} ?
a) $4.3 \times 10^{3} \mathrm{~cm}^{3}$
b) $6.7 \times 10^{2} \mathrm{~cm}^{3}$
c) $16 \mathrm{~cm}^{3}$
d) $1.0 \times 10^{2} \mathrm{~cm}^{3}$

Determine the mass of 2.5 cups of water if the density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$ and $1 \mathrm{cup}=\mathbf{2 4 0} \mathrm{mL}$.
a) 2.5 g
b) $6.0 \times 10^{2} \mathrm{~g}$
c) $1.0 \times 10^{-2} \mathrm{~g}$
d) $2.4 \times 10^{2} \mathrm{~g}$
e) $1.0 \times 10^{2} \mathrm{~g}$

Determine the mass of 2.5 cups of water if the density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$ and $1 \mathrm{cup}=\mathbf{2 4 0} \mathrm{mL}$.
a) 2.5 g
b) $6.0 \times 10^{2} \mathrm{~g}$
c) $1.0 \times 10^{-2} \mathrm{~g}$
d) $2.4 \times 10^{2} \mathrm{~g}$
e) $1.0 \times 10^{2} \mathrm{~g}$

A cube of aluminum (density $=2.70 \mathrm{~g} / \mathrm{mL}$) has a mass of 17.2 g . What is the edge length of the cube?
a) 6.34 cm
b) 1.85 cm
c) 2.58 cm
d) 3.59 cm

A cube of aluminum (density $=2.70 \mathrm{~g} / \mathrm{mL}$) has a mass of 17.2 g . What is the edge length of the cube?
a) 6.34 cm
b) 1.85 cm
c) 2.58 cm
d) 3.59 cm

