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INTRODUCTION

This book is about the science of doing clinical research in all its forms: translational
research, clinical trials, patient-oriented research, epidemiologic studies, behavioral
science and health services research. Codifying the nature of this broad-based science
and how to do it is not straightforward, and there is no single approach that everyone
agrees is best. Our first two editions drew on the terms and principles of epidemiology
in a practical and reader-friendly way, emphasizing systematic and common sense
approaches to the many judgments involved in designing a study.

The Third Edition of Designing Clinical Research (DCR) follows the same
path, adding new developments along the way. New material on observational
studies includes case-crossover designs, and the use of propensity scores, instrumental
variables and Mendelian randomization to control confounding. Reorganized chapters
on clinical trials introduce adaptive designs, and those on studying medical tests and on
utilizing existing datasets present expanded options that will be attractive to beginning
investigators. The chapter on research ethics is extensively updated, the one on data
management entirely new (reflecting current approaches to information technology),
and a rewritten chapter on study implementation and quality control introduces
practicalities of study startup and regulatory issues (‘““Good Clinical Practices). An
updated chapter on getting funded brings help for the challenges facing young
investigators.

The Third Edition is also fresh throughout, with updated examples and references
in every chapter. And, perhaps most important, it reflects a continued maturation
of our thinking, aided by feedback from nearly 1000 health professionals that we
helped design their own studies in our Designing Clinical Research workshop in the
past 6 years since DCR 2. The syllabus for that workshop, which can be used by
others who wish to teach this material or desire a self-instruction guide, has been
combined with useful tools like a sample size calculator on our new DCR Website at
www.epibiostat.ucsf.edu/dcr/.

Many things have not changed in the Third Edition. It is still a simple book
that leaves out unnecessary technicalities and invites the investigator to focus on the
most important things: finding a good research question and planning an efficient,
effective, ethical design. The two chapters on sample size estimation, which have
received a larger number of favorable comments from readers than any other part
of the book, continue to demystify the process and enable readers to make these
calculations themselves without the need for formulas. We still use the feminine
pronoun in the first half of the book, masculine in the second, reasoning that we
are writing for clinical investigators of both genders. And we still do not address the
important area of statistical analysis, nor how to go about disseminating the findings
of clinical research—topics that many readers of this book will wish to pursue (1-5).

New investigators often find the choice of a research question to be the most
difficult step in designing a project. Fortunately, studies tend to generate more
questions than they answer, and an investigator’s awareness of researchable questions
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will grow as she gains experience. In the meantime, she should seek out her own
version of the most important companion to this book, a long-term relationship with
an excellent mentor or two.

Other benefits come from experience. Clinical research becomes easier and more
rewarding as investigators gain familiarity with the particulars of recruitment, mea-
surement and design that pertain to their area of specialization. A higher percentage of
their applications for funding are successful. They acquire staftf and junior colleagues
and develop lasting friendships with scientists working on the same topic in distant
places. And because most increments in knowledge are small and uncertain—major
scientific breakthroughs are rare—they begin to see substantial changes in the state
of medicine as an aggregate result of their efforts.

It is gratifying to know many people who have used this book who have found
they like doing research, and have settled into a great career. For those with inquiring
minds, the pursuit of truth can become a lifelong fascination. For perfectionists and
craftsmen, there are endless challenges in creating an elegant study that produces
conclusive answers to important questions at an affordable cost in time and money.
And for those with the ambition to make a lasting contribution to society, there is the
prospect that skill, tenacity and luck may lead to important advances in knowledge.
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u Getting Started: The
Anatomy and Physiology

of Clinical Research
]

Stephen B. Hulley, Thomas B. Newman,
and Steven R. Cummings

This chapter introduces clinical research from two viewpoints, setting up themes that
run together through the book. One is the anatomy of rescarch—what it’s made
of. This includes the tangible elements of the study plan: research question, design,
subjects, measurements, sample size calculation, and so forth. An investigator’s goal
is to create these elements in a form that will make the project feasible, efficient, and
cost-effective.

The other theme is the physiology of research—how it works. Studies are useful
to the extent that they yield valid inferences, first about what happened in the study
sample and then about how these study findings generalize to people outside the
study. The goal is to minimize the errors, random and systematic, that threaten
conclusions based on these inferences.

Separating the two themes is artificial in the same way that the anatomy of the
human body doesn’t make much sense without some understanding of its physiology.
But the separation has the same advantage: it clarifies our thinking about a complex
topic.

B ANATOMY OF RESEARCH: WHAT IT’S MADE OF

The structure of a research project is set out in its protocol, the written plan of the
study. Protocols are well known as devices for seeking grant funds, but they also have
a vital scientific function: helping the investigator organize her research in a logical,
focused, and efficient way. Table 1.1 outlines the components of a protocol. We
introduce the whole set here, expand on each component in the ensuing chapters of
the book, and return to put the completed pieces together in Chapter 19.

Research Question
The research question is the objective of the study, the uncertainty the investigator
wants to resolve. Research questions often begin with a general concern that must be

3
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TABLE 1.1 Outline of the Study Protocol

Element Purpose
Research questions What questions will the study address?
Background and significance Why are these questions important?
Design How is the study structured?

Time frame

Epidemiologic approach
Subjects Who are the subjects and how will they be selected?

Selection criteria
Sampling design

Variables What measurements will be made?

Predictor variables
Confounding variables
Outcome variables

Statistical issues How large is the study and how will it be analyzed?

Hypotheses
Sample size
Analytic approach

narrowed down to a concrete, researchable issue. Consider, for example, the general
question:

Should people eat move fish?

This is a good place to start, but the question must be focused before planning
efforts can begin. Often this involves breaking the question into more specific
components, and singling out one or two of these to build the protocol around. Here
are some examples:

How often do Americans eat fish?

Does eating fish lower the risk of carvdiovascular disease?

Is there a visk of mercury toxicity from increasing fish intake in older adults?

Do fish oil supplements have the same effects on cardiovascular disease as dietary fish?

Which fish 0il supplements don’t make people smell like fish?

A good research question should pass the “So what?” test. Getting the answer
should contribute usefully to our state of knowledge. The acronym FINER denotes
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five essential characteristics of a good research question: it should be feasible,
interesting, novel, ethical, andrelevant (Chapter 2).

Background and Significance

The background and significance section of a protocol sets the proposed study
in context and gives its rationale: What is known about the topic at hand? Why is
the research question important? What kind of answers will the study provide? This
section cites previous research that is relevant (including the investigator’s own work)
and indicates the problems with the prior research and what uncertainties remain. It
specifies how the findings of the proposed study will help resolve these uncertainties
and lead to new scientific knowledge and influence practice guidelines or public
health policy. Often, work on the significance section will lead to modifications in the
research question.

Design

The design of a study is a complex issue. A fundamental decision is whether to
take a passive role in observing the events taking place in the study subjects in an
observational study or to apply an intervention and examine its effects on these events
in a clinical trial (Table 1.2). Among observational studies, two common designs are
cohort studies, in which observations are made in a group of subjects that is followed
over time, and cross-sectional studies, in which observations are made on a single
occasion. Cohort studies can be further divided into prospective studies that begin in
the present and follow subjects into the future, and retrospective studies that examine
information and specimens that have been collected in the past. A third common
option is the case-control design, in which the investigator compares a group of people
who have a disease or condition with another group who do not. Among clinical trial
options, the randomized blinded trial is usually the best design but nonrandomized
or unblinded designs may be more suitable for some research questions.

No one approach is always better than the others, and each research question
requires a judgment about which design is the most efficient way to get a satisfactory
answer. The randomized blinded trial is often held up as the best design for establishing
causality and the effectiveness of interventions, but there are many situations for which
an observational study is a better choice or the only feasible option. The relatively
low cost of case-control studies and their suitability for rare outcomes makes them
attractive for some questions. Special considerations apply to choosing designs for
studying diagnostic tests. These issues are discussed in Chapters 7 through 12, each
dealing with a particular set of designs.

A typical sequence for studying a topic begins with observational studies of a
type that is often called descriptive. These studies explore the lay of the land—for
example, describing distributions of diseases and health-related characteristics in the
population:

What is the average number of servings of fish pev week in the diet of Amervicans with
a history of covonary heart disease (CHD)?

Descriptive studies are usually followed or accompanied by analytic studies that
evaluate associations to permit inferences about cause-and-effect relationships:

Is there an association between fish intake and risk of vecurrent myocardial infarction
in people with a history of CHD?
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TABLE 1.2  Examples of Common Clinical Research Designs Used to Find Out
Whether Fish Intake Reduces Coronary Heart Disease Risk

Study Design Key Feature Example

Observational Designs

Cohort study A group followed over time The investigator measures fish intake
at baseline and periodically examines
subjects at follow-up visits to see if
those who eat more fish have fewer
coronary heart disease (CHD) events

Cross-sectional study A group examined at one point  She interviews subjects about current
in time and past history of fish intake and
correlates results with history of CHD
and current coronary calcium score

Case-control study Two groups selected based on She examines a group of patients with
the presence or absence of an CHD (the “cases™) and compares
outcome them with a group who did not have

CHD (the controls), asking about past
fish intake

Clinical Trial Design

Randomized blinded trial Two groups created by a She randomly assigns subjects to
random process, and a blinded receive fish oil supplements or
intervention placebo, then follows both treatment

groups for several years to observe
the incidence of CHD

The final step is often a clinical trial to establish the effects of an intervention:
Does treatment with fish oil capsules veduce total mortality in people with CHD?

Clinical trials usually occur relatively late in a series of research studies about a
given question, because they tend to be more difficult and expensive, and to answer
more definitively the narrowly focused questions that arise from the findings of
observational studies.

It is useful to characterize a study in a single sentence that summarizes the design
and research question. If the study has two major phases, the design for each should
be mentioned.

This is & cross-sectional study of dietary habits in 50- to 69-year-old people with
a history of CHD, followed by a prospective cobort study of whether fish intake is
associated with low visk of subsequent covonary events.

This sentence is the research analog to the opening sentence of a medical
resident’s report on a new hospital admission: “This 62-year-old white policewoman
was well until 2 hours before admission, when she developed crushing chest pain radiating
to the left shoulder.”” Some designs do not easily fit into the categories listed above,
and classifying them with a single sentence can be surprisingly difficult. It is worth the
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effort—a precise description of design and research question clarifies the investigator’s
thoughts and is useful for orienting colleagues and consultants.

Study Subjects

Two major decisions must be made in choosing the study subjects (Chapter 3). The
first is to specify inclusion andexclusion criteria that define the target population: the
kinds of patients best suited to the research question. The second decision concerns
how to recruit enough people from an accessible subset of this population to be the
subjects of the study. For example, the study of fish intake in people with coronary
heart disease (CHD) might identify subjects seen in the clinic with diagnosis codes
for myocardial infarction, angioplasty, or coronary artery bypass grafting in their
electronic medical record. Decisions about which patients to study represent trade-
offs; studying a random sample of people with CHD from the entire country (or at
least several different states and medical care settings) would enhance generalizability
but be much more difficult and costly.

Variables

Another major set of decisions in designing any study concerns the choice of which
variables to measure (Chapter 4). A study of fish intake in the diet, for example,
might ask about different types of fish that contain different levels of €2-3 fatty acids,
and include questions about portion size, whether the fish was fried or baked, and
whether the subject takes fish oil supplements.

In an analytic study the investigator studies the associations among variables
to predict outcomes and to draw inferences about cause and effect. In considering
the association between two variables, the one that occurs first or is more likely on
biologic grounds to be causal is called the predictor variable; the other is called the
outcome variable.! Most observational studies have many predictor variables (age,
race, sex, smoking history, fish and fish oil supplement intake), and several outcome
variables (beart attacks, strokes, quality of life, unpleasant odor).

