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Symbol list  
a The vertical distance of the center of mass below the suspension points B-D. 

,a   Acceleration vector. 

ar Sway radial acceleration. 

a  Sway tangential acceleration.  
A0 Zero offset of Fourier component. 
A(2n-1) Amplitude of the Fourier components. 
b Combined center of mass horizontal offset from the suspension symmetry axis. 
c Distance of the “body plus tray” CM from the symmetry axis of a trifilar 

suspension. 
d, d1, d2  Half the spacing 2d of the parallel suspension lines. 
d1, d2, d3The distances of the trifilar suspension lines from the center of mass. 

id  Vector positions of the ends of the suspension line. 

,D   Drag force. 

e Extra displacement of CM from b to (b + e) from the symmetry axis 
E(k) The elliptical integral of the second kind. 
g   Acceleration due to gravity. 

I I = miri
2 = Mk2 Moment of Inertia about an axis through the CM. 

k Gyradius about an axis through the CM. 

k   0 2k Sin  for the elliptic integral transformation. 

K(k) Complete elliptical integral of the first kind. 
kcm  Gyradius about the combined CM of the body and tray plus added masses m 
km Yaw gyradius of the added mass m about the z axis through its CM. 
kmo Yaw gyradius of the “body, tray and added mass m” about the symmetry axis. 
ko Yaw gyradius of the “body” about the symmetry axis. 
kp Pitch gyradius about the y axis through the CM. 
kT Gyradius of the trifilar suspension tray. 
ky Yaw gyradius of the suspended body. 
kyT Gyradius of the offset body plus trifilar suspension tray. 
kxx Gyradius about the principal x axis through the CM. 
kyy Gyradius about the principal y axis through the CM. 
kzz Gyradius about the principal z axis through the CM. 

il  Vectors representing the suspension lines. 

L The Lagrangian. 
m mass added for CM centering on a trifilar suspension. 
mi Mass element at ri from the rotation axis. 

ml Mass of a suspension line ml = M. 
mT Mass of the trifilar suspension tray. 
M Mass of the suspended body, arithmetic-geometric mean. 
MT Mass of the body plus trifilar suspension tray. 
n Number of oscillations per beat. 
N(x,1) Modified Arithmetic-Geometric Mean. 
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P  Position vector of the point P. 
q The generalized co-ordinate for the Lagrangian. 
r Radius from the symmetry axis of the added masses m for CM centering. 

ir  Vectors from the center of mass to the suspension points B and D. 

ri Distance of a mass element from the rotation axis. 
ti Zero crossing times. 
t0 Time offset. 

T,
1 2T T  The tensions in the suspension lines 1 and 2. 

T Kinetic Energy. 
Tl Kinetic Energy of the suspension lines. 
Tbeat The beat period between Yaw Ty and Sway Ts oscillations. 
Taverage   The average of the yaw period Ty and sway period Ts. 
Tso Zero amplitude sway oscillation period. 

Ts( ) Period of sway oscillation at amplitude  . 
Tsm Zero amplitude Period of sway oscillation with finite mass suspension lines. 

Ty()  Period of yaw rotational oscillation at amplitude  . 
Ty1 Yaw oscillation period with line spacing d1. 
Ty2 Yaw oscillation period with line spacing d2. 
Tye Yaw oscillation period with the CM displaced by an extra displacement e. 
Tyo Zero amplitude yaw oscillation period. 
Tym Zero amplitude Period of yaw oscillation with finite mass suspension lines. 
Tyn Zero amplitude Period of yaw oscillation with added mass m. 
TyT Yaw oscillation period of offset body plus trifilar tray. 
U Potential Energy. 
Ul Potential Energy of the suspension lines. 

V   Tangential velocity. 
x Out of plane horizontal displacement. 
y In plane horizontal displacement. 

y  In plane horizontal velocity. 

y  In plane horizontal acceleration. 

z Vertical displacement of the ends of the suspension lines, i.e. of the hull CM. 

z  Vertical component of the velocity of the CM. 

z   Vertical component of the acceleration of the CM. 

Maxz   Maximum vertical component of the acceleration of the CM. 

 Ratio 2d/l of the suspension spacing 2d to the suspension line length. 

(t)  The angles 1 and 2 that the suspension lines make with the vertical. 

  Sway angular velocity. 

  Sway angular acceleration. 

 Initial sway angular amplitude. 

c1,2 Critical sway angles at which a line tension becomes zero. 

M Sway angle at which the horizontal acceleration maximum occurs.   
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 Ratio of added mass m to the body mass M. 

 Angular displacements from m for trifilar suspension CM centering. 

m Angular displacements from m for yaw period extremum for CM centering. 

 Angle of pitch about the body y axis, also integrand in the elliptic integral. 

 Angular position of second mass m on a trifilar suspension. 

   Pitch angular velocity. 

   Pitch angular acceleration. 

 Ratio ky/d of the yaw gyradius to half the line spacing. 

 Ratio ml/M of the suspension line mass ml to M that of the suspended body. 

 v   Suspension line velocity at l  from the upper suspension point. 

  Angular position of the compensation mass m on a trifilar suspension. 

(t)  The yaw angular displacement of the hull about a vertical axis. 

  The yaw angular velocity about a vertical axis. 

Max  The maximum yaw angular velocity about a vertical axis. 

  The yaw angular acceleration about a vertical axis. 

m Yaw period extremum angle for mass m during trifilar suspension CM centering.

0 Yaw angular amplitude. 

1, 2,3 Angles between the vectors from the CM to the lines of a trifilar suspension 

  Linear density of the suspension lines  = ml/l. 

  The torque due to the bifilar suspension. 

 Angular frequency of oscillation. 

1,2 Double pendulum normal mode angular frequencies of oscillation. 

s Sway angular frequency of oscillation. 

 Fractional distance down the suspension line length l to the point P. 

 Roll angular displacement about the body x axis. 

 Angular position of the body center of mass on a trifilar suspension.
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Abstract 
The theory of large angle oscillations both parallel and perpendicular to the plane 

and about the vertical symmetry axis of a bifilar suspension are presented and have been 
experimentally investigated using a smart phone. The horizontal, vertical and angular 
accelerations as well as the large amplitude periods of pendular and rotational oscillation 
were measured and compared with theory. The effect of finite mass suspension lines and 
of a center of mass displaced from the symmetry axis of the suspension are investigated. 
Simple period ratio measurements, which improve the precision of yaw and pitch gyradius 
measurement, are proposed. Many of the results also apply to trifilar suspensions. 

I. Introduction 
Estimation of the inertia properties of rigid bodies is important in the design of 

structures which rotate during their motion such as cars, boats, airplanes or satellites. In 
most cases accurate analytical models are not available and therefore the computational 
approaches cannot be used to estimate the inertia properties, and experimental 
measurements are required. The various methods of measuring the elements of the 
inertia tensor have been compared and evaluated by Schedlinski and Link1, by Genta and 
Delprete2, and a novel pendulum method is described by Bottasso et al3. 

For rotational motion the inertial properties of rigid bodies are specified by the 

moments of inertia about their principal axes and are I = miri
2 = Mk2 where the sum is 

over all mass elements mi of the body and ri are their perpendicular distances from the 
respective axes4. The moments of inertia therefore have dimensions of mass times a 
length squared and this “root mean square” length k is known as the gyradius or radius of 
gyration5 about that axis. For any shaped body it is always possible to find a radius at 
which all the mass could be concentrated that would give the same moment of inertia, 
namely the gyradius, which can also be visualized as the half length of a symmetrical 
dumbbell of equal mass. The 3 x 3 inertia tensor can be graphically represented by an 
inertia ellipsoid of dimensions kxx

-1, kyy
-1and kzz

-1along the three perpendicular principle 
axes6. The gyradius, which scales for bodies of the same shape, and is independent of 
the (uniform) density is a measure of the mass distribution and as such is used in the 
marine industry7. It is part of the rules for some Olympic sailboat classes8 in order to 
control cost and insure that material is built into the ends to provide adequate structural 
integrity. 

Although the physically relevant quantities are the elements of the inertia tensor, in 
a gravitational field the mass cancels and the equations are more simply expressed in 
terms of the gyradii, classic examples being the compound9, double10 and multi-filar 
pendula11, as well as satellite dynamics. Although modern simulation programs calculate 
gyradii for every component, it is still often necessary to verify the results for complex 
structures experimentally12, and such measurements serve to graphically illustrate the 
difference between the scalar mass and the tensor moment of inertia to students4.  

 The bifilar suspension is known to almost all small children as a swing and 
although the pendular motion is the best known, for physicists it is the rotational 
oscillation about the symmetry axis that is commonly used to measure gyradii about a 
vertical axis13,14,15,16. However, the center of mass height and the gyradius about a 
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horizontal axis in the plane of the suspension can also be determined from the double 
pendulum oscillation perpendicular to the plane of the suspension17. Thus, even with the 
restriction to a parallel suspension, it is possible to measure all the elements of the inertia 
tensor of rigid objects, with reflection symmetry about their center planes, such as 
aeroplanes18, UAVs19,20,21 or boats22,17. 

A body on a bifilar suspension has four degrees of freedom and thus the general 
motion can be complex16, however, by choosing the initial conditions appropriately the 
different modes of oscillation can be separately excited and for bodies suspended so as 
to rotate approximately about a principal axis the motion remains essentially only that 
mode. The present paper only treats the special cases of pure sway, pure yaw and 
double pendulum oscillations and assumes that coupling terms due to products of inertia 
are small. The Lagrangian theory of the motions can be simplified by appropriate choice 
of the four generalized coordinates appropriate to each of these motions.  Furthermore 
the body center of mass (CM) is in the vertical plane of the suspension so its x location 
can be determined. 