Clinical trials examine the effects of an intervention (a special kind of predictor
variable that the investigator manipulates), such as treatment with fish 0il capsules. This
design allows her to observe the effects on the outcome variable using randomization
to control for the influence of confounding variables—other predictors of the
outcome such as intake of red meat or income level that could be related to dietary
fish and confuse the interpretation of the findings.

Statistical Issues
The investigator must develop plans for estimating sample size and for managing and
analyzing the study data. This generally involves specifying a hypothesis (Chapter 5).

Hypothesis: 50- to 69-year-old women with CHD who take fish oil supplements will
have a lower risk of myocardial infarvction than those who do not.

This is a version of the research question that provides the basis for testing the
statistical significance of the findings. The hypothesis also allows the investigator to
calculate the sample size—the number of subjects needed to observe the expected
difference in outcome between study groups with reasonable probability or power

IPredictors are sometimes termed independent variables and outcomes dependent variables, but we find this usage
confusing, particularly since independent means something quite different in the context of multivariate analyses.
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(Chapter 6). Purely descriptive studies (what proportion of people with CHD use fish oil
supplements?) do not involve tests of statistical significance, and thus do not require
a hypothesis; instead, the number of subjects needed to produce acceptably narrow
confidence intervals for means, proportions, or other descriptive statistics can be
calculated.

. PHYSIOLOGY OF RESEARCH: HOW IT WORKS

The goal of clinical research is to draw inferences from findings in the study about
the nature of the universe around it (Fig 1.1). Two major sets of inferences are
involved in interpreting a study (illustrated from right to left in Fig. 1.2). Inference
#1 concerns internal validity, the degree to which the investigator draws the
correct conclusions about what actually happened in the study. Inference #2 concerns
external validity (also called generalizability), the degree to which these conclusions
can be appropriately applied to people and events outside the study.

TRUTH IN THE Infer FINDINGS IN
UNIVERSE <  THE STUDY

FIGURE 1.1. The findings of a study lead to inferences
about the universe outside.

When an investigator plans a study, she reverses the process, working from left to
right in the lower half of Fig. 1.2 with the goal of maximizing the validity of these
inferences at the end of the study. She designs a study plan in which the choice of
rescarch question, subjects, and measurements enhances the external validity of the
study and is conducive to implementation with a high degree of internal validity. In
the next sections we address design and then implementation before turning to the
errors that threaten the validity of these inferences.

Drawing TRUTH INTHE = Infer TRUTH IN THE UL FINDINGS IN
Conclusions UNIVERSE STUDY THE STUDY
Designing and Research Study Actual
Implementin i —> >
p g guestion Design plan Implement study
EXTERNAL INTERNAL
VALIDITY VALIDITY

FIGURE 1.2. The process of designing and implementing a research project sets the stage for drawing
conclusions from the findings.

Designing the Study

Consider the simple descriptive question:

What is the prevalence of vegular use of fish oil supplements among people with CHD?
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This question cannot be answered with perfect accuracy because it would be
impossible to study all patients with CHD and our approaches to discovering whether
a person is taking fish oil are imperfect. So the investigator settles for a related question
that can be answered by the study:

Among a sample of patients seen in the investigator’s clinic who bhave a previous
CHD diagnosis and respond to o mailed questionnaire, what proportion report
taking fish 0il supplements?

The transformation from research question to study plan is illustrated in Fig. 1.3.
One major component of this transformation is the choice of a sample of subjects
that will represent the population. The group of subjects specified in the protocol
can only be a sample of the population of interest because there are practical barriers
to studying the entire population. The decision to study patients in the investigator’s
clinic identified through the electronic medical record system is a compromise. This
is a sample that is feasible to study but one that may produce a different prevalence of
fish oil use than that found in all people with CHD.

The other major component of the transformation is the choice of variables that
will represent the phenomena of interest. The variables specified in the study plan are
usually proxies for these phenomena. The decision to use a self-report questionnaire
to assess fish oil use is a fast and inexpensive way to collect information, but it will not
be perfectly accurate. Some people may not accurately remember or record how much
they take in a typical week, others may report how much they think they should be
taking, and some may be taking products that they do not realize should be included.

In short, each of the differences in Fig. 1.3 between the research question and
the study plan has the purpose of making the study more practical. The cost of this

Infer
TRUTH IN THE - /} TRUTH IN THE
UNIVERSE STUDY
Research question J Study plan
P Y Design
Intended
sample
Target ’ )
population AII_patlents with a
) history of CHD
People with CHD seen in clinic
last year
- J
4 N\ 4 N\
Phenomena
of interest Intgnded
: variables
The proportion who
take fish Self-reported use of
oil supplements fish oil supplements
\ J EXTERNAL \ J
VALIDITY

FIGURE 1.3. Design errors: if the intended sample and variables do not represent
the target population and phenomena of interest, these errors may distort inferences
about what actually happens in the population.



10

Basic Ingredients

increase in practicality, however, is the risk that design changes may cause the study
to produce a wrong or misleading conclusion because its design answers something
different from the research question of interest.

Implementing the Study

Returning to Fig. 1.2, the right-hand side is concerned with implementation and the
degree to which the actual study matches the study plan. At issue here is the problem
of a wrong answer to the research question because the way the sample was actually
drawn, and the measurements made, differed in important ways from the way they
were designed (Fig. 1.4).

The actual sample of study subjects is almost always different from the intended
sample. The plans to study all eligible patients with CHD, for example, could be
disrupted by incomplete diagnoses in the electronic medical record, wrong addresses
for the mailed questionnaire, and refusal to participate. Those subjects who are
reached and agree to participate may have a different prevalence of fish oil use than
those not reached or not interested. In addition to these problems with the subjects,
the actual measurements can differ from the intended measurements. If the format of
the questionnaire is unclear subjects may get confused and check the wrong box, or
they may simply omit the question by mistake.

These differences between the study plan and the actual study can alter the answer
to the research question. Figure 1.4 illustrates that errors in implementing the study
join errors of design in leading to a misleading or wrong answer to the research
question.

Infer
TRUTH IN THE - oy FINDINGS IN
STUDY f THE STUDY
Study plan Actual study

e N - e N

Intended implement Actual
sample subjects
All 215 patients The 104 patients
with a history of with a CHD diagnosis
CHD seen in in chart last year who
clinic last year filled out questionnaire

\ J \

4 2\ 4 2\
Intended Actual
variables measurements

Self-reported Responses to
use of fish oil questionnaire items on
supplements fish oil supplements

\ J J

INTERNAL
VALIDITY

FIGURE 1.4. Implementation errors: if the actual subjects and measurements do not
represent the intended sample and variables, these errors may distort inferences about
what actually happened in the study.
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Causal Inference

A special kind of validity problem arises in studies that examine the association
between a predictor and an outcome variable in order to draw causal inference. If
a cohort study finds an association between fish intake and CHD events, does this
represent cause and effect, or is the fish just an innocent bystander in a web of
causation that involves other variables? Reducing the likelihood of confounding and
other rival explanations is one of the major challenges in designing an observational
study (Chapter 9).

The Errors of Research

No study is free of errors, and the goal is to maximize the validity of inferences
from what happened in the study sample to the nature of things in the population.
Erroneous inferences can be addressed in the analysis phase of research, but a better
strategy is to focus on design and implementation (Fig. 1.5), preventing errors from
occurring in the first place to the extent that this is practical.

The two main kinds of error that interfere with research inferences are random
error and systematic error. The distinction is important because the strategies for
minimizing them are quite different.

Random error is a wrong result due to chance—sources of variation that are
equally likely to distort estimates from the study in either direction. If the true
prevalence of fish oil supplement use in 50- to 69-year-old patients with CHD is 20%,
a well-designed sample of 100 patients from that population might contain exactly
20 patients who use these supplements. More likely, however, the sample would
contain a nearby number such as 18, 19, 21, or 22. Occasionally, chance would
produce a substantially different number, such as 12 or 28. Among several techniques
for reducing the influence of random error (Chapter 4), the simplest is to increase

Infer Infer
- ,1, - ,1,
) )
Error Solution /Error Solution
Random  Improve design (Ch. 7-13) Random  Quality control (Ch.17)
error Enlarge sample size error
5 strategies to increase
precision (Ch. 4)
Systematic Improve design (Ch. 7-13) Systematic Quality control (Ch.17)
error 7 strategies to increase error
accuracy (Ch.4)
- J \- J
Design Implement
EXTERNAL INTERNAL
VALIDITY VALIDITY

FIGURE 1.5. Rescarch errors. This blown-up detail of the error boxes in Figures 1.3 and
1.4 reveals strategies for controlling random and systematic error in the design,
implementation, and analysis phases of the study.
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the sample size. The use of a larger sample diminishes the likelihood of a wrong
result by increasing the precision of the estimate—the degree to which the observed
prevalence approximates 20% each time a sample is drawn.

Systematic error is a wrong result due to bias—sources of variation that distort
the study findings in one direction. An illustration is the decision in Fig. 1.3 to study
patients in the investigator’s clinic, where the local treatment patterns have responded
to her interest in the topic and her fellow doctors are more likely than the US
average to recommend fish oil. Increasing the sample size has no effect on systematic
error. The only way to improve the accuracy of the estimate (the degree to which
it approximates the true value) is to design the study in a way that either reduces
the size of the various biases or gives some information about them. An example
would be to compare results with those from a second sample of patients with
CHD drawn from another setting, for example, examining whether the findings in
patients seen in a cardiology clinic are different from those in patients in a gynecology
clinic.

The examples of random and systematic error in the preceding two paragraphs
are components of sampling error, which threatens inferences from the study
subjects to the population. Both random and systematic errors can also contribute
to measurement error, threatening the inferences from the study measurements
to the phenomena of interest. An illustration of random measurement error is the
variation in the response when the diet questionnaire is administered to the patient on
several occasions. An example of systematic measurement error is the underestimation
of the prevalence of fish oil use due to lack of clarity in how the question is
phrased. Additional strategies for controlling all these sources of error are presented
in Chapters 3 and 4.

The concepts presented in the last several pages are summarized in Fig. 1.6.
Getting the right answer to the research question is a matter of designing and
implementing the study in a fashion that keeps the extent of inferential errors at an
acceptable level.

Infer Infer
TRUTH IN THE TRUTH IN THE FINDINGS IN
UNIVERSE f STUDY f THE STUDY
Random and Random and
systematic systematic
Research error Study plan error Actual
question study

Target Intended Actual
population sample subjects

Design Implement

Il

Phenomena Intended Actual
of interest variables measurements

EXTERNAL INTERNAL
VALIDITY VALIDITY

FIGURE 1.6. Summary of the physiology of research—how it works.
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. DESIGNING THE STUDY

Study Protocol

The process of developing the study plan begins with the one-sentence research
question described ecarlier. Three versions of the study plan are then produced in
sequence, each larger and more detailed than the preceding one.

¢ Outline of the elements of the study (Table 1.1 and Appendix 1.1). This one page
beginning serves as a standardized checklist to remind the investigator to include all
the components. As important, the sequence has an orderly logic that helps clarify
the investigator’s thinking on the topic.

o Study protocol. This expansion on the study outline can range from 5 to 25 or
more pages, and is used to plan the study and to apply for grant support. The
protocol parts are discussed throughout this book and put together in Chapter 19.

o Operations manual. This collection of specific procedural instructions, question-
naires, and other materials is designed to ensure a uniform and standardized
approach to carrying out the study with good quality control (Chapters 4 and 17).

The research question and study outline should be written out at an early stage.
Putting thoughts down on paper leads the way from vague ideas to specific plans and
provides a concrete basis for getting advice from colleagues and consultants. It is a
challenge to do it (ideas are easier to talk about than to write down), but the rewards
are a faster start and a better project.

Appendix 1.1 provides an example of a study outline. These plans deal more
with the anatomy of research (Table 1.1) than with its physiology (Fig. 1.6), so the
investigator must remind herself to worry about the errors that may result when it
is time to draw inferences about what happened in the study sample and how it
applies to the population. A study’s virtues and problems can be revealed by explicitly
considering how the question the study is likely to answer differs from the research
question, given the plans for acquiring subjects and making measurements, and given
the likely problems of implementation.

With the study outline in hand and the intended inferences in mind, the
investigator can proceed with the details of her protocol. This includes getting
advice from colleagues, drafting specific recruitment and measurement methods,
considering scientific and ethical appropriateness, changing the study question and
outline, pretesting specific recruitment and measurement methods, making more
changes, getting more advice, and so forth. This iterative process is the nature of
research design and the topic of the rest of this book.

Trade-offs

Errors are an inherent part of all studies. The main issue is whether the errors will be
large enough to change the conclusions in important ways. When designing a study,
the investigator is in much the same position as a labor union official bargaining for a
new contract. The union official begins with a wish list—shorter hours, more money,
health care benefits and so forth. She must then make concessions, holding on to
the things that are most important and relinquishing those that are not essential. At
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the end of the negotiations is a vital step: she looks at the best contract she could
negotiate and decides if it has become so bad that it is no longer worth having.

The same sort of concessions must be made by an investigator when she
transforms the research question to the study plan and considers potential problems
in implementation. On one side are the issues of internal and external validity; on
the other, feasibility. The vital last step of the union negotiator is sometimes omitted.
Once the study plan has been formulated, the investigator must decide whether it
adequately addresses the research question and whether it can be implemented with
acceptable levels of error. Often the answer is no, and there is a need to begin the
process anew. But take heart! Good scientists distinguish themselves not so much by
their uniformly good research ideas as by their tenacity in turning over those that
won’t work and trying again.

B sumMmARY

1. The anatomy of research is the set of tangible elements that make up the study
plan: the research question and its significance, and the design, study subjects,
and measurement approaches. The challenge is to design elements that are fast,
inexpensive, and easy to implement.

2. The physiology of research is how the study works. The study findings are used
to draw inferences about what happened in the study sample (internal validity),
and about events in the world outside (external validity). The challenge here is to
design and implement a study plan with adequate control over two major threats
to these inferences: random error (chance) and systematic error (bias).

3. Indesigning a study the investigator may find it helpful to consider the relationships
between the research question (what she wants to answer), the study plan (what
the study is designed to answer), and the actual study (what the study will actually
answer, given the errors of implementation that can be anticipated).

4. A good way to develop the study plan is to begin with a one-sentence version
of the research question and expand this into an outline that sets out the study
elements in a standardized sequence. Later on the study plan will be expanded
into the protocol and the operations manual.

5. Good judgment by the investigator and advice from colleagues are needed for the
many trade-offs involved, and for determining the overall viability of the project.
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B APPENDIX 1.1

Outline of a Study*

Element Example

Title Relationship between Level of Experience and Degree of Clinical Utility of
Third Heart Sound Auscultation.

Research question Do auscultatory assessments of third heart sound by more experienced
physicians result in higher sensitivity and specificity for detecting left
ventricular dysfunction than assessments by less experienced physicians?

Significance 1. Auscultation of third heart sounds is a standard physical examination
indicator of heart failure that all medical students have learned for 100
years.

2. The degree to which this clinical assessment, which many physicians
find difficult, actually detects abnormal left ventricular function has not
been studied.

3. There are no studies of whether auscultatory measurements of third
heart sounds by cardiology fellows and attendings are more accurate
than those of residents and medical students.

Study design Cross-sectional analytic study
Subjects
o Entry criteria Adults referred for left heart catheterization
« Sampling design Consecutive sample of consenting patients
Variables
* Predictor Level of experience of physicians
¢ Outcome 1. Area under the receiver operating characteristic curve for third heart
sound score (AUC) in relation to higher LV diastolic pressure by
catheterization

2. AUC in relation to lower ejection fraction by cardiac echo
3. AUC in relation to B natriuretic protein

Statistical issues Hypothesis: More experienced physicians will have more favorable AUCs
Sample size (to be filled in after reading Chapter 6)

*Fortunately this study, designed and implemented by clinical investigators in training at our institution, found that more
experienced physicians were better at detecting clinically significant third heart sounds (1).

B REFERENCE

1. Marcus GM, Vessey J, Jordan MV, et al. Relationship between accurate auscultation of a
clinically useful third heart sound and level of experience. Arch Intern Med 2006;166:1-7.
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The research question is the uncertainty about something in the population that
the investigator wants to resolve by making measurements on her study subjects
(Fig. 2.1). There is no shortage of good research questions, and even as we succeed
in producing answers to some questions, we remain surrounded by others. Recent
clinical trials, for example, have established that treatments that block the synthesis
of estradiol (aromatase inhibitors) reduce the risk of breast cancer in women who
have had early stage cancer (1). But now there are new questions: How long should
treatment be continued, what is the best way to prevent the osteoporosis that is an
adverse effect of these drugs, and does this treatment prevent breast cancer in patients
with BRCA 1 and BRCA 2 mutations?
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FIGURE 2.1. Choosing the research question and designing the study plan.
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The challenge in searching for a research question is not a shortage of uncertain-
ties; it is the difficulty of finding an important one that can be transformed into a
feasible and valid study plan. This chapter presents strategies for accomplishing this
in arenas that range from classical clinical research to the newly popular translational
research.

. ORIGINS OF A RESEARCH QUESTION

For an established investigator the best research questions usually emerge from the
findings and problems she has observed in her own prior studies and in those of other
workers in the field. A new investigator has not yet developed this base of experience.
Although a fresh perspective can sometimes be useful by allowing a creative person to
conceive new approaches to old problems, lack of experience is largely an impediment.

Mastering the Literature

It is important to master the published literature in an area of study; scholarship is a
necessary ingredient to good research. A new investigator should conduct a thorough
search of published literature in the area of study. Carrying out a systematic review is
a great first step in developing and establishing expertise in a research area, and the
underlying literature review can serve as background for grant proposals and research
reports. Recent advances may be presented at research meetings or just be known to
active investigators in a particular field long before they are published. Thus, mastery
of a subject entails participating in meetings and building relationships with experts
in the field.

Being Alert to New Ideas and Techniques
In addition to the medical literature as a source of ideas for research questions, all
investigators find it helpful to attend conferences in which recent work is presented.
As important as the presentations are the opportunities for informal conversations with
other scientists during the breaks. A new investigator who overcomes her shyness and
engages a speaker at the coffee break will often find the experience richly rewarding,
and occasionally will find she has a new senior colleague. Even better, for a speaker
known in advance to be especially relevant, it may be worthwhile to look up her recent
publications and contact her in advance to arrange a meeting during the conference.

A skeptical attitude about prevailing beliefs can stimulate good research ques-
tions. For example, it has been widely believed that lacerations that extend through
the dermis require sutures to assure rapid healing and a satisfactory cosmetic out-
come. Alternative approaches that would not require local anesthetics and be faster,
less expensive, and produce as good a cosmetic result were widely believed to be un-
achievable. However, Quinn et al. noted personal experience and case series evidence
that wounds repair themselves regardless of whether wound edges are approximated.
They carried out a randomized trial in which patients with hand lacerations less than
2 cm in length all received tap water irrigation and a 48-hour antibiotic dressing, but
one group receive conventional sutures while the other did not. The group treated
with sutures had a more painful and time-consuming treatment but subsequent
blinded assessment revealed similar time to healing and cosmetic results (2).

The application of new technologies often generates new insights and questions
about familiar clinical problems, which in turn can generate new paradigms (3).
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Recent advances in imaging and in techniques for molecular and genetic analyses,
for example, have spawned a large number of clinical research studies that have
informed extraordinary advances in the use of these technologies in clinical medicine.
Similarly, taking a new concept or finding from one field and applying it to a
problem in a different field can lead to good research questions. Low bone density,
for example, is widely recognized as a risk factor for fractures. Investigators applied
this technology to other populations and found that women with low bone density
have higher rates of cognitive decline (4), perhaps due to low levels of estrogen over
a lifetime.

Keeping the Imagination Roaming

Careful observation of patients has led to many descriptive studies and is a fruitful
source of research questions. Teaching is also an excellent source of inspiration;
ideas for studies often occur while preparing presentations or during discussions with
inquisitive students. Because there is usually not enough time to develop these ideas
on the spot, it is useful to keep them in a computer file or notebook for future
reference.

There is a major role for creativity in the process of conceiving research questions,
imagining new methods to address old questions and having fun with ideas. There is
also a need for tenacity, for returning to a troublesome problem repeatedly until a
resolution is reached that feels comfortable. Some creative ideas come to mind during
informal conversations with colleagues over lunch; others occur in brainstorming
sessions. Many inspirations are solo affairs that strike while preparing a lecture,
showering, perusing the Internet, or just sitting and thinking. Fear of criticism or
seeming unusual can prematurely quash new ideas. The trick is to put an unresolved
problem clearly in view and allow the mind to run freely toward it.

Choosing a Mentor

Nothing substitutes for experience in guiding the many judgments involved in
conceiving and fleshing in a research question. Therefore an essential strategy for
a new investigator is to apprentice herself to an experienced mentor who has the
time and interest to work with her regularly. A good mentor will be available for
regular meetings and informal discussions, encourage creative ideas, provide wisdom
that comes from experience, help ensure protected time for research, open doors to
networking and funding opportunities, encourage the development of independent
work, and put the new investigator’s name first on grants and publications whenever
possible. Sometimes it is desirable to have more than one mentor, representing
different disciplines. Good relationships of this sort can also provide tangible resources
that are needed—office space, access to clinical populations, datasets and specimen
banks, specialized laboratories, financial resources, and a research team. Choosing a
mentor can be a difficult process, and is perhaps the single most important decision a
new investigator makes.

. CHARACTERISTICS OF A GOOD RESEARCH QUESTION

The characteristics of a good research question, assessed in the context of the intended
study design, are that it be feasible, interesting, novel, ethical, and relevant (which
form the mnemonic FINER; Table 2.1).
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TABLE 2.1 FINER Criteria for a Good Research Question

Feasible

Adequate number of subjects
Adequate technical expertise
Affordable in time and money
Manageable in scope

Interesting
Getting the answer intrigues the investigator and her friends
Novel

Confirms, refutes or extends previous findings
Provides new findings

Ethical
Amenable to a study that institutional review board will approve
Relevant

To scientific knowledge
To clinical and health policy
To future research

Feasible
It is best to know the practical limits and problems of studying a question early on,
before wasting much time and effort along unworkable lines.

o Number of subjects. Many studies do not achieve their intended purposes because
they cannot enroll enough subjects. A preliminary calculation of the sample size
requirements of the study early on can be quite helpful (Chapter 6), together
with an estimate of the number of subjects likely to be available for the study,
the number who would be excluded or refuse to participate, and the number who
would be lost to follow-up. Even careful planning often produces estimates that are
overly optimistic, and the investigator should assure that there are enough eligible
willing subjects. It is sometimes necessary to carry out a pilot survey or chart review
to be sure. If the number of subjects appears insufficient, the investigator can
consider several strategies: expanding the inclusion criteria, eliminating unnecessary
exclusion criteria, lengthening the time frame for enrolling subjects, acquiring
additional sources of subjects, developing more precise measurement approaches,
inviting colleagues to join in a multicenter study, and using a different study design.

o Technical expertise. The investigators must have the skills, equipment, and ex-
perience needed for designing the study, recruiting the subjects, measuring the
variables, and managing and analyzing the data. Consultants can help to shore
up technical aspects that are unfamiliar to the investigators, but for major areas
of the study it is better to have an experienced colleague steadily involved as a
coinvestigator; for example, it is wise to include a statistician as a member of the
research team from the beginning of the planning process. It is best to use familiar
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and established approaches, because the process of developing new methods and
skills is time-consuming and uncertain. When a new approach is needed, such as a
questionnaire, expertise in how to accomplish the innovation should be sought.

o Cost in time and money. It is important to estimate the costs of each component of
the project, bearing in mind that the time and money needed will generally exceed
the amounts projected at the outset. If the projected costs exceed the available
funds, the only options are to consider a less expensive design or to develop
additional sources of funding. Early recognition of a study that is too expensive
or time-consuming can lead to modification or abandonment of the plan before
expending a great deal of effort.

o Scope. Problems often arise when an investigator attempts to accomplish too
much, making many measurements at repeated contacts with a large group of
subjects in an effort to answer too many research questions. The solution is to
narrow the scope of the study and focus only on the most important goals.
Many scientists find it difficult to give up the opportunity to answer interesting
side questions, but the reward may be a better answer to the main question
at hand.