 The trifilar suspension only has three degrees of freedom, i.e. no pitch or roll, and 
the sway and surge oscillations both have the simple pendulum period. The yaw results 
derived for the bifilar suspension can be directly applied to a trifilar suspension. However, 
the center of mass position is no longer determined and should be positioned on the 
symmetry axis of the suspension for the yaw oscillation not to be coupled to the sway-
surge modes23 although, as shown below, the error is generally small24. A five wire 
suspension25 has only the yaw rotation degree of freedom and has achieved a precision 
of a part in 104 in moment of inertia26 measurements. 

The geometry of the suspension is determined by the length l of the suspension 

lines and their spacing 2d, or the non-dimensional ratio  = 2d/l. In general  <1 and for 

 >1 the maximum angle of yaw is 0 = Asin -1. The dynamics are determined by the 

elements of the inertia tensor of the suspended body, as, in the absence of damping, the 
mass cancels. Thus the yaw rotation can be characterized by the yaw gyradius ky, or the 

non-dimensional ratio  = ky/d. Then if times are expressed in terms of t/Tso, where 

Tso = 2√(l/g) is the small angle sway period, the equations of motion can be expressed in 

non-dimensional form. 
A number of variations of the bifilar suspension have been described by Cromer14 so 

this paper will restrict itself to the symmetrical equal length parallel line suspension, from 
two points at the same level. Such bifilar suspensions have been used by the author to 
measure the yaw gyradii of sailboats competing in the Olympic games, and to compare 
the yaw gyradius with the pitch gyradius as measured with the standard compound 
pendulum technique17,22,27. Hence the use of nautical terms to describe the various 
motions. 

The measurement of the period of angular oscillation for determining yaw gyradii is 
well known and has been used in the 1920s for measurements of full size aircraft18 and 
more recently for UAVs19,20,21. A significant problem in such zero crossing timing data is 
the modulation of the measured yaw period by lateral sway motion in the plane of the 
suspension, which must therefore be eliminated by using precise initial conditions. This, 
however, can be turned to advantage by using the beat frequency between these 
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motions, or a FFT28, to derive the yaw gyradius, thus eliminating a number of the 
variables. 

For sway oscillation in the plane of a symmetrical parallel suspension the body does 
not rotate so this is the motion of a simple pendulum and an accelerometer, such as that 
in the iPhone 4 or available from Gulf Coast29, will measure the horizontal and vertical 
accelerations, which for large amplitudes deviate significantly from being sinusoidal. 

The MEMS gyro-accelerometer in the iPhone30, or that in a Micro Strain31 were used 
to study the rotational oscillations of the suspension and have the advantage of providing 
simultaneous three axis rotational velocities and linear accelerations, so that extraneous 
motions can be monitored, as well as allowing the detailed study of motions involving 
more than one degree of freedom. This separation of the sway and yaw oscillation data 
allows simple and precise yaw gyradius measurements from simultaneous or consecutive 
excitation of these motions. In practice it is difficult to excite one of these two oscillations 
without some of the other, and the sensitivity of the instrument is such that it records them 
both.  

 All the measurements described in this paper can be inexpensively made with a 
smart phone (many of which are being discarded so are available free!), NODE+32 (or 
other MEMS gyros) and some string, and can easily be extended to real life objects of 
interest to students, such as model boats, aircraft, drones, cars, footballs, golf clubs, 
tennis racquets and baseball bats to mention just a few. In these days of budgetary 
constraints on laboratory equipment this is a significant advantage. However, the 
sophistication of the analysis of the results can be tailored the level of a variety of 
classical mechanics courses. 
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II. Sway Theory 

A. 2D in plane Sway Oscillation Accelerations 
 The lateral oscillation of an equal length parallel bifilar pendulum in the y-z plane of 

the suspension does not involve any rotation of the suspended object, so is described in 

terms of the generalized coordinates  = 1 = 2, the angle the suspension lines make 

with the vertical, and the roll, pitch and yaw angles  =  =  = 0. For suspension lines of 
negligible mass and in the absence of dissipative forces, the small angle period is that of 
a simple pendulum33,34,35,9  

 0 2s

l
T

g
   (0.1) 

 
Note that “l” is the length from the pivot points A and C at the fixed support to the 

suspension points B and D, see figure 1, and is independent of the position of the center 
of mass of the suspended object, which therefore does not have to be known. This has 
the advantage that changes due to mounting the MEMs gyro or bearings etc. do not affect 

the period Ts( ). For in plane oscillation of a parallel bifilar suspension the two tensions in 
the support lines are parallel and can be combined into a single force T =T1 + T2, see 
figure 2. The resulting acceleration for a simple pendulum have been discussed by a 
number of authors 36, 37,38,39,40,41. 
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Figure 1 Sway oscillation in the y-z plane of a parallel bifilar suspension with spacing 2d 
and length l, of a body of mass M with its center of mass a distance “a” below the center 
of the suspension and offset by a distance “b”. 
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For no damping and release from rest at an initial angular displacement 0 the 

velocity at displacement  as derived from energy conservation, is given by 

 

  2 2

0

1

2
Ml Mgl Cos Cos      (0.2) 

  
The radial and tangential accelerations are 
 

  2

02ra l g Cos Cos a gSin          (0.3) 

 
So the vertical and horizontal components of the acceleration are 

 
 

0

0

(3 2 )

(3 2 ) 1

y g Cos Cos Sin

z g Cos Cos Cos

  

  

  

  
  (0.4) 

  

   

   

0 0 0

2

0 0 0

0 0

0 2 (1 )

y y gSin Cos

z g Cos z gSin

  

  

  

   
 

 
From which, in the absence of damping, the angular displacement, velocity and amplitude 
can, without the approximation of small angle sinusoidal motion, be derived as: 

 
y

Tan
z g







  (0.5) 

 
  

 

22

0
22

23 3 1

2 2 2

g z z g yy g Cos Sin Cos z g
Cos

Sin Cos g y z g

  


 

    
  

 

  (0.6) 

 
 

 

2

2

22

y z z g

l y z g


 



 

  (0.7) 

 
  It is interesting to note that the acceleration does not depend on the length 

of the suspension, and hence on its period, but depends only on the initial angle o and 

the angular position . Thus each half cycle of the oscillation is the same, except that the 

sign of y  changes, so the horizontal component has the period of the pendulum while the 

vertical component has half that period and exceeds “g” at  = 0 for o > 60 degrees. 

 For large amplitudes the variation of y  and z  with time become significantly non 

sinusoidal. As the angle  decreases from 0, the velocity and hence the radial 

acceleration and tensions, increase leading to an increase in the horizontal component of 

the acceleration which, however, for low amplitudes 0 this is dominated by the Sin 

term. For larger amplitudes the former initially dominates the Sin term, leading to 

maxima in the horizontal acceleration, before it decreases to zero at the equilibrium 
position. 
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  For o > /6 the horizontal acceleration 0( )y   becomes a local minimum and as 

expected is zero for o = /2. Then the angle at which the maxima occur are given by 

 

 2

06 2 3 0M M

dy
Cos Cos Cos

d
  


      (0.8) 

  

From which one can see that for o < /6 (300) M > o so M is not physical39.  

For o > /6 M <o and 

 

 
2

0 0 18

6
M

Cos Cos
Cos

 


 
   (0.9) 

 
Then expanding the time variation of the angular displacement as a Fourier series 

(t) = i Sin(2ni-1)0t, with 0 g l  , and for amplitudes  < 1 keeping only the first 

term: 
 

     

    

2 2

0 0 0 0

2

0 0 0 0 0 0 0 0

2

0 0 0 0 0 0 0 0

ra g Sin t a g Cos t

y g Sin t Sin Cos t Cos t Cos Cos t

z g Sin t Cos Cos t Cos t Sin Cos t

   

       

       

  

  

 

  (0.10) 
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B. Sway Oscillation Suspension Line Tensions 
 For pure sway motion of a parallel bifilar suspension the suspended body does not 

rotate about its center of mass and therefore the net torque on the suspended body must 
be zero. Thus if the center of mass is at the center of the line B-D the tensions T1 and T2 
are equal, which however this is not in general the case. The situation when the center of 
mass is offset by “b” from the center of the suspension and a distance “a” below it, is 
shown in figure 1. 
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Figure 2 Vector diagram, a) in the absence of damping and b) with damping D (for 
positive and negative velocity), showing the weight Mg and the sum of the tensions 
T = T1+T2 acting on the suspended body. The body has velocity V, and the resultant 

acceleration a is resolved into either the radial ar and tangential a, or the vertical z and 

horizontal y components. 

 
 Resolving the forces in the direction of the suspension lines, as shown in figure 2, 

with T = T1+T2 
   

 
2

02 ( )rT MgCos Ma Ml Mg Cos Cos          (0.11)  

So 

 1 2 0(3 2 )T T T Mg Cos Cos       (0.12)  
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The net torque about the center of mass is: 
 

         1 1 0a y l d b z l a y l d b z l                (0.13) 

 

Then substituting for y = l Sin, z = l (1-Cos) and equating 

 

 

1 0

2 0

0

(3 2 ) 1
2

0

(3 2 ) 1
2

Mg b aTan
T Cos Cos Sin

d
Cos

Mg aTan b
T Cos Cos Sin

d
Cos


  




  



 
  

      
 

 
  

      
 

  (0.14) 

 
The parameter “b” can be deduced from static measurements, but also from a fit of 

equations(0.14) to the dynamic data. Note that T1 goes negative for angles  greater than 

critical angles c1 = Atan[(d+b)/a] and T2 for c2 = Atan[-(d-b)/a], i.e. one suspension line 

goes slack and the above equations no longer apply, or if suspension rods are used one 

is in compression. For lines and angles larger than c the motion becomes that of a 

double pendulum with l1 = li and l2 = ri until the second suspension line again becomes 
taught. 
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C. Sway Oscillation period, massless lines 
 
For the sway oscillation the angular velocity of the suspension lines is given by 

equation(0.2) as: 
 

      2 2

0 0

0

2 4
2 2

s

g
Cos Cos Sin Sin

l T


              (0.15) 

 

Then with the substitutions    02 2Sin Sin Sin    and  0 2k Sin  . The 

inverse can be integrated to give the period of oscillation as9,35 
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s
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Tl l
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 


 
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



 
 
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

 
  (0.16) 

 

Where 0 2sT l g is the zero amplitude period, K(k) is the complete elliptical 

integral of the first kind42 and is often evaluated as a series expansion9,35 
 

   2 4 6

0 0 0 0 0

1 11 173
1 ...