Interesting

An investigator may have many motivations for pursuing a particular research question:
because it will provide financial support, because it is a logical or important next step
in building a career, or because getting at the truth of the matter is interesting.
We like this last reason; it is one that grows as it is exercised and that provides the
intensity of effort needed for overcoming the many hurdles and frustrations of the
research process. However, it is wise to confirm that you are not the only one who
finds a question interesting. Speak with mentors and outside experts before devoting
substantial energy to develop a research plan or grant proposal that peers and funding
agencies may consider dull.

Novel

Good clinical research contributes new information. A study that merely reiter-
ates what is already established is not worth the effort and cost. The novelty
of a proposed study can be determined by thoroughly reviewing the literature,
consulting with experts who are familiar with ongoing research, and searching
lists of projects that have been funded using the NIH Computer Retrieval of
Information on Scientific Projects (CRISP). Although novelty is an important cri-
terion, a research question need not be totally original—it can be worthwhile
to ask whether a previous observation can be replicated, whether the findings
in one population also apply to others, or whether improved measurement tech-
niques can clarify the relationship between known risk factors and a disease. A
confirmatory study is particularly useful if it avoids the weaknesses of previous
studies.

Ethical

A good research question must be ethical. If the study poses unacceptable physical
risks or invasion of privacy (Chapter 14), the investigator must seek other ways to
answer the question. If there is uncertainty about whether the study is ethical, it is

helpful to discuss it at an early stage with a representative of the institutional review
board.



22

Basic Ingredients

Relevant

Among the characteristics of a good research question, none is more important than
its relevance. A good way to decide about relevance is to imagine the various outcomes
that are likely to occur and consider how each possibility might advance scientific
knowledge, influence practice guidelines and health policy, or guide further research.
When relevance is uncertain, it is useful to discuss the idea with mentors, clinicians or
experts in the field.

DEVELOPING THE RESEARCH QUESTION AND STUDY
PLAN

It helps a great deal to write down the research question and a brief (one-page) outline
of the study plan at an early stage (Appendix 1.1). This requires some self-discipline,
but it forces the investigator to clarify her ideas about the plan and to discover specific
problems that need attention. The outline also provides a basis for specific suggestions
from colleagues.

Problems and Solutions

Two general solutions to the problems involved in developing a research question
deserve special emphasis. The first is the importance of getting good advice. We
recommend a research team that includes representatives of each of the major
disciplines involved in the study, and that includes at least one senior scientist. In
addition, it is a good idea to consult with specialists who can guide the discovery of
previous research on the topic and the choice and design of measurement techniques.
Sometimes a local expert will do, but it is often useful to contact individuals in other
institutions who have published pertinent work on the subject. A new investigator
may be intimidated by the prospect of writing or calling someone she knows only
as an author in the Journal of the American Medical Association, but most scientists
respond favorably to such requests for advice.

The second solution is to allow the study plan to gradually emerge from an
iterative process of designing, reviewing, pretesting, and revising. Once the one-page
study plan is specified, advice from colleagues will usually result in important changes.
As the protocol gradually takes shape, a small pretest of the number and willingness
of the potential subjects may lead to changes in the recruitment plan. The preferred
imaging test may turn out to be prohibitively costly and a less expensive alternative
sought. The qualities needed in the investigator for these planning stages of research
are creativity, tenacity, and judgment.

Primary and Secondary Questions

Many studies have more than one research question. Experiments often address the
effect of the intervention on more than one outcome; for example, the Women’s
Health Initiative was designed to determine whether reducing dietary fat intake
would reduce the risk of breast cancer, but an important secondary hypothesis was
to examine the effect on coronary events (5). Almost all cohort and case—control
studies look at several risk factors for each outcome. The advantage of designing
a study with several research questions is the efficiency that can result, with several
answers emerging from a single study. The disadvantages are the increased complexity
of designing and implementing the study and of drawing statistical inferences when
there are multiple hypotheses (Chapter 5). A sensible strategy is to establish a single
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primary research question around which to focus the study plan and sample size
estimate, adding secondary research questions about other predictors or outcomes
that may also produce valuable conclusions.

B TRANSLATIONAL RESEARCH

Translational research refers to studies of how to translate findings from the ivory
tower into the “‘real world.” Translational research (6) comes in two main flavors
(Fig. 2.2):

o Applying basic science findings from laboratory research in clinical studies of patients
(sometimes abbreviated as T1 research), and

o Applying the findings of these clinical studies to alter health practices in the
community (sometimes abbreviated as T2 research).

Both forms of translational research require identifying a ““‘translation” opportu-
nity. Just as a literary translator first needs to find a novel or poem that merits trans-
lating, a translational research investigator must first identify a worthwhile scientific
finding. Translational research projects are usually limited by the quality of the source
material, so think ‘““Tolstoy”’: the more valuable the result of a laboratory experiment
or a clinical trial, the more likely a translational project will have merit. Pay attention to
colleagues when they talk about their latest findings, to presentations at national meet-
ings about novel methods, and to speculation about mechanisms in published reports.

Translating Research from the Laboratory to Clinical Practice (TT)

A host of new tools have become available for clinical investigations, including
analysis of single nucleotide polymorphisms (SNPs), gene expression arrays, imaging
and proteomics. From the viewpoint of a clinical investigator, there is nothing
intrinsically different about any of these measurements or test results. The chapters on
measurements will be useful in planning studies involving these types of measurements,
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FIGURE 2.2. Transitional research is the component of clinical research that interacts
with basic science research (hatched area T1) or with population research (hatched area
T2).
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as will the advice about study design, population samples, and sample size. Especially
relevant will be the information about multiple hypothesis testing.

Compared with ordinary clinical research, being a successful T1 translational
researcher requires having an additional skill set or identifying a collaborator with
those skills. Bench-to-bedside research necessitates a thorough understanding of the
underlying basic science. Although many clinical researchers believe that they can
master this knowledge—just like many laboratory-based researchers believe doing
clinical research requires no special training—in reality, the skills hardly overlap. For
example, suppose a basic scientist has identified a gene that affects circadian rhythm in
mice. A clinical investigator has access to a cohort study with data on sleep cycles in
people and a bank of stored DNA, and wants to study whether there is an association
between polymorphisms in the human homolog of that gene and sleep in people. In
order to propose a T1 study looking at that association she needs collaborators who
are familiar with that gene and with the advantages and limitations of the various
methods of genotyping.

Similarly, imagine that a laboratory-based investigator has discovered a unique
pattern of gene expression in tissue biopsy samples from patients with breast cancer.
She should not propose a study of its use as a diagnostic test for breast cancer
without collaborating with someone who understands the importance of test-retest
reliability, receiver operating curves, sampling and blinding, and the effects of prior
probability of disease on the applicability of her discovery. Good translational re-
search requires expertise in more than one area. Thus a research team interested in
testing a new drug needs scientists familiar with molecular biology, pharmacokinetics,
pharmacodynamics, Phase I clinical trials, and the practice of medicine.

Translating Research from Clinical Studies to Populations (T2)

Studies that attempt to apply findings from clinical trials to larger and more diverse
populations often require expertise in identifying high-risk or underserved groups,
understanding the difference between screening and diagnosis, and knowledge of
how to implement changes in health care delivery systems. On a practical level, this
kind of research usually needs access to large groups of patients (or clinicians), such
as those enrolled in health plans. Support and advice from the department chair, the
chief of the medical staft at an affiliated hospital, or the leader of the local medical
society, may be helpful when planning these studies.

Some investigators take a short cut when doing this type of translational research,
studying patients in their colleagues’ practices (e.g., a housestaff-run clinic in an
academic medical center) rather than involving practitioners in the community. This
is a bit like translating Aristophanes into modern Greek—it will still not be very useful
for English-speaking readers. Chapter 18 emphasizes the importance of getting as far
into the community as possible.

The sampling scheme is often a problem when studying whether research results
can be applied in general populations. For example, in a study of whether a new
office-based diet and exercise program will be effective in the community, it may
not be possible to randomly assign individual patients. One solution would be to
use physician practices as the unit of randomization; this will almost certainly require
collaborating with an expert on cluster sampling and clustered analyses. Many T2
research projects use proxy ‘“‘process’ variables as their outcomes. For example, if
clinical trials have established that a new treatment reduces mortality from sepsis, a
translational research study might not need to have mortality as the outcome. Rather,
it might examine different approaches to implementing the treatment protocol, and
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use the percentage of patients with sepsis who were placed on the protocol as the
outcome of the study.

B sumMARY

1.

All studies should start with a research question that addresses what the investi-
gator would like to know. The goal is to find one that can be developed into a
good study plan.

. One key ingredient for developing a research question is scholarship that is

acquired by a thorough and continuing review of the work of others, both
published and unpublished. Another key ingredient is experience, and the single
most important decision a new investigator makes is her choice of one or two
senior scientists to serve as her mentor(s).

. Good research questions arise from medical articles and conferences, from critical

thinking about clinical practices and problems, from applying new methods to
old issues, and from ideas that emerge from teaching and daydreaming.

. Before committing much time and effort to writing a proposal or carrying out a

study, the investigator should consider whether the research question and study
plan are “FINER’’: feasible, interesting, novel, ethical, and relevant.

. Early on, the research question should be developed into a one-page written study

plan that specifically describes how many subjects will be needed, and how the
subjects will be selected and the measurements made.

. Developing the research question and study plan is an iterative process that

includes consultations with advisors and friends, a growing familiarity with the
literature, and pilot studies of the recruitment and measurement approaches. The
qualities needed in the investigator are creativity, tenacity, and judgment.

. Most studies have more than one question, but it is useful to focus on a single

primary question in designing and implementing the study

. Translational research is a type of clinical research that studies the application

of basic science findings in clinical studies of patients (T1), and how to apply
these findings to improve health practices in the community (T2); it requires
collaborations from laboratory to population-based investigators, using the
clinical research methods presented in this book.
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E Choosing the Study

Subjects: Specification,
Sampling, and Recruitment

Stephen B. Hulley, Thomas B. Newman,
and Steven R. Cummings

A good choice of study subjects serves the vital purpose of ensuring that the findings
in the study accurately represent what is going on in the population of interest
(Fig. 3.1). The protocol must specify a sample of subjects that can be studied at
an acceptable cost in time and money, yet one that is large enough to control
random error and representative enough to allow generalizing the study findings to
populations of interest. An important precept here is that generalizability is rarely a
simple yes-or-no matter; it is a complex qualitative judgment that is highly dependent
on the investigator’s choice of population and of sampling design.