16 3072 737280
s sT T   

 
    

 
  (0.17) 

 
A number of other approximate series expansions have been proposed 14,35,9,43,44,45, 

however, K(k) can be simply calculated from the arithmetic-geometric mean42,46,47 

     0 2 ,1 2M Cos K k   which rapidly converges to a precise value, and is 

especially useful for large angular amplitudes. 
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D. Sway Oscillation period with finite mass lines 
For a bifilar suspension with linear parallel suspension lines, each of mass ml = M, 

the potential and kinetic energies are: 
 

       2 2 2 2 2 22 3 2 1 2 3lT Ml ml Ml         (0.18) 

 

       1 Cos 1 Cos 1 1 CoslU Mgl m gl Mgl            (0.19) 

 
 which when included in the Lagrangian6 lead to: 
 

 

   
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 

2 1 2 3 1 Sin
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1 2 3
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g
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   


 


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
 



  (0.20) 

 
So the small angle sway period with massive suspension lines Tsm is48,49,50: 
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1 6
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l
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 
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

  
    

  
  (0.21) 
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E. Sway Fourier Components 
The amplitudes of the Fourier components of the large angle oscillation of a simple 

pendulum were numerically evaluated by Simon & Reisz51 and a perturbation expansion 
of the solution to the pendulum equation is given by Fulcher & Davis52,53 was modified by 
Belendez54, and fits the numerical calculation51 for angles less than 2 radians. Riccardo 
Borghi55 and Salvador Gil et.56 A. further investigated the Fourier approach to the 
pendulum. 

 

 
     

       

3 5

0 0 0

3 5 5

0 0 0

192 17 61440

192 3072 3 20480 5 ...

t Cos t

Cos t Cos t

    

    

  

   
  (0.22) 

  
The large amplitude bifilar yaw oscillation deviates from sinusoidal in a similar manner, 

but the detailed behaviour depends on both  2 and  2. 
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III. Yaw Rotation Theory 

F. Yaw Oscillation Lagrangian, centered with massless lines 
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Figure 3 Rotation about the vertical symmetry axis of a parallel bifilar suspension, with 
spacing 2d and length l, of a body of mass M with its center of mass a distance “a” below 
the center of the suspension points B-D. 
 

For a rotational displacement  about the vertical symmetry axis of a suspension of 

length l and spacing 2d the torque due to the tension in the suspension lines is 

  22 2 yTd Sin Cos Td Sin Mk         and the tensions are 

 

      2 22 2 1 2T M z g Cos M z g Sin         (0.23) 

So 
 

 

 2 2 21 2

z g
Sin

l Sin
 

  





 (0.24) 
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Where  = 2d/l and  = ky/d. For small angular displacement the tension can be 

approximated as 2T Mg  leading to a differential equation with an oscillatory solution of 

period  0 2y yT k d l g 15. However for larger angular displacement the vertical 

acceleration has to be included. 
For a body of mass M, with its center of mass on the vertical symmetry axis of an 

equal length parallel bifilar suspension of negligible mass and torsional rigidity, see 
figure 3, the vertical displacement from the equilibrium position, when it is rotated by an 

angle  about the vertical symmetry axis is: 

  

     
2

2 2 2 2 22 1 1 1 2 ...
2

d
z l l d Cos l Sin

l
   

 
         

 
  (0.25) 

 

Where l is the length, 2d the spacing and  = 2d/l for the suspension.  

Then in terms of the angular motion the vertical velocity and acceleration are: 
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 
 

  
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   
  (0.26) 
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  

  
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2
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2
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Cos Sind Sin
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l Sin Sin
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 

   

  
   
   
 

  (0.27) 

   
So the potential energy U and kinetic energy T are: 

 

     2 2 21 1 2( / ) (1 ) 1 1 2U Mgz Mgl d l Cos Mgl Sin            (0.28) 

 
and 
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    
  

  

  (0.29) 

 

Where  = ky/d, with ky the yaw gyradius of the suspended body about a vertical axis 

through its center of mass. 

For release from rest at an initial yaw angle 0, and in the absence of dissipative 

forces, conservation of energy leads to: 
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   
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 (0.30) 

 
So the angular velocity is:  
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  (0.31) 

 
The maximum value occurs at the equilibrium position and is 
 

 
  2 2
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2 0
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8 1 1 2
...Max

g Sin g

l l

  


  

 
     (0.32) 

 

Now substituting equation(0.31) into equation(0.26) gives 2z  in terms of the angular 
motion 
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 (0.33) 

   

Substituting 0 from equation(0.31) into its time derivative, or alternatively via the 

Lagrangian, leads to the nonlinear differential equation:  
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 (0.34) 

 

Or in terms of the angular motion for amplitude 0 
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  (0.35) 

 
  
 

For the special case of  = 1 this simplifies to 
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For small angles  it reduces to: 
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  (0.37) 

 

A trial solution57 of the form    0 2 yt Cos t T    then leads to a solution with yaw period: 
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  (0.38) 

 

So the zero amplitude the yaw period15,14 is 0
2y yT k d l g  and is the basis of 

the bifilar suspension method of measuring moments of inertia 
2

y yI Mk  as: 

 

 
0 0

0
2

y y

y

s

T d Tg
k d

l T
    (0.39) 

 
Thus provided the effective length of the suspension is the same for lateral and 

rotational displacements the gyradius can be measured without measuring the 
suspension length l or knowing the precise value of “g”. Simple and bifilar pendula are 
subject to the buoyancy force due to the surrounding air and this is normally taken into 
account by modifying the value of “g” in equations(0.1) and (0.57). However, both the 
variation of “g” with latitude and this correction cancel in the period ratio, as does any 
calibration error in the timer. The effects of added mass58,59 may also partially cancel. 

If both oscillations are simultaneously excited a point outside the plane of the 
suspension can be observed to have a beat pattern. The ratio of the periods can then be 
deduced from “n” the number of oscillations per beat, as: 
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Depending on if y sT T  or y sT T . So 
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 
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Depending on whether yk d or yk d . This ambiguity can be resolved using 

equation(0.39) or by changing d. 
The number n can be determined by patient observation of the motion, so only a 

ruler is required to measure the spacing 2d. Even the suspension only has to be 
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approximately parallel if 2d is measured as the geometric mean spacing14,60. By choosing 
the spacing d to be close to the gyradius n becomes large and this estimate of ky can be 
quite precise. A further advantage of choosing the spacing close to the gyradius is that 
any mass added at the ends of the suspension lines due to bearings etc. has only a minor 
effect on the measurement so any correction need only be known approximately. 

One caveat, for separate displacements in the plane of the suspension, and for 
rotations about the symmetry axis the suspended object remains level. However, for 
combined lateral and rotational displacement together, the support lines no longer make 

equal angles 1 and 2, with the vertical, and so there is some rotation about the 

horizontal axes, which therefore have to be included in the Lagrangian. For small 
rotations of suspensions with l >> d this effect is negligible. However, for suspension 
lengths such that the period Ty of yaw oscillation is close to that of one of the normal 
mode periods of the double pendulum pitch oscillations in the x-z plane, this term leads to 
a fascinating coupled oscillation16 reminiscent of a Wilberforce pendulum61. The double 
pendulum mode splits into two frequencies and the initial Yaw-sway oscillation transforms 
into a beating pitch oscillation, i.e. rotation about the axis B-D, then back to a yaw-sway 
oscillation about the z axis, and so on. When close to this resonant condition the period of 
yaw oscillation is no longer precisely that given by equation(0.38). However, this motion 
does not occur for pure sway or pure yaw displacements so separate measurements of 
the periods Ty and Ts can still be made to determine the yaw gyradius ky. To avoid this 
motion measurement or calculation of the periods of the two normal modes of the double 
pendulum motion can easily be made and the geometry adjusted accordingly. Such 
double pendulum data can also be used to determine the pitch gyradius kp about the y 
axis, and the depth “a” of the center of mass below the line B-D62. 



Bifilar Pendulum G. Yaw Period ml = 0 Theory 30 May 2015 17 

G. Yaw Oscillation period, massless lines, Integral approach 
The period of un-damped large amplitude yaw oscillation of a bifilar suspension can 

similarly be derived from equation(0.31) which, describes the motion in phase space, and 

as expected, leads to  0 0
2Max yT    for small 0. Although the following theory is 

derived for a bifilar suspension it also applies to the period of yaw oscillation of trifilar 
suspensions which have the advantage that the roll and pitch degrees of freedom are 
eliminated. 

The yaw oscillation period is then given by: 
 

  
   

       

0
2 2 2 2

0

0
2 2 2 2 2 20

0

1 2 1 2

2 1 2 1 2 1 2

y

y

Sin CosT
T d

Sin Sin Sin

    
 

      

   


   
   (0.42) 

 

Cromer14 has treated the case for  -2<<1, i.e. neglecting the contribution of the 

vertical motion to the kinetic energy, which is the source of the squared bracket. The 

variation of the yaw period with amplitude then only depends on  2 and not on  2. For 

 2<<1 the integral can be expanded to give: 
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  (0.43) 

 
Where E(k) is the elliptical integral of the second kind42, which can be rapidly 

evaluated using the Modified Arithmetic-Geometric Mean46 N(x,1) as  
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It is interesting to note that for  2<1 the ratio Ty()/Ts() of the yaw period to the 

sway period, for equal angular displacements, remains essentially independent of the 
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amplitude, thus simple gyradius measurements can be made with relatively large 
amplitude oscillations. 