We will come to the issue of choosing the appropriate number of study subjects
in Chapter 6. In this chapter we address the process of specifying and sampling the
kinds of subjects who will be representative and feasible. We also discuss strategies
for recruiting these subjects to participate in the study.
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FIGURE 3.1. Choosing study subjects that represent the population.
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. BASIC TERMS AND CONCEPTS

Populations and Samples

A population is a complete set of people with a specified set of characteristics, and
a sample is a subset of the population. In lay usage, the characteristics that define
a population are geographic—the population of Canada. In research the defining

characteristics are also clinical, demographic, and temporal:

e Clinical and demographic characteristics define the target population, the large
set of people throughout the world to which the results will be generalized—a//

teenagers with asthma, for example.

o The accessible population is a geographically and temporally defined subset of the
target population that is available for study—teenagers with asthma living in the

investigator’s town this year.

o The study sample is the subset of the accessible population that participates in the

study.

Generalizing the Study Findings

The classic Framingham Study was an early approach to designing a study that would
allow inferences from findings observed in a sample to be applied to a population
(Fig. 3.2). The sampling design called for listing all the adult residents of the town and
then asking every second person to participate. This “‘systematic” sampling design
is not as tamperproof as a true random sample (as noted later in this chapter), but
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two more serious concerns were the facts that one-third of the Framingham residents
selected for the study refused to participate, and that in their place the investigators
accepted other residents who had heard about the study and volunteered (1). Because
respondents are often healthier than nonrespondents, especially if they are volunteers,
the characteristics of the actual sample undoubtedly differed from those of the
intended sample. Every sample has some errors, however, and the issue is how much
damage has been done. The Framingham Study sampling errors do not seem large
enough to invalidate the conclusion that the findings of the study—that hypertension is
a visk factor for coronary heart disease (CHD)—can be generalized to all the residents
of Framingham.

The next concern is the validity of generalizing the finding that hypertension
is a risk factor for CHD from the accessible population of Framingham residents
to target populations elsewhere. This inference is more subjective. The town of
Framingham was selected from the universe of towns in the world, not with a scientific
sampling design, but because it seemed fairly typical of middle-class residential
communities in the United States and was convenient to the investigators. The
validity of generalizing the Framingham risk relationships to populations in other
parts of the country involves the precept that, in general, analytic studies and
clinical trials that address biologic relationships produce more widely generalizable
results across diverse populations than descriptive studies that address distributions
of characteristics. For example, the strength of hypertension as a risk factor for
CHD is similar in Caucasian Framingham residents to that observed in inner city
African Americans, but the prevalence of hypertension is much higher in the latter
population.

Steps in Designing the Protocol for Acquiring Study Subjects

The inferences in Fig. 3.2 are presented from right to left, the sequence used for
interpreting the findings of a completed study. An investigator who is planning a
study reverses this sequence, beginning on the left (Fig. 3.3). She begins by specifying
the clinical and demographic characteristics of the target population that will serve the
rescarch question well. She then uses geographic and temporal criteria to specify a
study sample that is representative and practical.

Bl SELECTION CRITERIA

An investigator wants to study the efficacy of low dose testosterone versus placebo for
enhancing libido in menopause. She begins by creating selection criteria that define
the population to be studied.

Establishing Inclusion Criteria

The inclusion criteria define the main characteristics of the target population that
pertain to the research question (Table 3.1). Age is often a crucial factor. In this study
the investigators might decide to focus on women in their fifties, reasoning that in
this group the benefit-to-harm ratio of the drug might be optimal, but another study
might include older decades. Incorporating African American, Hispanic, and Asian
women in the study would appear to expand generalizability, but it’s important to
realize that the increase in generalizability is illusory unless there are enough women
of each race to statistically test for the presence of an ““interaction” (an effect in one
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FIGURE 3.3. Steps in designing the protocol for choosing the study subjects.

race that is different from that in other races, Chapter 9); this is a large number, and
most studies are not powered to discover such interactions.

Specifying clinical characteristics often involves difficult judgments, not only
about which factors are important to the research question, but about how to define
them. How, for example, would an investigator put into practice the criterion that
the subjects be in “good general health”? She might decide not to include patients
with diseases that might be worsened by the testosterone treatment (atherosclerosis)
or interfere with follow-up (metastatic cancer).

The selection criteria that address the geographic and temporal characteristics
of the accessible population may involve trade-offs between scientific and practical
goals. The investigator may find that patients at her own hospital are an available and
inexpensive source of subjects. But she must consider whether peculiarities of the local
referral patterns might interfere with generalizing the results to other populations.
On these and other decisions about inclusion criteria, there is no single course of
action that is clearly right or wrong; the important thing is to make decisions that are
sensible, that can be used consistently throughout the study, and that will provide a
basis for knowing to whom the published conclusions apply.

Establishing Exclusion Criteria

Exclusion criteria indicate subsets of individuals who would be suitable for the
research question were it not for characteristics that might interfere with the success
of follow-up efforts, the quality of the data, or the acceptability of randomized
treatment (Table 3.1). Clinical trials differ somewhat from observational studies in
being more likely to have exclusions mandated by concern for the safety of the



Chapter 3 = Choosing the Study Subjects: Specification, Sampling, and Recruitment 31

TABLE 3.1 Designing Selection Criteria for a Clinical Trial of Low Dose
Testosterone to Enhance Libido in Menopause

Design Feature Example
Inclusion criteria Specifying populations relevant to
(be specific) the research question and efficient
for study:
Demographic characteristics White women 50 to 60 years old
Clinical characteristics Good general health
Has a sexual partner
Geographic (administrative) Patients attending clinic at the
characteristics investigator’s hospital
Temporal characteristics Between January 1 and December
31 of specified year
Exclusion criteria Specifying subsets of the
(be parsimonious) population that will not be studied
because of:
A high likelihood of being lost to Alcoholic or plan to move out of
follow-up state
An inability to provide good data Disoriented or have a language
barrier*
Being at high risk of possible History of myocardial infarction or
adverse effects stroke

* Alternatives to exclusion (when these subgroups are important to the research question) would be collecting nonverbal
data or using bilingual staff and questionnaires.

participant (Chapter 10). A good general rule that keeps things simple and preserves
the number of potential study subjects is to have as few exclusion criteria as possible.

Exclusion criteria can be a two-edged sword. Including alcoholics in the testos-
terone trial might provide subjects with low baseline libido, for example, but this
potential advantage could be accompanied by greater problems with adherence to
study treatment and with follow-up; the investigator may decide to exclude alcoholics
if she believes that adherence to study protocol is the more important consideration.
(She will then face the problem of developing specific criteria for classifying whether
an individual is alcoholic.)

Clinical versus Community Populations

If the research question involves patients with a disease, hospitalized or clinic-based
patients are easier to find, but selection factors that determine who comes to the
hospital or clinic may have an important effect. For example, a specialty clinic at a
tertiary care medical center tends to accumulate patients with serious forms of the
disease that give a distorted impression of the commonplace features and prognosis.
For research questions that pertain to diagnosis, treatment, and prognosis of patients
in medical settings, sampling from primary care clinics can be a better choice.
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Another common option in choosing the sample is to select subjects in the
community who represent a healthy population. These samples are often recruited
using mass mailings and advertising, and are not fully representative of a general
population because they must (a) volunteer, (b) fit inclusion and exclusion criteria,
and (c) agree to be included in the study. True “population-based” samples are
difficult and expensive to recruit, but useful for guiding public health and clinical
practice in the community. One of the largest and best examples is the National
Health and Nutrition Examination Survey (NHANES), a probability sample of all US
residents.

The size and diversity of a sample can be increased by collecting data by mail or
telephone, by collaborating with colleagues in other cities, or by using preexisting
data sets such as NHANES and Medicare. Electronically accessible datasets have come
into widespread use in clinical research and may be more representative of national
populations and less time-consuming than other possibilities (Chapter 13).

Bl sAmPLING

Often the number of people who meet the selection criteria is too large, and there is
a need to select a sample (subset) of the population for study.

Convenience Samples

In clinical research the study sample is often made up of people who meet the entry
criteria and are easily accessible to the investigator. This is termed a convenience
sample. It has obvious advantages in cost and logistics, and is a good choice for many
research questions.

A convenience sample can minimize volunteerism and other selection biases by
consecutively selecting every accessible person who meets the entry criteria. Such
a consecutive sample is especially desirable when it amounts to taking the entire
accessible population over a long enough period to include seasonal variations or
other temporal changes that are important to the research question. The validity of
using a sample is the premise that, for the purpose of answering the research question
at hand, it sufficiently represents the target population. With convenience samples this
requires a subjective judgment.

Probability Samples

Sometimes, particularly with descriptive research questions, there is a need for a
scientific basis for generalizing the findings in the study sample to the population.
Probability sampling, the gold standard for ensuring generalizability, uses a random
process to guarantee that each unit of the population has a specified chance of being
included in the sample. It is a scientific approach that provides a rigorous basis for
estimating the fidelity with which phenomena observed in the sample represent those
in the population, and for computing statistical significance and confidence intervals.
There are several versions of this approach.

A simple random sample is drawn by enumerating the units of the population
and selecting a subset at random. The most common use of this approach in clinical
research is when the investigator wishes to select a representative subset from a
population that is larger than she needs. To take a random sample of the cataract
surgery patients at her hospital, for example, the investigator could list all such patients
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on the operating room schedules for the period of study, then use a table of random
numbers to select individuals for study (Appendix 3.1).

A systematic sample resembles a simple random sample in first enumerating the
population but differs in that the sample is selected by a preordained periodic process
(e.g., the Framingham approach of taking every second person from a list of town
residents). Systematic sampling is susceptible to errors caused by natural periodicities
in the population, and it allows the investigator to predict and perhaps manipulate
those who will be in the sample. It offers no logistic advantages over simple random
sampling, and in clinical research it is rarely a better choice.

A stratified random sample involves dividing the population into subgroups
according to characteristics such as sex or race and taking a random sample from
each of these “‘strata.” The subsamples in a stratified sample can be weighted to draw
disproportionately from subgroups that are less common in the population but of
special interest to the investigator. In studying the incidence of toxemia in pregnancy,
for example, the investigator could stratify the population by race and then sample
equal numbers from each stratum. This would yield incidence estimates of comparable
precision from each racial group.

A cluster sample is a random sample of natural groupings (clusters) of individuals
in the population. Cluster sampling is very useful when the population is widely
dispersed and it is impractical to list and sample from all its elements. Consider, for
example, the problem of reviewing the hospital records of patients with lung cancer
selected randomly from a statewide list of discharge diagnoses; patients could be
studied at lower cost by choosing a random sample of the hospitals and taking the
cases from these. Community surveys often use a two-stage cluster sample: a random
sample is drawn from city blocks enumerated on a map and a field team visits the
blocks in the sample, lists all the addresses in each, and selects a subsample for study by
a second random process. A disadvantage of cluster sampling is the fact that naturally
occurring groups are often relatively homogeneous for the variables of interest; each
city block, for example, tends to have people of uniform socioeconomic status. This
means that the effective sample size will be somewhat smaller than the number of
subjects, and that statistical analysis must take the clustering into account.

Summarizing the Sampling Design Options

The use of descriptive statistics and tests of statistical significance to draw inferences
about the population from observations in the study sample is based on the assumption
that a probability sample has been used. But in clinical research a random sample
of the whole target population is almost never possible. Convenience sampling,
preferably with a consecutive design, is a practical approach that is often suitable. The
decision about whether the proposed sampling design is satisfactory requires that the
investigator make a judgment: for the research question at hand, will the conclusions
of the study be similar to those that would result from studying a true probability
sample of the target population?

B RECRUITMENT

The Goals of Recruitment
An important factor to consider in choosing the accessible population and sampling
approach is the feasibility of recruiting study participants. There are two main goals:
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(a) to recruit a sample that adequately represents the target population; and (b) to
recruit enough subjects to meet the sample size requirements.