For small angles 0<<1 this can be further approximated to: 

 

    2 2

0 0 01 4 3 64y yT T       (0.45) 

 

Which should be compared with equation(0.55). However, for  2~1 and  2~1 the vertical 

kinetic energy can no longer be ignored. The vertical and rotational contributions to the 

kinetic energy have different  dependence, so the variation of the period with amplitude 

then depends on both  2 and  2. The yaw period should therefore be calculated from 

equation(0.42) or numerical solutions of equation(0.34). 
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H. Rotational Yaw Oscillation, including finite mass suspension lines 
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Figure 4 Rotation about the vertical symmetry axis of a parallel bifilar suspension, with 
suspension lines mass ml, spacing 2d and length l, of a body of mass M with its center of 
mass a distance “a” below the center of the suspension points B-D. 

 
For rotation about the symmetry axis, of a body with b = 0, convenient generalized 

coordinates are , the angle of yaw rotation about the z axis, the roll angle  = 0, and the 
coordinates of the center of mass x = y = 0. The vector A-B representing the suspension 

line is    2 2Sin , 1 Cos , 1 Sin 2l d d l   
 

      
 

 so the vertical displacement z of 

the ends of the lines, and the center of mass, when the suspension is rotated about the 

symmetry axis by an angle , see figure 1, is: 
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Then the vertical velocity and acceleration are: 
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The square of the velocity of a point a fraction  along the suspension line from A, is: 
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The Potential Ul and kinetic Tl energies for two lines of uniform linear density  = ml/l are: 
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So the total potential and kinetic energies in terms of  = ml/M are: 
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Where the second and third terms are the kinetic energies due to the vertical motion 
and the suspension lines. Lagrange’s equation6 then leads to the nonlinear differential 
equation: 
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For  = 0 and small angles  << 1 equation (0.53) becomes: 
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And a trial solution57 of the form     0 02 yt Cos t T     then leads to an amplitude 

dependent yaw period: 
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For finite mass suspension lines,  ≠ 0 and  << 1, equation(0.53) reduces to: 
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The small angle yaw period with finite is then: 
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Thus the period can be smaller or larger than the small angle  = 0 period Tyo, depending 
on the spacing d and the gyradius ky. 
 The yaw gyradius ky can be determined in terms of the ratio of the small angle yaw 
and sway periods as: 
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The correction to the gyradius for finite mass suspension lines cancels if d = ky, i.e. 

Tym = Tsm. This can easily be understood by picturing the body as a dumbbell with two 
M/2 masses separated by 2ky. Then, if the suspension spacing is 2d = 2ky, the small 
angle rotational oscillation is equivalent to two out of phase simple pendulums of periods 
equal to that of the in plane oscillation. The corrections for this simple pendulum motion 
perpendicular to the plane is identical to that for the in plane motion and therefore 
cancels. 
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I. Asymmetrical Bifilar Suspension Yaw 
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Figure 5 Rotation about the vertical axis of a parallel bifilar suspension, with spacing 2d 
and length l, of a body of mass M with its center of mass a distance “b” from the 
symmetry axis and “a” below the center of the suspension points B-D. 

 
A bifilar suspension of a body for which the center of mass is not on the symmetry 

axis will, when released with yaw displacement , eventually develop motion in all the 

degrees of freedom. However, for small angular displacements the classical Newton’s law 

treatment15 provides an adequate basis for a derivation of the yaw oscillation period Tyo. 

Even in the accelerating frame of the suspended body the vertical torque  about the 

center of mass equals the yaw moment of inertia Mky
2 times the angular acceleration . 

In equilibrium the suspension lines, now horizontally at (d+b) and (d-b) from the center of 

mass, see figure 5, have tensions of Mg(d-b)/2d and Mg(d+b)/2d respectively. For 

suspension lines of length “l” their horizontal components are Mg(d-b)2/ld Sin( /2) and 

Mg(d+b)2/ld Sin(/2) and are at angles 2 to B-D. The torque  about the vertical 

axis through the center of mass is then       2 2 22 sin 2 cos 2 yMg d b l Mk        . 

Now approximating this for  << 1 
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This is the same as derived for a trifilar suspension by du Bois, Lieven and Adhikari24 and 
is consistent with the formula given by Huw Williams60. Note that this analysis assumes 
the suspension is free to sway and surge and does not apply if a center pin is used to 
confine the yaw rotation to be about the symmetry axis, for which the parallel axis 
analysis would apply. 
Then the yaw period, for a center of mass offset by b, is: 
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The yaw gyradius ky is then given by: 
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Where Tso is the small angle sway period which does not depend on either d or b.  
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J. Center of Mass location 
 The simplest way to determine the center of mass offset b from the symmetry axis 
of a bifilar suspension is to use strain gauges to measure the tensions T1 and T2 in the 
suspension lines. If however, strain gauges are not available other techniques can be 
used to correct asymmetrical suspensions and determine the position of the center of 
mass63. 

The off center distance b can be determined by symmetrically changing the 
suspension spacing d and then measuring the yaw period. Note that as d can be taken as 
approximately the geometric mean  of the top and bottom spacing of non-parallel 
suspensions14,64 it is sufficient to just change the suspension upper spacing, however, 
then one must avoid any sway as this will now engender roll.  

Then with measured periods Ty1 and Ty2 for spacing d1 and d2: 
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Alternatively the yaw period Tyo has a minimum for b = 0 so determining this 

minimum as a function of the lateral displacement y, of the body relative to the symmetry 
axis, allows the position of the center of mass to be determined, see figure 14a. Rather 
than find the minimum, the body can be displaced a known distance “e” so b is increased 
to (b+e), and the period Tye measured.  
The distance b is then: 
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  (0.63) 

 
Which can be inserted in equation(0.61) to calculate the corrected yaw gyradius. 
 

K. Trifilar Suspension 
The trifilar suspension has the advantage that it has only three degrees of 

freedom, namely yaw, sway and surge, thus both roll and pitch are eliminated, and is 
therefore commonly used for Moment of Inertia measurements about a vertical axis11,65. It 
is still, however, free to oscillate in sway and surge, which now both have the simple 
pendulum period Tso. Thus equation(0.39) also applies to the trifilar suspension and will 
similarly improve the precision of the measurements. 

The major disadvantage is that for accurate gyradius measurement the center of 
mass of the body must be located on the symmetry axis and for large complex objects 
such as engine blocks11 this is not a trivial task. It is usually achieved using strain gauges 
and adding additional masses until the tensions are equal, and then correcting for the 
added moment of inertia11. 
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In general the object to be measured is placed on a symmetrical suspended tray, 
mass mT and gyradius kT, which have been previously determined. Equation(0.61), with d 
as the distance from the suspension lines to the symmetry axis, also applies to the trifilar 
suspension24 and shows that the correction to the measured gyradius for misalignment is 
of order (b/d)2 and therefore generally small24.  

The period of oscillation of an asymmetrical trifilar suspension with parallel 
suspension lines of equal length l at distances d1, d2, and d3  from the center of mass of 

the suspended body, and with angles 1, 2, and3 between them (angle 1, being 
opposite d1 etc. see figure 6a) is quoted without proof by Huw Williams60  but can be 
derived in a similar manner to equation(0.59) as: 
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Which reduces to equation(0.60) for the center of mass offset by b from the symmetry 
axis of a trifilar suspension. 
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Figure 6 a) A trifilar suspension with the “body plus tray” center of mass at distances d1, 
d2 and d3 from the suspension points, see equation(0.64). b) A symmetrical trifilar 
suspension with a body mass M, gyradius ky, center of mass of “body plus tray” at c from 

the symmetry axis and azimuthal angle , plus a mass m, gyradius km, at radius r and 

azimuthal angle . The combined center of mass is then at b. The parallel suspension 
lines of length l are each at a radius d. 

 
In the absence of stain gauges, and where it is inconvenient to move the body on 

the tray the yaw period variation Tym() with the azimuthal angle  of the added mass m, 
gyradius km, at constant radius r, can be used to determine the offset of the center of 
mass. For simplicity the tray, mass mT, is combined with the body to be measured, mass 
M, so MT = M + mT, and the center of mass in figure 6 is that of the body plus tray, at c 

from the symmetry axis and azimuthal angle . Then m =  (M + mT). The mass m should 
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be chosen so that it will somewhat more than compensate for the estimated offset c. The 
combined center of mass is a distance b from the symmetry axis, given by: 
 

    
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The gyradius kcm about the combined center of mass is then given by: 
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Where kyT is the gyradius of the tray plus offset body, and kcm is the sum of the constant 
combined gyradius kmo about the symmetry axis minus the parallel axis contribution, so: 
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The yaw period variation with added mass m azimuthal angle  is: 
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And, except for the special case of kmo = d, for which there is no period variation, has 

extrema at  = and. The yaw period will be a minimum at m = ( if kmo > d, or 
a maximum if kmo < d. Which is the case can be determined from an initial determination 

of ky. Thus  can be determined from the variation of Tyn with , however, if kmo ≈ d then 
the extrema will be shallow so m should be chosen to avoid this. 
 The maximum Tyn+ and minimum Tyn- yaw periods are: 
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Then the value of the center of mass offset c is: 
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  (0.71) 
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Where the absolute value of  takes care of d being greater or smaller than kmo. Then 
either this value of c can be used to correct the measured gyradius, or the mass m can be 
adjusted so that b = 0 by making m = (M + mT)c/r.  

 For the special case of kmo = d, for which there is no yaw period variation with , 
the gyradius kyT is given by: 
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Where TyT is the yaw period without the added mass and Tso is the sway period.  

Once the value of the yaw gyradius kyT, about the combined center of mass of the 
tray plus offset body, is known the yaw gyradius ky of the body about its center of mass is: 
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An interesting variant of the trifilar suspension is one with five suspension lines 

arranged so as to restrict the motion to pure rotation about the central axis. This 
arrangement has been used for high precision laboratory moment of inertia and center of 
mass measurements26,25. The precision of the period measurements was a part in 105, 
leading to a moment of inertia measurement precision of better than 1 part in 104, and 

center of mass location of the order of 1m. 
It should be noted that for this suspension, and other multi-filar suspensions where 

a center pin is employed to restrict the rotational motion to be about the symmetry axis, 
equation(0.60) does not apply. In these cases the gyradius is that about the symmetry 
axis, i.e. ko

2 = ky
2+c2, which is the basis of the precision center of mass measurements.   
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L. Pitch-Surge Double Pendulum Oscillation 
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Figure 7 A parallel bifilar suspension of length l, of a body with its center of mass a 
distance “a” below the center of the suspension displaced in the x-z plane for double 

pendulum pitch-surge-heave oscillation, with normal mode 1 in phase and mode 2  out 

of phase.   

 
 A bifilar suspension can be excited in pitch-surge double pendulum 

oscillation in the y-z plane perpendicular to the x-z plane of the suspension66. The 

appropriate general coordinates are , the angle the suspension lines make with the 

vertical,  the pitch angle of the suspended body, the yaw and roll angles  = =  0 or the 
sway displacement y = 0. The problem of the double pendulum has an interesting 
history67. The Emperor’s bell (Kaiserglocke) of Cologne Cathedral was installed in 1885, 
but the bell did not ring reliably, as the clapper swung together with the bell in one of the 
normal modes. The problem was analyzed by Von Veltmann 68 and later by G. Hamel 69 
and appropriate corrections applied.  

The planar double pendulum is a nonlinear system with two degrees of freedom14 
and so for large angular displacements is a simple system exhibiting chaotic motion70,71 . 
The dynamics of the extended body double pendulum have been analysed by Ohlhoff 
and Richter72, Rafat et al10 and Akerlof73, with emphasis on the analysis of the quasi 
periodic and chaotic trajectories while the present analysis is limited to a linearized 
treatment of the small angle oscillations.  
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The kinetic and potential energies of a body of mass M, pitch gyradius kp, about 
the y axis, with its center of mass a distance “a” below the lower bearing B-D and 
suspended by lines of length l, as shown in figure 7, are 
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Then in the absence of damping74,75,6 the Lagrangian leads to the nonlinear differential 
equations 
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However, in the limit of small angles one can substitute sinusoidal oscillations into 

Lagrange’s equations74, which leads to a quadratic equation with solutions 1 and 2 for 

the angular frequencies of the two normal modes: 
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For mode 1 the oscillation about B-D is in phase with the pendular oscillation about 

the suspension A-C, while in mode 2 they are out of phase by 180o, as shown in figure 7. 
Then re arranging leads to the center of mass height “a”, and pitch gyradius kp as: 
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  (0.79) 

 

Measurements of the frequencies 1 = 2/T1, 2 = 2/T2 and the sway s = 2/Ts 

allow both the vertical position “a” of the center of mass below the suspension points B-D 
and the pitch gyradius kp to be determined from a single set of frequency ratios. If the 
suspension length is precisely measured then the gravitational acceleration g, together 
with buoyancy and latitude corrections, can be eliminated. Thus the yaw as well as the 
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pitch gyradius and center of mass height can be measured without changing the bifilar 
suspension, and all the elements of the inertia tensor can be measured if the body is 
subsequently tilted17. 

R. C. de Jong and J. A. Mulder76,77 have described a method of measuring the pitch 
and yaw moments of inertia, as well as the product of inertia of a full sized aircraft, by 
simultaneously exciting the yaw and double pendulum oscillations and using statistical 
parameter estimation techniques to analyse the multi degree of freedom oscillation data, 
namely the x, y and z accelerations and the yaw, pitch and roll angular velocities. The 
knife edge bearings at the ends of their bifilar suspension did not facilitate sway motion, 
so this was kept to a minimum. As shown below similar measurements are now possible 
using MEMs gyros and accelerometers and then analysed using Simulink20,12. Thus the 
techniques described here, in which only specific modes of oscillation are separately 
excited, are a subset of their more general technique. 
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IV. Results 

A. Sway Accelerations 
 

0.375"

1/4 20

1
.2

5
"

1
.0

0
" 

0.50"

Upper Bearing

BB swivel

Tungsten Carbide
scriber tip

z

x

y

Roll  

Yaw 

Pitch 

Heave

Sway

MEMs Gyro &
Accelerometer

d

l

d

Laser

Support

Surg
e

Aluminum Bar

 
 

Figure 8 The Aluminium bar and MEMs Gyro-accelerometer on the bifilar suspension of 
length l and spacing 2d. The inset shows details of the upper bearings. 

 
Two sets of acceleration measurements were made with a 1000 mm long aluminium 

bar of diameter 35.1 mm (2.615 kg) which was suspended by two light parallel lines 
(0.40 g/m) of effective length l = 1843 mm, and spaced at d = 289 mm from the center of 
the bar. The lines were tied to the bar and pivoted on tungsten carbide points at their 

upper ends, see figure 8. Thus  = a/d = 0.061 and  = b/d = 0. A vertical laser beam on 

the symmetry axis provided a centering reference when releasing the bar, and scales 
below the suspension allowed the initial horizontal displacement to be determined.  

The acceleration measurements were made with three instruments alternatively 
mounted at the center of the bar, an iPhone 4 with the xbow App30, a Gulf Coast Data 
Concepts USB Accelerometer29 Model X6-2, and a Micro Strain 3DM-GX1 Gyro 
Enhanced Orientation Sensor31. The GC X6-2 is a tri-axial accelerometer with no gyro but 
has the advantage of being light, battery powered and plugging into any USB port for 
subsequent data download. The iPhone has the advantage of being almost universally 
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available and has both tri-axial accelerometers, and three axis gyro outputs, but requires 
the up to 20 Meg xbow data files to be e-mailed for transfer to a computer, and is not drift 
compensated. The present data for the aluminium bar is that from the Micro Strain 3DM-
GX1 which provided both three axis gyro and accelerometer outputs. The bar was 
displaced in the plane of the suspension at increments of 100 mm and the subsequent 
horizontal and vertical accelerations recorded at 40 samples per second with a resolution 
of ±0.001g. 

 

l

 
 

Figure 9 The double “inverted V” suspension of effective length l = 463 mm, which 
prevented both yaw and surge motion. The upper bearings were ball bearings and the 
lower attachments to the aluminum bar were at the ends of diameters via holes in cable 
ties. 

 
Despite careful release and efforts to minimize the coupling to other modes of 

oscillation, the asymmetries and residual effects of the Micro Strain cable etc. led to surge 
and yaw which started to become significant after about 30 oscillations. Therefore in order 
to investigate the accelerations at larger angles, and also to confirm that the accelerations 
were independent of the pendulum length, a second set of data was recorded with the 
aluminium bar suspended by lines forming a double “inverted V” suspension, see figure 9, 
which prevented both yaw and surge motion, and was of effective length l = 463 mm. 

The upper ends of the lines were attached to ball bearings, and the lower ends 
terminated approximately at the ends of a diameter of the bar, thus the center of mass 
height “a” was effectively zero. Plastic cable ties, with small holes at the ends of a 
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diameter, fastened the lines to the aluminum bar. The decrease of sway oscillation period 
at low amplitudes, see figure 18 is attributed to the ball bearings, as this effect has been 
observed with other ball bearing pendula17.  
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Figure 10 a) The horizontal (solid diamonds) and vertical (open circles), and b) the 
tangential (solid triangles) and radial (open squares) accelerations as a function of time. 

The solid lines are a simultaneous fit to equations (4) with(t) = AiSin(2ni-1)0t, for 

0 = 1.29 radians = 73.80  and 0 = 4.14 s-1. 

 
A typical large angle set of data from the “V” suspension, is shown in figure 10 and 

illustrates the non-sinusoidal nature of the large angle oscillations. The solid lines are a 

fits of equation(0.3) and(0.4) with (t) given by the first two terms of equation(0.22) i.e. 

(t) = AiSin(2ni-1)0t. The “Solver” routine in Excel was used to simultaneously minimize 

the squared deviations of 3 second data samples (at lower amplitudes 20 second 
samples were used) from both the y  and z  of equations(0.4) by varying only the period T 

and amplitude 0 (as well as the phase). Initial estimates of the period Tso and 0 can be 

obtained from equations(0.1) and(0.6), however, the latter depend on the zero offsets of 
the data which must therefore be eliminated prior to data analysis. 
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Figure 11 Comparison of a) The horizontal and b) the vertical accelerations for 

0 = 0.848 radians, as a function of time/Period. The solid circles are for the 1.843 mm 

suspension and the open circles are for the 463 mm “V” suspension. 
 
The fits of equation(0.4) to all the data taken with both systems and for amplitudes 

between 0.001 and 1.38 radians was excellent. Figure 11 shows a comparison of the 
3DM-GX1 data for the 1843 mm suspension with the GC X6-2 data for the 463 mm “V” 

suspension, for equal amplitudes of 0 = 0.848 radians, after dividing the time scales by 

the oscillation periods. The agreement is such as to confirm that the accelerations are 
indeed independent of the pendulum length. 