Achieving a Representative Sample

The approach to recruiting a representative sample begins in the design phase with
choosing populations and sampling methods wisely. It ends with implementation,
guarding against errors in applying the entry criteria to prospective study participants,
and monitoring adherence to these criteria as the study progresses.

A particular concern, especially in observational studies, is the problem of non-
response. The proportion of eligible subjects who agree to enter the study (the
response rate) influences the validity of inferring that the sample represents the
population. People who are difficult to reach and those who refuse to participate
once they are contacted tend to be different from people who do enroll. The level of
nonresponse that will compromise the generalizability of the study depends on the
research question and on the reasons for not responding. A nonresponse rate of 25%,
a good achievement in many settings, can seriously distort the observed prevalence
of a disease when the disease itself is a cause of nonresponse. The degree to which
this bias may influence the conclusions of a study can sometimes be estimated during
the study with an intensive effort to acquire additional information on a sample of
nonrespondents.

The best way to deal with nonresponse bias, however, is to minimize the number
of nonrespondents. The problem of failure to make contact with individuals who
have been chosen for the sample can be reduced by designing a systematic series of
repeated contact attempts and by using various methods (mail, email, telephone, home
visit). Among those contacted, refusal to participate can be minimized by improving
the efficiency and attractiveness of the study (especially the initial encounter), by
choosing a design that avoids invasive and uncomfortable tests, by using brochures
and individual discussion to allay anxiety and discomfort, and by providing incentives
such as reimbursing the costs of transportation and providing the results of tests. If
language barriers are prevalent, they can be circumvented by using bilingual staft and
translated questionnaires.

Recruiting Sufficient Numbers of Subjects

Falling short in the rate of recruitment is one of the commonest problems in clinical
rescarch. In planning a study it is safe to assume that the number of subjects
who meet the entry criteria and agree to enter the study will be fewer, sometimes
by several fold, than the number projected at the outset. The solutions to this
problem are to estimate the magnitude of the recruitment problem empirically with
a pretest, to plan the study with an accessible population that is larger than believed
necessary, and to make contingency plans should the need arise for additional
subjects. While the study is in progress it is important to closely monitor progress
in meeting the recruitment goals and tabulate reasons for falling short of the goals;
understanding the proportions of potential subjects lost to the study at various
stages can lead to strategies for enhancing recruitment by reducing some of these
losses.

Sometimes recruitment involves selecting patients who are already known to the
members of the research team (e.g., in a study of a new treatment in patients attending
the investigator’s clinic). Here the chief concern is to present the opportunity for
participation in the study fairly, making clear the advantages and disadvantages. In
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discussing the desirability of participation, the investigator must recognize the special
ethical dilemmas that arise when her advice as the patient’s physician might conflict
with her interests as an investigator (Chapter 14).

Often recruitment involves contacting populations that are not known to the
members of the research team. It is helpful if at least one member of the research
team has previous experience with the approaches for contacting the prospective
subjects. These include screening in work settings or public places such as shopping
malls; sending out large numbers of mailings to listings such as driver’s license holders;
advertising on the Internet; inviting referrals from clinicians; carrying out retrospective
record reviews; and examining lists of patients seen in clinic and hospital settings.
Some of these approaches, particularly the latter two, involve concerns with privacy
invasion that must be considered by the institutional review board.

It may be helpful to prepare for recruitment by getting the support of important
organizations. For example, the investigator can meet with hospital administrators
to discuss a clinic-based sample, and with the leadership of the medical society and
county health department to plan a community screening operation or mailing to
physicians. Written endorsements can be included as an appendix in applications
for funding. For large studies it may be useful to create a favorable climate in the
community by giving public lectures or by advertising through radio, TV, newspaper,
fliers, websites, or mass mailings.

B sumMmARY

1. All clinical research is based, philosophically and practically, on the use of a sample
to represent a population.

2. The advantage of sampling is efficiency; it allows the investigator to draw inferences
about a large population by examining a subset at relatively small cost in time and
effort. The disadvantage is the source of error it introduces. If the sample is not
sufficiently representative for the research question at hand, the findings may not
generalize well to the population.

3. In designing a study the first step is to conceptualize the target population with
a specific set of inclusion criteria that establish the demographic and clinical
characteristics of subjects well suited to the research question, an appropriate
accessible population that is geographically and temporally convenient, and a
parsimonious set of exclusion criteria that eliminate subjects who are unethical
or inappropriate to study.

4. The next step is to design an approach to sampling the population. A convenience
sample is often a good choice in clinical research, especially if it is drawn
consecutively. Simple random sampling can be used to reduce the size of
a convenience sample if necessary, and other probability sampling strategies
(stratified and cluster) are useful in certain situations.

5. Finally, the investigator must design and implement strategies for recruiting a
sample of subjects that is large enough to meet the study needs, and that minimizes
bias due to nonresponse and loss to follow-up.
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B APPENDIX 3.1

Selecting a Random Sample from a Table of Random

Numbers
10480 15011 01536 81647 91646 02011
22368 46573 25595 85393 30995 89198
24130 48390 22527 97265 78393 64809
42167 93093 06243 61680 07856 16376
37570 33997 81837 16656 06121 91782
77921 06907 11008 42751 27756 53498
99562 72905 56420 69994 98872 31016
96301 91977 05463 07972 18876 20922
89572 14342 63661 10281 17453 18103
85475 36857 53342 53998 53060 59533
28918 79578 88231 33276 70997 79936
63553 40961 48235 03427 49626 69445

09429 93969 52636 92737 88974 33488
10365 61129 87529 85689 48237 52267

07119 97336 71048 08178 77233 13916
51085 12765 51821 51259 77452 16308
02368 21382 52404 60268 89368 19885
01011 54092 33362 94904 31273 04146

52162 53916 46369 58569 23216 14513
07056 97628 33787 09998 42698 06691
48663 91245 85828 14346 09172 30163

54164 58492 22421 74103 47070 25306
32639 32363 05597 24200 38005 13363
29334 27001 87637 87308 58731 00256
02488 33062 28834 07351 19731 92420
81525 72295 04839 96423 24878 82651
29676 20591 68086 26432 46901 20949

00742 57392 39064 66432 84673 40027
05366 04213 25669 26422 44407 44048
91921 26418 64117 94305 26766 25940

To select a 10% random sample, begin by enumerating (listing and numbering)
every element of the population to be sampled. Then decide on a rule for obtaining
an appropriate series of numbers; for example, if your list has 741 elements (which
you have numbered 1 to 741), your rule might be to go vertically down each column
using the first three digits of each number (beginning at the upper left, the numbers
are 104, 223, etc.) and to select the first 74 different numbers that fall in the range
of 1 to 741. Finally, pick a starting point by an arbitrary process. (Closing your eyes
and putting your pencil on some number in the table is one way to do it.)

B REFERENCE

1. Dawber TR. The Framingham Study. Cambridge, MA: Harvard University Press, 1980:
14-29.
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and Accuracy
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Measurements describe phenomena in terms that can be analyzed statistically. The
validity of a study depends on how well the variables designed for the study represent
the phenomena of interest (Fig. 4.1). How well does a prostate-specific antigen (PSA)
level signal cancer in the prostate that will soon metastasize, for example, or an
insomnia questionnaire detect amount and quality of sleep?

This chapter begins by considering how the choice of measurement scale influ-
ences the information content of the measurement. We then turn to the central goal of
minimizing measurement error: how to design measurements that are relatively pre-
cise (free of random error) and accurate (free of systematic error), thereby enhancing
the validity of drawing inferences from the study to the universe. We conclude with
some considerations for clinical research, noting especially the advantages of storing
specimens for later measurements.

Infer Infer
TRUTH IN THE TRUTH IN THE FINDINGS IN
UNIVERSE STUDY THE STUDY
Research Study plan Actual
guestion study

Target Intended Actual
population sample subjects
Design Implement

Phenomena Intended Actual
of interest variables measurements

EXTERNAL INTERNAL
VALIDITY VALIDITY

FIGURE 4.1. Designing measurements that represent the phenomena of interest.
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. MEASUREMENT SCALES

Table 4.1 presents a simplified classification of measurement scales and the information
that results. The classification is important because some types of variables are more
informative than others, adding power to the study and reducing sample size
requirements.

Continuous Variables

Continuous variables are quantified on an infinite scale. The number of possible
values of body weight, for example, is limited only by the sensitivity of the machine
that is used to measure it. Continuous variables are rich in information.

A scale whose units are limited to integers (such as the number of cigarettes
smoked per day) is termed discrete. Discrete variables that have a considerable number
of possible values can resemble continuous variables in statistical analyses and be
equivalent for the purpose of designing measurements.

Categorical Variables
Phenomena that are not suitable for quantification can often be measured by classifying
them in categories. Categorical variables with two possible values (dead or alive)
are termed dichotomous. Categorical variables with more than two categories
(polychotomous) can be further characterized according to the type of information
they contain.

Nominal variables have categories that are not ordered; zype O blood, for example,
is neither more nor less than zype B; nominal variables tend to have a qualitative and
absolute character that makes them straightforward to measure. Ordinal variables

TABLE 4.1 Measurement Scales

Type of Characteristics Descriptive Information
Measurement of Variable Example Statistics Content

Categorical*

Nominal Unordered Sex; blood type;  Counts, Lower
categories vital status proportions

Ordinal Ordered Degree of pain In addition to the Intermediate
categories with above: medians

intervals that are
not quantifiable

Continuous Ranked spectrum  Weight; In addition to the Higher
or ordered with quantifiable number of above: means,
discrete’ intervals cigarettes/day standard

deviations

* Categorical measurements that contain only two classes (e.g., sex) are termed dichotomous.

T Continuous variables have an infinite number of values (e.g., weight), whereas discrete variables are limited to
integers (e.g., number of cigarettes/day). Discrete variables that are ordered (e.g., arranged in sequence from few
to many) and that have a large number of possible values resemble continuous variables for practical purposes of
measurement and analysis.
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have categories that do have an order, such as severe, moderate, and mild pain. The
additional information is an advantage over nominal variables, but because ordinal
variables do not specify a numerical or uniform difference between one category and
the next, the information content is less than that of discrete variables.

Choosing a Measurement Scale

A good general rule is to prefer continuous variables, because the additional in-
formation they contain improves statistical efficiency. In a study comparing the
antihypertensive effects of several treatments, for example, measuring blood pressure in
millimeters of mevcury allows the investigator to observe the magnitude of the change
in every subject, whereas measuring it as hypertensive versus normotensive would limit
the assessment. The continuous variable contains more information, and the result is
a study with more power and/or a smaller sample size (Chapter 6).

The rule has some exceptions. If the research question involves the determinants
of low birth weight, for example, the investigator would be more concerned with
babies whose weight is so low that their health is compromised than with differences
observed over the full spectrum of birth weights. In this case she is better off with a
large enough sample to be able to analyze the results with a dichotomous outcome like
the proportion of babies whose weight is below 2,500 g. Even when the categorical
data are more meaningful, however, it is still best to collect the data as a continuous
variable. This leaves the analytic options open: to change the cutoft point that defines
low birth weight (she may later decide that 2,350 g is a better value for identifying
babies at increased risk of developmental abnormalities), or to fall back on the more
powerful analysis of the predictors of the full spectrum of weight.

Similarly, when there is the option of designing the number of response categories
in an ordinal scale, as in a question about food preferences, it is often useful to provide
a half-dozen categories that range from strongly dislike to extremely fond of. The results
can later be collapsed into a dichotomy (dislike and like), but not vice versa.