The deviations from sinusoidal of the angular oscillation, as derived using 
equation(0.5), indicated the presence of the third harmonic as predicted by equation(0.22)
, see figure 12, and this was confirmed by a FFT. However, uncertainties in the zero 
offsets and the fits to the data made such analysis marginal, so a quantitative 
confirmation of equation(0.22) was not possible. 
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Figure 12 The deviation of the angular displacement from sinusoidal (open circles) 
compared to the second term in equation(0.22) (closed circles). In this sample at 

0 = 1.0 radians the third harmonic is clearly visible. 
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B. Line Tensions for Sway Oscillation 
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Figure 13 The tensions T1 and T2 at a sway angular amplitude of 13.2o for a/d = 1.72 
a) Horizontal components b) Vertical components minus Mg/2, c) The sum (solid circles), 
difference (open circles) of the horizontal components, and the mass times the horizontal 
acceleration (open squares). d) The sum minus Mg (solid circles) and difference (open 
circles) of the vertical components, and the mass times the vertical acceleration (open 
diamonds). The lines are a simultaneous fit of equation(0.14) to the four sets of data. 
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In order to observe the effect of the depth  = a/d of the center of mass below the 

suspension points B-D on the tensions T1 and T2 a third set of data was taken with a 
wooden block (4.68 kg, 402 x 139 x 115 mm, with the 402 mm dimension vertical) 
attached to a light aluminium crossbar (241 x 9.5 x 4.8 mm). The parallel 965 mm long 
suspension lines were 2d = 230 mm apart, and pivoted on two fixed Vertical Pasco force 
gauges78 which recorded the vertical components T1z and T2z of the tensions. An 
iPhone 4 was mounted on the block to record the sway accelerations. A second run with 
the force gauges horizontal, recorded the horizontal in y-z plane components T1y and T2y 
of the tensions. These two sets of data were synchronized using the iPhone 4 
acceleration data, and then simultaneously fitted to equations(0.14), see figure 13. 

The overall fit to the theory is very good except that the peak vertical components of 
T1 and T2 differed slightly. Careful measurements of the static tensions indicated that this 
was not due to any offset “b” of the center of mass, and is due to some instability of the 
force gauge zeros. Despite the significant differences in the tensions T1 and T2, see 
figure 13a and b, the horizontal and vertical components of their sum were in excellent 
agreement with the mass times the measured components of the acceleration, see 
figure 13c and d. The oscillation angular displacements, as derived from 

 tan Hi ViA T T   and from the horizontal acceleration were, as expected, also in good 

agreement. Finally the value of  = a/d = 1.7199 and  = b/d = 0.0003 derived from the fit 

to this data agreed with  = 1.72±0.01 and  = 0.00±0.01 deduced from the geometry of 

the block. Thus such data could be used to confirm the position of the center of mass. 
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C. Rotational Yaw Oscillation, finite mass suspension lines correction 
A cylindrical wooden bar of length 1000 mm, diameter 35 mm and mass 489 gm was 

symmetrically suspended by two light cords (0.40 g/m) with point bearings at their upper 

ends, see figure 8. An iPhone 4 (115 x 58.6 x 9.5 mm, 140g) was mounted horizontally at 

the center of the wooden bar and recorded the angular and linear motions. The periods of 

sway and of yaw oscillation were measured for a suspension length l = 1686 mm at a 

number of line spacings d. These measurements were then repeated with 5 mm diameter 

copper beads strung onto the suspension lines (52.9 g/m). 
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Figure 14 The uncorrected gyradius  y ym smk d T T as a function of the line spacing d for 

the bare  = 0.0014, and bead loaded lines  = 0.18. The solid lines are the predictions 

of (24) with the theoretical gyradius of 255.3 mm. 

 

 The sway oscillation periods Tso were, as expected, found to be independent of the 

spacing d, with the average of the 9 values being 2.608 ± 0.0006 s and 2.546 ± 0.001 s 

for = ml /M = 0.0014 and 0.18 respectively, compared to the predictions of 

equation(0.57) which, including a 7 mm change in the suspension length, were 

2.605 ± 0.0015 and 2.533 ± 0.0015 s.  

Figure 14 shows the uncorrected gyradius  y ym smk d T T  as a function of the 

spacing d, for  = 0.0014 and 0.18. The curves are the predictions of equation(0.57), with 

the theoretical gyradius of 255.3 mm, and demonstrate that for  = 0.18 the correction 

can be significant but becomes zero for d = ky.  
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D. Asymmetrical Bifilar Suspension Yaw Oscillation 
Two sets of measurements were made with the aluminum bar and iPhone 

suspended by 1686 mm long lines. For the first set of data the spacing 2d was maintained 
at 500 mm and the center of the bar moved from b = 0 mm to 200 mm. For the second 
set one line was kept at 50 mm from the center and the other moved from 50 mm to 
500 mm. The yaw periods, which varied from 3 to 14 seconds, were derived at amplitudes 
of 0.6 and 0.1 radians, and agreed after correction for the amplitude, thus suggesting that 
the effect of other oscillation modes on the yaw period were minimal. Figure 15a is a plot 
of the period times the spacing Tyd versus the offset to spacing ratio b/d for both sets of 

data.  Figure 15b is a plot of l/g(2/Tyd)2 versus (b/d)2, which equation (0.60) predicts to 
be linear and the fit of y = (1-x)/ ky

2 leads to ky = 282.0 ± 0.2 mm as compared to a 
theoretical value of 281.8 mm. 
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Figure 15 a) The period times the spacing T0d as a function of the ratio b/d of the CM 

offset b to the spacing d. b) A plot of  l/g(2/Tyd)2 versus (b/d)2. The lines are fits of (0.60)
with ky = 282.0 mm. 
 

Figure 16 shows the second set of yaw period data versus b/d together with 
equation (0.60) while figure 17 shows the yaw gyradius ky as deduced from this data and 
demonstrates that the equation(0.61) is correct even for b/d = 0.8. 

 
Table 1 

Calculation of ky and b from the periods at different spacing d 

b(nominal) d1 d2 Ty1 Ty2 ky b 

150 250 200 3.6833 5.5670 282.8 149.9 

150 250 200 3.6826 5.5741 282.4 150.2 

100 250 150 3.2177 6.5805 283.2 99.7 

100 250 150 3.2062 6.5852 281.8 100.4 

50 250 100 3.0028 8.5029 282.3 50.2 

50 250 100 2.9847 8.5035 280.3 51.2 
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 As shown in table 1 the yaw gyradius ky and center of mass offset b can be 
deduced from pairs of the data with different spacing d1 and d2 using equation(0.62), 
demonstrating that such measurements can be used to correct for any asymmetry in the 
suspension.  

Alternatively equation(0.63) can be used to calculate the offset b from an added 
yaw period with the body displaced by a measured distance e and then this value of b can 
inserted into equation(0.61) to correct the gyradius measurement. Table 2 illustrates such 
an analysis of the present data. 
 

Table 2 
Calculation of the offset b from period measurements with a displacement e 

 

b(nominal) d e Ty0 Tye ky b 

100 250 50 3.218 3.683 283.2 99.6 

100 250 50 3.206 3.683 281.2 101.4 

50 250 50 3.003 3.218 281.8 52.2 

50 250 50 2.985 3.206 279.6 54.4 

 

 
 

Figure 16 The Normalized yaw period as a function of the ratio of the CM offset b to the 
spacing d. The offset b varied linearly with the spacing d. The square points are the 
theoretical prediction for ky = 282 mm. 
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Figure 17 The yaw gyradius as a function of the ratio of the CM offset b to the spacing d, 
for the two sets of data analysed at 0.1 and 0.6 radians and then corrected for amplitude. 
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E. Sway Period Variation with Amplitude 

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

-0.004

0

0.004

0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
o

rm
a

liz
e

d
 S

w
a

y
 P

e
ri
o

d

R
e

s
id

u
a

ls
  (s

)

Angular Amplitude 
0
 (rad)

 
Figure 18 The Period of sway oscillation as a function of the angular amplitude 0, as 

derived from a simultaneous fit to x g  and z g  data for the aluminium bar on an 

1844 mm bifilar suspension (circles) and on a 463 mm “double inverted V” suspension 
(squares). The solid line is the Elliptic integral of the first kind, equation(0.16), while the 
dashed line shows only the first term of equation(0.17). The residuals from equation(0.16) 

for 0 > 0.03 radians are shown below. 

 

The variation of the normalized period Ts/Ts0 with sway angular amplitude 0 as 

derived from the fits to equations(0.4) is shown in figure 18, for both 20 second data 
samples for the 1844 mm suspension, and 3 second samples from the 463 mm 
“inverted V” suspension. The solid line is the elliptical integral of equation(0.16), then 

minimizing the deviations for 0 > 0.03 radians, led to values of Ts0 = 1.3634±0.0004s and 

2.7295±0.0001s, which should be compared with Ts0 = 1.365±0.003s and 2.725±0.003s 
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as derived from equation(0.1). The dashed line in figure 17 is for only the first term in 
equation (0.17) and demonstrates that the second term is clearly required above 
0.8 radians. These results suggest that with sufficient attention to detail an inverted “V” 
bifilar pendulum can be used for precise measurements of the local acceleration due to 
gravity13, without many of the corrections required for a classic pendulum33. 

The damping of the oscillation was observed to be non-exponential33 but typically 
decayed by 1/e in 180 seconds so the effect on the period is expected to be negligible. 
The pronounced decrease in the period of the ball bearing “V” suspension at amplitudes 
below 0.04 radians, see figure 18, is ascribed to the effects of the bearings and is also 
observable, but to a much lesser extent, in the point bearing data. This effect has been 
observed in other measurements17,79, makes extrapolation of small angle data 
problematical and deserves further investigation. 
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F. Yaw Period Variation with Amplitude 
The aluminium bar, suspended by the two lines, was rotated through 180 degrees 

about the vertical symmetry axis, released, and the angular deflections and accelerations 

recorded by an iPhone30 or the Micro Strain 3DM-GX131.The roll  and pitch  rotations, 
as well as x  and y  accelerations, were monitored and found to be negligible, so the 

vertical acceleration z  could be studied as a function of the yaw angle (t), together with 

the variation of the oscillation period as a function of the amplitude 0.  

A yaw angle of 1800 is a point of unstable equilibrium so at yaw angles close to 180o 
the torque is very small and it is therefore very difficult to determine the beginning of the 
motion, which is also very far from sinusoidal. Initially the damping is also significant so 
half oscillations, from zero to zero were analysed in terms of a Fourier series 

      
7

0 2 1 0

1

2 2 1n yt A A Sin n t t T       (0.80) 

The zero offset  and drift of the instrument were first removed by fitting the absolute 
value of the data to a smooth envelope, and A0 is included to account for any residual 
offset, while t0 is the initial zero crossing of the half oscillation being analysed. The period 
Ty of the oscillation was then derived from a fit to the data using TableCurve 2D80 and 
was confirmed by the differences between successive values of the zero crossing times ti. 
Even with these corrections the initial damping was such as to decrease the amplitude 
sufficiently so as to change the period even during a half oscillation, thus the periods 
derived from data for amplitudes above 3 radians were not reliable. 

 The amplitude of the half oscillation as well as the time it occurred and the 
amplitudes A(2n-1) of the Fourier components were derived as a function of the amplitude 

0. After the first 20 oscillations the quadratic damping had decreased significantly and so 

full oscillations and at low amplitudes up to 10 oscillations were analysed with the sum of 
the Fourier components curtailed at n = 3. 
 

Table 3 
Yaw period vs. Amplitude data 

Suspension 
 l  (mm) 

Spacing 
d  (mm) 

 2  -2 Ts0 

(s) 
Ty0 

(s)
ky 

(mm) 
l(calc) 
(mm) 

1844 50 0.0029 0.031 2.721 15.044 276.3 1839 

1820 150 0.0272 0.283 2.707 5.079 281.4 1820 

1844 289 0.098 1.05  2.654 281.5  

1825 420 0.212 2.22 2.709 1.818 281.8 1824 

204 50 0.240 0.031 0.909 5.083 280.4 205 

1218 420 0.475 2.22 2.213 1.486 281.8 1217 

1003 420 0.705 2.22 2.002 1.345 281.8 996 

 
Although the primary variation of the yaw period is similar to that for the simple 

pendulum, the presence of 2 and  -2 in equation(0.42) suggests that the large angle 

period depends somewhat on the geometry. Sets of 180o Yaw data were therefore 
recorded for suspensions of the aluminium bar (ky including the iPhone of 281.8 mm) with 
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the parameters listed in Table 3. The data is shown in figures 19, 20, 21 and 22, and 

confirmed a dependence of the large angle yaw period on both  2 and  -2. 

The normalized yaw periods for  2 = 0.098,  -2= 1.05 and  2 = 0.705,  -2 = 2.22   

together with the theoretical curve for a simple pendulum, equation(0.16), are shown in 
figure 19. In order to see the data in more detail the deviations from equation(0.16) are 
shown as “Residuals” in figures 20 and 21, together with the theoretical values calculated 

from equation(0.34). The fits for large  2 shown in Figure 20 are good; however, those in 

figure 21 at smaller values of  2 leave something to be desired. For given  -2 the 

Residuals at large angles are proportional to  2, and the value of 0 for zero residual is 

dependent on only -2. 
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Figure 19 The Normalized Periods of Yaw oscillation as a function of the angular 

amplitude 0, for an aluminium bar on a bifilar suspension with 2 = 0.098 (open Squares) 

and  2 = 0.705 (solid diamonds). The solid line is the elliptic integral equation(0.16). 

 
It should be pointed out that the damping at large angles was such that it could 

cause sufficient amplitude decrease during a single period so as to affect the results. So 
yaw period data for angles greater than 3 radians were rejected. It should also be pointed 

out that for geometries with large  2 it is difficult to excite pure yaw rotation, especially 

from an initial angle of , as initially the suspension lines are essentially horizontal, and 

any parasitic sway modified the yaw period. A yaw-sway resonance for  2 = 0.705 and 

0 ~ 1.8 radians also significantly modulated the yaw periods as well as the amplitude 

decay. 



Bifilar Pendulum F. Yaw Period Data  30 May 2015 46 

-0.10

-0.05

0.00

0.05

0.10

0.0 0.50 1.0 1.5 2.0 2.5 3.0

N
o

rm
a

liz
e

d
 P

e
ri
o

d
 R

e
s
id

u
a

ls

Amplitude (rad)

2
=0.475


-2

=2.22

2
=0.212


-2

=2.22

2
=0.240


-2

=0.031

2
=0.705


-2

=2.22

 
Figure 20 The deviation of the Normalized Period of Yaw oscillation from equation(0.16) 

as a function of the angular amplitude 0 for large  2. . The solid lines are the theoretical 

predictions of equation(0.42). 
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Figure 21 The deviation of the Normalized Period of Yaw oscillation from equation(0.16) 

as a function of the angular amplitude 0 for small  2. The solid lines are the theoretical 

predictions of equation(0.42). 
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Figures 22 a to e The Normalized Periods of Yaw oscillation as a function of the angular 

amplitude 0 for five suspensions. The periods for a simple pendulum equation (0.16) 

dotted line, the integral equation(0.42) solid line, the approximate equation (0.38) dashed 
line, and equation(0.45) dot dash line.  
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Yaw gyradius measurements are generally made at small but not necessarily 

negligible amplitudes. At very low amplitudes bearing friction can significantly affect the 
period79,17. It was therefore of interest to compare the data for the simple pendulum period 
variation with amplitude, equation (0.16) with the integral equation (0.34) and the small 
angle approximation including the effect of the vertical motion, equation (0.38), and with 
equation (0.43)14. For amplitudes below 0.6 radians the approximate equation (0.38)was, 
as expected, in excellent agreement with the integral equation (0.34) and fitted all the 

data. For  2 < 0.2 all the equations were adequate, see figure 22a to d, however, for 

 2 > 0.2 the simple pendulum approximation, and for large  -2 equation(0.43), are no 

longer adequate as the ratio of the average vertical KE to the angular KE 

is
2 2 2

0 16z ave
T T    . 

Genta and Delprete2 provide data on the variation of the period of a trifilar 

suspension with amplitude (rad), which is fitted 21.00 0.121oT T   , i.e. double the 

variation predicted by equation(0.17) The suspension lines were not parallel so although 
the small angle period is approximately given by the geometric mean spacing14,60, the 
variation of the period with amplitude  may be quite different. However, with the data 

given2 equation(0.55) suggests 21.00 0.106oT T    which is much closer than 

equation(0.17).  
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G. Variation of the Yaw Fourier components with Amplitude 
 At large angles the yaw displacement deviates significantly from sinusoidal and can 
be represented by a Fourier series of the odd harmonics as described by equation(0.80). 
The amplitudes of the Fourier components were extracted by least squares fitting single 
oscillations. The ratios of the Fourier components, A3/A1 and A5/A1, are shown as a 
function of the amplitude in figure 22. It should be noted that as Sine functions were fitted 

that A3 is positive at large amplitudes, but for  2 =0.0029,  -2 = 0.031, contrary to theory, 

A3 was negative below 1 radian. 
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Figures 22 The ratios of the amplitudes A3 of the third and A5 of the fifth harmonic to A1 
that of the fundamental as a function of the amplitude. Data for suspensions with 

 2 = 0.705,  -2 = 2.22, diamonds, 2 =0.475,  -2 = 2.22, triangles and  2 =0.0029, 

 -2 = 0.031, squares. The solid lines are theoretical predictions based on equation(0.31) 

and the dashed line is equation(0.22). 
 
 The theoretical curves shown in figure 23 were calculated by fitting equation(0.80) to 
four adjoined quarter period numerical solutions of equation(0.31) and are in generally 
good agreement with the data. The dashed curve in figure 23 is equation (0.31) for a 
simple pendulum. Figure 23 illustrates the significant dependence of A3 and A5 on the 

suspension parameters  2 and  2. 
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H. Yaw Large Angle phase space plots 
 Phase space plots for the simple pendulum are useful in understanding the details of 
the oscillations35,81,82,83 and can be used to extract the inertia parameters independently of 
the damping84. At small amplitudes the plots of angular velocity versus angular 

displacement are ellipsoidal (i.e. SHM) but for initial angles 0 close to  they deviate 

significantly from ellipsoids. The deviations of the yaw oscillations of the bifilar pendulum 
from sinusoidal at large amplitude are also clearly illustrated by the phase space plots, as 

shown in figure 24, which shows samples of the data at amplitudes 0 of 0.5, 1.0, 1.5, 2.2 

and 2.6 radians. The deviations from an elliptical shape are clearly more pronounced as 

2 increases. The solid lines are the predictions of equation(0.31) for a) l = 1003mm, 

d = 421mm and b) l = 1844mm, d = 50mm with ky = 281.8mm. The agreement is very 
good but small systematic deviations from the theory are evident and are presumably due 
to damping and small admixtures of other modes of oscillation. At small amplitudes the 
phase diagram is essentially elliptical but at amplitudes above 2 radians they deviate 

significantly from being ellipsoidal, and the shape depends on the parameters  and  of 

the suspension. The fit of equation(0.31) to the data depends critically on  so this could 

be used to extract the yaw gyradius from large angle data. 
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Figures 24 The yaw angular velocity vs. angular displacement for suspensions with 

a) 2 = 0.705 and  -2= 2.23 and b) 2 = 0.0029 and  -2= 0.031(note the difference in 

angular velocity scales) for 0 = 0.5, 1.0, 1.5, 2.2 and 2.6 radians. The solid lines are the 

predictions of equation(0.31) and include 0 =  for reference. 
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I. Yaw Vertical Acceleration 
 Elementary treatments of bifilar yaw rotational oscillation15 generally ignore the 
vertical dynamics, however, together with the yaw angle the iPhone records the vertical 
acceleration (in terms of “g” with a weight offset -1, which was therefore removed before 
comparison with theory). At small amplitudes the vertical acceleration is small and 
approximately sinusoidal; with a frequency double that of the yaw oscillation. However, as 

shown for large  and amplitude 0 in figure 25, the vertical acceleration is significant, 

with a large maximum at the equilibrium position, which can exceed the saturation of the 
iPhone. Thus under these conditions the assumption15 that the tensions are each Mg/2 is 
clearly no longer valid. 
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Figures 25 The vertical acceleration data (diamond points) associated with large angle 

yaw oscillation (triangular points) versus time, for a bifilar suspension with 2 = 0.098 and 

 -2= 1.05. 