Many characteristics, particularly symptoms (pain) or aspects of lifestyle, are
difficult to describe with categories or numbers. But these phenomena often have
important roles in diagnostic and treatment decisions, and the attempt to measure
them is an essential part of the scientific approach to description and analysis. This
is illustrated by the SF-36, a standardized questionnaire for assessing quality of
life (1). The process of classification and measurement, if done well, can increase the
objectivity of our knowledge, reduce bias, and provide a means of communication.

B PRECISION

The precision of a variable is the degree to which it is reproducible, with nearly
the same value each time it is measured. A beam scale can measure body weight
with great precision, whereas an interview to measure quality of life is more likely to
produce values that vary from one observer to the next. Precision has a very important
influence on the power of a study. The more precise a measurement, the greater the
statistical power at a given sample size to estimate mean values and to test hypotheses
(Chapter 6).

Precision (also called reproducibility, reliability, and consistency) is a function
of random error (chance variability); the greater the error, the less precise the
measurement. There are three main sources of random error in making measurements.
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o Observer variability refers to variability in measurement that is due to the observer,
and includes such things as choice of words in an interview and skill in using a
mechanical instrument.

o Instrument varviability refers to variability in the measurement due to changing
environmental factors such as temperature, aging mechanical components, different
reagent lots, and so on.

o Subject variability refers to intrinsic biologic variability in the study subjects due
to such things as fluctuations in mood and time since last medication.

Assessing Precision

Precision is assessed as the reproducibility of repeated measurements, either com-
paring measurements made by the same person (within-observer reproducibility)
or different people (between-observer reproducibility). Similarly, it can be assessed
within or between instruments.

The reproducibility of continuous variables is often expressed as the within-
subject standard deviation. However, if a “Bland-Altman” plot (2) of the within-
subject standard deviation versus that subject’s mean demonstrates a linear association,
then the preferred approach is the coefficient of variation (within-subject standard
deviation divided by the mean). Correlation coeflicients should be avoided (2). For
categorical variables, percent agreement and the kappa statistic (3) are often used
(Chapter 12).

Strategies for Enhancing Precision
There are five approaches to minimizing random error and increasing the precision of
measurements (Table 4.2):

1. Standardizing the measuvement methods. All study protocols should include op-
erational definitions (specific instructions for making the measurements). This
includes written directions on how to prepare the environment and the subject,
how to carry out and record the interview, how to calibrate the instrument, and so
forth (Appendix 4.1). This set of materials, part of the operations manual, is essen-
tial for large and complex studies and recommended for smaller ones. Even when
there is only a single observer, specific written guidelines for making each mea-
surement will help her performance to be uniform over the duration of the study
and serve as the basis for describing the methods when the results are published.

2. Training and certifying the observers. Training will improve the consistency of
measurement techniques, especially when several observers are involved. It is often
desirable to design a formal test of the mastery of the techniques specified in the
operations manual and to certify that observers have achieved the prescribed level
of performance (Chapter 17).

3. Refining the instruments. Mechanical and electronic instruments can be engi-
neered to reduce variability. Similarly, questionnaires and interviews can be written
to increase clarity and avoid potential ambiguities (Chapter 15).

4. Automating the instruments. Variations in the way human observers make mea-
surements can be eliminated with automatic mechanical devices and self-response
questionnaires.

5. Repetition. The influence of random error from any source is reduced by repeating
the measurement, and using the mean of the two or more readings. Precision will
be substantially increased by this strategy, the primary limitation being the added
cost and practical difficulties of repeating the measurements.
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Strategies for Reducing Random Error in Order to Increase

Precision, with lllustrations from a Study of Antihypertensive
Treatment

Strategy to
Reduce Random Error

Source of
Random Error

Example of
Random Error

Example of Strategy
to Prevent the Error

1. Standardizing the
measurement
methods in an
operations manual

2. Training and
certifying the
observer

3. Refining the
instrument

4. Automating the

instrument

5. Repeating the
measurement

Observer

Subject

Observer

Instrument and
observer

Observer

Subject

Observer, subject,
and instrument

Variation in blood
pressure (BP)
measurement due to
variable rate of cuff
deflation (sometimes
faster than 2 mm
Hg/second and
sometimes slower)

Variation in BP due to
variable length of quiet
sitting

Variation in BP due to
variable observer
technique

Variation in BP due to
digit preference (e.g., the
tendency to round
number to a multiple of 5)

Variation in BP due to
variable observer
technique

Variation in BP due to
emotional reaction to
observer by subject

All measurements and all
sources of variation

Specify that the cuff be
deflated at 2 mm
Hg/second

Specify that subject sit in
a quiet room for 5
minutes before BP
measurement

Train observer in
standard techniques

Design instrument that
conceals BP reading until
after it has been recorded

Use automatic BP
measuring device

Use automatic BP
measuring device

Use mean of two or more
BP measurements

For each measurement in the study, the investigator must decide how vigorously
to pursue each of these strategies. This decision can be based on the importance of the
variable, the magnitude of the potential problem with precision, and the feasibility and
cost of the strategy. In general, the first two strategies (standardizing and training)
should always be used, and the fifth (repetition) is an option that is guaranteed to
improve precision whenever it is feasible and affordable.

M Accuracy

The accuracy of a variable is the degree to which it actually represents what it
is intended to represent. This has an important influence on the validity of the
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TABLE 4.3  The Precision and Accuracy of Measurements
Precision Accuracy
Definition The degree to which a variable The degree to which a variable

Best way to assess

Value to study

Threatened by

has nearly the same value when
measured several times

Comparison among repeated
measures

Increase power to detect effects

Random error (chance)
contributed by

The observer

The subject

The instrument

actually represents what it is
supposed to represent

Comparison with a reference
standard

Increase validity of conclusions

Systematic error (bias)
contributed by

The observer

The subject

The instrument

Good precision
Poor accuracy

study—the degree to which the observed findings lead to the correct inferences about
phenomena taking place in the study sample and in the universe.

Accuracy is different from precision in the ways shown in Table 4.3, and the
two are not necessarily linked. If serum cholesterol were measured repeatedly using
standards that had inadvertently been diluted twofold, for example, the result would
be inaccurate but could still be precise (consistently oft by a factor of 2). This concept
is further illustrated in Figure. 4.2. Accuracy and precision do often go hand in hand
however, in the sense that many of the strategies for increasing precision will also
improve accuracy.

Accuracy is a function of systematic error (bias); the greater the error, the less
accurate the variable. The three main classes of measurement error noted in the earlier
section on precision each have counterparts here.

o Observer bias is a distortion, conscious or unconscious, in the perception or report-
ing of the measurement by the observer. It may represent systematic errors in the way
an instrument is operated, such as a tendency to round down blood pressure mea-
surements, or in the way an interview is carried out as in the use of leading questions.

o Instrument bias can result from faulty function of a mechanical instrument. A
scale that has not been calibrated recently may have drifted downward, producing
consistently low body weight readings.

‘ ‘ e \

Poor precision
Poor accuracy

Poor precision
Good accuracy

Good precision
Good accuracy

FIGURE 4.2. The difference between precision and accuracy.
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o Subject bias is a distortion of the measurement by the study subject, for example,
in reporting an event (respondent or recall bias). Patients with breast cancer who
believe that alcohol is a cause of their cancer, for example, may exaggerate the
amount they used to drink.

The accuracy of a measurement is best assessed by comparing it, when possible,
to a “gold standard”—a reference technique that is considered accurate. For
measurements on a continuous scale, the mean difference between the measurement
under investigation and the gold standard across study subjects can be determined.
For measurements on a dichotomous scale, accuracy in comparison to a gold standard
can be described in terms of sensitivity and specificity (Chapter 12). For measurements
on categorical scales with more than two response options, kappa can be used.

Validity

The degree to which a variable represents what is intended is difficult to assess when
measuring subjective and abstract phenomena, such as pain or quality of life, for
which there is no concrete gold standard. At issue is a particular type of accuracy
termed validity—how well the measurement represents the phenomenon of interest.
There are three ways to view and assess validity:

o Content validity examines how well the assessment represents all aspects of the
phenomena under study—for example, including questions on social, physical, emo-
tional,and intellectual functioning to assess quality of life—and often it uses subjective
judgments (face validity) about whether the measurements seem reasonable.

o Construct validity refers to how well a measurement conforms to theoretical
constructs; for example, if an attribute is theoretically believed to differ between
two groups a measure of this attribute that has construct validity would show this
difference.

o Criterion-velated validity is the degree to which a new measurement correlates with
well-accepted existing measures. A powerful version of this approach is predictive
validity, the ability of the measurement to predict an outcome: the validity of a
measure of depression would be strengthened if it was found to predict suicide.

The general approach to validating an abstract measure is to begin by searching
the literature and consulting with experts in an effort to find a suitable instrument
(questionnaire) that has already been validated. Using such an instrument has the
advantage of making the results of the new study comparable to earlier work in
the area, and may simplify and strengthen the process of applying for grants and
publishing the results. Its disadvantage, however, is that an instrument taken off the
shelf may be outmoded or not appropriate for the research question.

If existing instruments are not suitable for the needs of the study, then the
investigator may decide to develop a new measurement approach and validate it
herself. This can be an interesting challenge that leads to a worthwhile contribution to
the literature, but it is fair to say that the process is often less scientific and conclusive
than the word “‘validation” connotes (Chapter 15).

Strategies for Enhancing Accuracy
The major approaches to increasing accuracy include the first four of the strategies
listed earlier for precision, and three additional ones (Table 4.4):

1. Standardizing the measurement methods
2. Training and certifying the observers
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TABLE 4.4  Strategies for Reducing Systematic Error in Order to Increase
Accuracy, with lllustrations from a Study of Antihypertensive
Treatment
Source of
Strategy to Reduce Systematic Example of Example of Strategy
Systematic Error Error Systematic Error to Prevent the Error
1. Standardizing the Observer Consistently high diastolic blood  Specify the operational
measurement pressure (BP) readings due to definition of diastolic BP
methods in an using the point at which sounds  as the point at which
operations manual become muffled sounds cease to be heard
Subject Consistently high readings due Specify that subject sit in
to measuring BP right after quiet room for 5 minutes
walking upstairs to clinic before measurement
2. Training and Observer Consistently high BP readings Trainer checks accuracy
certifying the due to failure to follow of observer's reading
observer procedures specified in with a double-headed
operations manual stethoscope
3. Refining the Instrument Consistently high BP readings Use extra-wide BP cuff in
instrument with standard cuff in subjects obese patients
with very large arms
4. Automating the Observer Conscious or unconscious Use automatic BP
instrument tendency for observer to read measuring device
BP lower in study group
randomized to active drug
Subject BP increase due to proximity of ~ Use automatic BP
attractive technician measuring device
5. Making Subject Tendency of subject to Measure study drug level
unobtrusive overestimate compliance with in urine
measurements study drug
6. Calibrating the Instrument Consistently high BP readings Calibrate each month
instrument due to manometer being out of
adjustment
7. Blinding Observer Conscious or unconscious Use double-blind
tendency for observer to read placebo to conceal study
BP lower in active treatment group assignment
group
Subject Tendency of subject to Use double-blind

overreport side effects if she
knew she was on active drug

placebo to conceal study
group assignment
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. Refining the instruments

. Automating the instruments

. Making Unobtrusive Measurements. It is sometimes possible to design mea-

surements that the subjects are not aware of, thereby eliminating the possibility
that they will consciously bias the variable. A study of advice on healthy eating
patterns for schoolchildren, for example, could measure the number of candy bar
wrappers in the trash.

6. Calibrating the Instrument. The accuracy of many instruments, especially those
that are mechanical or electrical, can be increased by periodic calibration using a
gold standard.

7. Blinding. This classic strategy does not ensure the overall accuracy of the mea-

surements, but it can eliminate differential bias that affects one study group more

than another. In a double-blind clinical trial the subjects and observers do not
know whether active medicine or placebo has been assigned, and any inaccuracy
in measuring the outcome will be the same in the two groups.