 
The vertical acceleration, see equation(0.27), has contributions dependent on the 

angular acceleration and on the square of the angular velocity 2 . The leading term in 

the angular acceleration term is proportional to 2Sin   and is therefore zero at the 

equilibrium position, but can have negative minima at angles less than the amplitude. The 

angular velocity term is zero at the amplitude 0 and has a maximum of 
2

02Maxz gz l at 

the equilibrium position, as shown in figure 26. For  <<1,
4 2 2 2

0Max yz gd l k  and so 
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increases very rapidly with the spacing d. For  >1, the maximum angle of yaw is 

0 = Asin -1, and for this yaw angle the maximum vertical acceleration is
22Maxz g  , 

and so can become very large for bodies with small yaw gyradii. For example, the present 

bar on a suspension with d = l = 1000 mm would have 25Maxz g  so the maximum 

tension in the suspension lines would be some 13 times the weight. 

Note: “For  << 1, 
2 4 2 2 2

0 02Max yz gz l gd l k    for 0 << 1, and so increases very 

rapidly with the spacing d.” The approximate formula does not work for large angles! 
Spreadsheet calculation demonstrates the problem with figure 26 Max values calculated 
from the approximate formula! 

 
Table 4 

 

g = 9.8067 9.8067 9.8067 9.8067 

l = 1844 1844 1003 1003 

d = 289 289 420 420 

ky = 281 281 281 281 

2 = 
0.09825 0.09825 0.701385 0.701385 

-2 = 
1.05775 1.05775 2.234014 2.234014 

0 = 
3 1 1.6 0.5 

4 2 2 2

0Max yz gd l k = 2.293096 0.254788 9.834347 0.960385 

  2 2

0 1 1 2z l Sin   
= 92.45106 20.94016 201.1849 21.76602 

2 2

0 0 2z d l ~ 203.8202 22.64669 225.1167 21.98405 

2

02Maxz gz l = 1.040128 0.235589 8.788876 0.950861 

 
 

For a given amplitude 0 the vertical acceleration can be calculated as a function of 

the angular displacement by substitution of   and 2  from equations(0.35) and (0.31)
 into equation(0.27). Figure 26 shows a comparison of this theory with data for 

suspensions with 2 = 0.098 and  -2 = 1.05 and 2 = 0.705 and  -2 = 2.23 at amplitudes 

of 3.1 and 1.0 radians and 1.6 and 0.5 radians respectively. Equation(0.24) shows that 

the vertical acceleration is intimately related to the angular acceleration and hence , and 

for small  can become very large and exert a significant impulsive load on the 

suspension. The vertical acceleration is not a centripetal acceleration, as is the case for 
the simple pendulum, as the only rotation is about a vertical axis and the center of mass 
has purely linear vertical motion. 
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Figure 26 The vertical acceleration versus yaw angle for a) a suspension with 2 = 0.705 

and  -2 = 2.23 at 0 = 1.6 and 0.50 radians and b) a suspension with 2 = 0.098 and  -2 

= 1.05 at 0 = 3.0 and 1.0 radians. Note the order of magnitude difference in scale. The 

solid lines are the equation(0.31) predictions.  
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J. Yaw line tensions 
 

The tension T in the suspension lines required to produce the vertical acceleration z  

is      2 22 2 1 2T M z g Cos M z g Sin         and the torque about the vertical axis 

is       22 2 2 2 2 yTd Sin Cos Td Sin Cos Td Sin Mk             so alternatively the line 

tension is
2 2T Ml Sin   . Thus either of these equations can be used to derive the line 

tension as a function of yaw angle from the iPhone data. In order to measure the line 
tensions with the Pasco Force gauges the x, y, and z components would have had to be 
separately measured and then combined, and this was considered too complex.  

Substituting the measured vertical accelerations into equation(0.23) allows the line 
tensions T to be calculated, as shown in figure 27, which confirms the assumption that for 

 < 1 and small 0 the tensions are T ≈ Mg/2.  
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Figure 27 The normalized line tension versus yaw angle for a) a suspension with 

2 = 0.705 and  -2 = 2.23 at 0 = 1.6 and 0.5 radians and b) a suspension with 

2 = 0.098 and  -2= 1.05 at 0 = 3.0 and 1.0 radians. The solid lines are the 

equation(0.23) predictions.  
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K. Yaw Angular Velocities and Accelerations 
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 Figure 28 The angular position (circles), velocity (open triangles) and acceleration 

(diamonds) versus time for a) a suspension with 2 = 0.705 and  -2 = 2.23 at 

0 = 2.3 radians and b) a suspension with 2 = 0.098 and  -2= 1.05 at 0 = 3.0 radians. 

Note the difference in scales. The solid lines are the predictions of equations(0.31)
 and(0.35). 
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Figure 29 The angular acceleration versus yaw angle for a) a suspension with 2 = 0.705 

and  -2 = 2.23 for 0 = 2.3 (diamond points) and 0.5 (open triangle points) radians and b) 

a suspension with 2 = 0.098 and  -2 = 1.05 for 0 = 3.0 (diamond points) and 1.0 (open 

triangle points) radians. The solid lines are the predictions of equation(0.35). 
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L. Pitch-Surge Double Pendulum Oscillation 
 

 
 

Figure 30 A model sailboat hull in pitch-surge-heave double pendulum oscillation. 
 

 To illustrate the measurement of the CM height “a” and pitch gyradius kp, iPhone 
pitch angle data for a model sailboat hull17 on a bifilar suspension is presented in 
figure 31. An initial horizontal displacement perpendicular to the plane of the suspension 
excited both modes approximately equally and a fit of two sine functions or a FFT28 then 
allows the oscillation periods or frequencies to be rapidly extracted. Alternatively, one can 
resonantly excite only mode 1, and then only mode 2, so such measurements can be 
made with a simple timer. Subsequently the sway oscillation can be measured and the 
pitch gyradius and center of mass height extracted from the frequency ratios using 
equations(0.78) and(0.79). In order to validate the double pendulum method of pitch 
gyradius measurement and center of mass height measurement a series of data for 
different suspension lengths were made and are shown in figure 32. 
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Figure 31 The pitch-surge-heave double pendulum motion data for a model sailboat hull 
on a 504 mm bifilar suspension, when displaced horizontally in surge, then separately 
excited in mode 1, in mode 2 and in sway.  The Fourier transforms of the data provide the 
precise normal mode frequencies. 
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Figure 32 The model hull oscillation periods Ts of Sway, Ty of Yaw, T1 and T2 of double 
pendulum Modes 1 and 2, as a function of the bifilar suspension length l. The curves are 
theoretical fits with d = 0.280 m, kp = 0.352m, ky = 0.303 m and a = 0.253 m. 
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V. Conclusions 
 A number of the large amplitude oscillatory motions of a body on a bifilar suspension 
have been investigated using the accelerometers and gyros in an iPhone. The almost 
universal availability of such MEMs Gyros31,32 and accelerometers29 minimizes the cost of 
the apparatus required while allowing detailed investigation of this and other simple 
mechanical systems. Isaac Newton was the first to use the bifilar suspension for moment 
of inertia measurements and it has since been used on full sized aircraft18 and 
sailboats22,17, modern UAVs19,20,21, tank test ship and submarine models85.  
 Although the vertical motion associated with the yaw rotation is the essential source 
of the potential energy, elementary treatments generally ignore the associated kinetic 
energy. The effects of the vertical motion on the period of yaw oscillation have been 

investigated as a function of the suspension parameters  and , and a formula for the 

correction of the yaw period for finite amplitude oscillations has been derived and 
confirmed. 
 The precision of such measurements can be significantly enhanced by measuring 
the ratios of the oscillation periods or frequencies, thus eliminating a number of 
corrections. Some of the effects of deviations from the ideal symmetrical suspension such 
as finite mass suspension lines, asymmetrical center of mass have been derived 
theoretically and investigated experimentally. However, the influence of bearing friction, 
damping and added mass effects as well as coupling between the modes of oscillation on 
the measured periods remain to be investigated. 
 Student laboratories with the bifilar suspension are generally limited to a 
measurement of the yaw gyradius about a vertical axis and it has been shown that the 
same suspension can be used to also measure the pitch gyradius about a horizontal axis. 
Such measurements, which can be applied to a variety of objects of interest to students 
can even be extended to measurement of all the elements of the inertia tensor by tilting 
the suspended body. Thus such laboratory experiments can be used to demonstrate the 
differences in moments of inertia about different axes. The analysis of such data can be 
limited to the linearized equations or use the full Lagrangian approach, so it can be 
tailored to the level of the course. 
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