[S2NNT NN

The decision on how vigorously to pursue each of these seven strategies for each
measurement rests, as noted earlier for precision, on the judgment of the investigator.
The considerations are the magnitude of the potential impact that the anticipated
degree of inaccuracy will have on the conclusions of the study and the feasibility and
cost of the strategy. The first two strategies (standardizing and training) should always
be used, calibration is needed for any instrument that has the potential to change over
time, and blinding is essential whenever feasible.

. OTHER FEATURES OF MEASUREMENT APPROACHES

Measurements should be sensitive enough to detect differences in a characteristic
that are important to the investigator. Just how much sensitivity is needed depends
on the research question. For example, a study of whether a new medication helps
people to quit smoking could use an outcome measure that is relatively insensitive
to the number of cigarettes smoked each day. On the other hand, if the question is
the effect of reducing the nicotine content of cigarettes on the number of cigarettes
smoked, the method should be sensitive to differences in daily habits of just a few
cigarettes.

An ideal measurement is specific, representing only the characteristic of in-
terest. The carbon monoxide level in expired air is a measure of smoking habits
that is only moderately specific because it can also be affected by other exposures
such as automobile exhaust. The overall specificity of assessing smoking habits can
be increased by supplementing the carbon monoxide data with other measure-
ments (such as self-report and serum cotinine level) that are not affected by air
pollution.

Measurements should be appropriate to the objectives of the study. A study of
stress as an antecedent to myocardial infarction, for example, would need to consider
which kind of stress (psychological or physical, acute or chronic) was of interest before
setting out the operational definitions for measuring it.

Measurements should provide an adequate distribution of responses in the
study population. A measure of functional status is most useful if it produces values
that range from high in some subjects to low in others. One of the main functions of
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pretesting is to ensure that the actual responses do not all cluster around one end of
the possible range of response (Chapter 17).

Finally, there is the issue of objectivity. This is achieved by reducing the involve-
ment of the observer and by increasing the structure of the instrument. The danger in
these strategies, however, is the consequent tunnel vision that limits the scope of the
observations and the ability to discover unanticipated phenomena. The best design is
often a compromise, including an opportunity for acquiring subjective and qualitative
data in addition to the main objective and quantitative measurements.

. MEASUREMENTS ON STORED MATERIALS

Clinical research involves measurements on people that range across a broad array of
domains (Table 4.5). Some of these measurements can only be made during a contact
with the study subject, but many can be carried out later on biological specimens
banked for chemical or genetic analysis, or on images from radiographic and other
procedures filed electronically.

One advantage of such storage is the opportunity to reduce the cost of the
study by making measurements only on individuals who turn out during follow-up
to develop the condition of interest. A terrific approach to doing this is the nested
case—control design (Chapter 7); paired blinded measurements can be made in a
single analytic batch, eliminating the batch-to-batch component of random error. A
second advantage is that scientific advances may lead to new ideas and measurement
techniques that can be employed years after the study is completed.

The growing interest in translational research (Chapter 2) takes advantage of
new measurements that have greatly expanded clinical research in the areas of genetic
and molecular epidemiology (4,5). Measurements on specimens that contain DNA
(e.g., saliva, blood) can provide information on genotypes that contribute to the

TABLE 4.5 Common Types of Measurements that Can Be Made on Stored

Materials
Type of Bank for
Measurement Examples Later Measurement
Medical history Diagnoses, medications, operations, Clinical charts
symptoms, physical findings
Psychosocial factors Depression, family history Voice recordings,
videotapes
Anthropometric Height, weight, body composition Photographs
Biochemical measures Serum cholesterol, plasma fibrinogen Serum, plasma, urine,
pathology specimens
Genetic/molecular tests Single neucleotide polymorphisms, DNA, immortal cell line
human leukocyte antigen type
Imaging Bone density, coronary calcium X-rays, CT scans, MRI
Electromechanical Arrhythmia, congenital heart disease Electrocardiogram,

echocardiogram
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occurrence of disease or modify a patient’s response to treatment. Measurements
on serum can be used to study molecular causes or consequences of disease; for
example, proteomic patterns may provide useful information for diagnosing certain
diseases (6). It is important to consult with experts regarding the proper collection
tubes and storage conditions in order to preserve the quality of the specimens and
make them available for the widest spectrum of subsequent use.

B N cLosING

Table 4.5 reviews the many kinds of measurements that can be included in a study.
Some of these are the topic of later chapters in this book. In Chapter 9 we will address
the issue of choosing measurements that will facilitate inferences about confounding
and causality. And in Chapter 15 we will address the topic of questionnaires and other
instruments for measuring information supplied by the study subject.

In designing measurements it is important to keep in mind the value of efficiency
and parsimony. The full set of measurements should collect useful data at an
affordable cost in time and money. Efficiency can be improved by increasing the
quality of each item and by reducing the number of items measured. Collecting more
data than are needed is a common error that can tire subjects, overwhelm the research
team, and clutter data management and analysis. The result may be a more expensive
study that paradoxically is less successful in answering the main research questions.

B sumMmARY

1. Variables are cither continuous (quantified on an infinite scale), discrete (quanti-
fied on a finite scale of integers), or categorical (classified in categories). Categorical
variables are further classified as nominal (unordered) or ordinal (ordered); those
that have only two categories are termed dichotomous.

2. Clinical investigators prefer variables that contain more information and
thereby provide greater power and/or smaller sample sizes: continuous variables
> discrete variables > ordered categorical variables > nominal and dichotomous
variables.

3. The precision of a measurement (i.c., the reproducibility of replicate measures)
is another major determinant of power and sample size. Precision is reduced by
random error (chance) from three sources of variability: the observer, the subject,
and the instrument.

4. Strategies for increasing precision that should be part of every study are to
operationally define and standardize methods in an operations manual, and
to train and certify observers. Other strategies that are often useful are refining
the instruments, automating the instruments, and using the mean of repeated
measurements.

5. The accuracy of a measurement (i.e., the degree to which it actually measures
the characteristic it is supposed to measure) is a major key to inferring correct
conclusions. Validity is a form of accuracy commonly used for abstract variables.
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Accuracy is reduced by systematic error (i.e., bias) from the same three sources:
the observer, the subject, and the instrument.

6. The strategies for increasing accuracy include all those listed for precision with
the exception of repetition. In addition, accuracy is enhanced by unobtrusive
measures, by calibration, and (in comparisons between groups) by blinding.

7. Individual measurements should be sensitive, specific, appropriate, and objec-
tive, and they should produce a range of values. In the aggregate, they should be
broad but parsimonious, serving the research question at moderate cost in time
and money.

8. Investigators should consider storing banks of materials for later measure-
ments that can take advantage of new technologies and the efficiency of nested
case—control designs.

B APPENDIX 4.1

Operations Manual: Operational Definition of a
Measurement of Grip Strength

The operations manual describes the method for conducting and recording the results
of all the measurements made in the study. This example, from the operations manual
of the Study of Osteoporotic Fractures, describes the use of a dynamometer to
measure grip strength. To standardize instructions from examiner to examiner and
from subject to subject, the protocol includes a script of instructions to be read to the
participant verbatim.

Protocol for Measuring Grip Strength with the Dynamometer

Grip strength will be measured in both hands. The handle should be adjusted so that
the participant holds the dynamometer comfortably. Place the dynamometer in the
right hand with the dial facing the palm. The participant’s arm should be flexed 90°
at the elbow with the forearm parallel to the floor.

1. Demonstrate the test to the subject. While demonstrating, use the following
description: “This device measures your arm and upper body strength. We will
measure your grip strength in both arms. I will demonstrate how it is done. Bend
your elbow at a 90° angle, with your forearm parallel to the floor. Don’t let your
arm touch the side of your body. Lower the device and squeeze as hard as you
can while I count to three. Once your arm is fully extended, you can loosen your
grip.”’

2. Allow one practice trial for each arm, starting with the right if she is right handed.
On the second trial, record the kilograms of force from the dial to the nearest
0.5 kg.

3. Reset the dial. Repeat the procedure for the other arm.

The arm should not contact the body. The gripping action should be a slow,
sustained squeeze rather than an explosive jerk.
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E Getting Ready to Estimate
Sample Size: Hypotheses

and Underlying Principles
7
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After an investigator has decided whom and what she is going to study and the design
to be used, she must decide how many subjects to sample. Even the most rigorously
executed study may fail to answer its research question if the sample size is too
small. On the other hand, a study with too large a sample will be more difficult and
costly than necessary. The goal of sample size planning is to estimate an appropriate
number of subjects for a given study design.

Although a useful guide, sample size calculations give a deceptive impression of
statistical objectivity. They are only as accurate as the data and estimates on which
they are based, which are often just informed guesses. Sample size planning is a
mathematical way of making a ballpark estimate. It often reveals that the research
design is not feasible or that different predictor or outcome variables are needed.
Therefore, sample size should be estimated early in the design phase of a study, when
major changes are still possible.

Before setting out the specific approaches to calculating sample size for several
common research designs in Chapter 6, we will spend some time considering the un-
derlying principles. Readers who find some of these principles confusing will enjoy dis-
covering that sample size planning does not require their total mastery. However, just
as a recipe makes more sense if the cook is somewhat familiar with the ingredients, sam-
ple size calculations are easier if the investigator is acquainted with the basic concepts.

B HYPOTHESES

The research hypothesis is a specific version of the research question that summa-
rizes the main elements of the study—the sample, and the predictor and outcome
variables—in a form that establishes the basis for tests of statistical significance.
Hypotheses are not needed in descriptive studies, which describe how characteristics
are distributed in a population, such as a study of the prevalence of a particular
genotype among patients with hip fractures. (That does not mean, however, that
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you won’t need to do a sample size estimate for a descriptive study, just that the
methods for doing so, described in Chapter 6, are different). Hypotheses are needed
for studies that will use tests of statistical significance to compare findings among
groups, such as a study of whether that particular genotype is more common among
patients with hip fractures than among controls. Because most observational studies
and all experiments address research questions that involve making comparisons, most
studies need to specify at least one hypothesis. If any of the following terms appear
in the research question, then the study is not simply descriptive, and a hypothesis
should be formulated: greater than, less than, causes, leads to, compared with, more
likely than, associated with, related to, similar to, correlated with.

Characteristics of a Good Hypothesis
A good hypothesis must be based on a good research question. It should also be
simple, specific, and stated in advance.

Simple versus Complex. A simple hypothesis contains one predictor and one out-
come variable:

A sedentary lifestyle is associated with an increased visk of proteinuvia in patients
with dinbetes

A complex hypothesis contains more than one predictor variable:

A sedentary lifestyle and alcobol consumption ave associated with an increased risk
of proteinuria in patients with dinbetes

Or more than one outcome variable:

Alcohol consumption is associated with an increased visk of proteinurvia and of
neuropathy in patients with diabetes

Complex hypotheses like these are not readily tested with a single statistical test and
are more easily approached as two or more simple hypotheses. Sometimes, however,
a combined predictor or outcome variable can be used:

Alcohol consumption is associated with an increased visk of developing a microvas-
cular complication of diabetes (i.e., proteinuria, neuwvopathy, or vetinopathy) in
patients with dinbetes.

In this example the investigator has decided that what matters is whether a participant
has a complication, not what type of complication occurs.

Specific versus Vague. A specific hypothesis leaves no ambiguity about the subjects
and variables or about how the test of statistical significance will be applied. It uses
concise operational definitions that summarize the nature and source of the subjects
and how variables will be measured.

Use of tricyclic antidepressant medications, assessed with pharmacy vecovds, is
more common in patients hospitalized with an admission diagnosis of myocardinl
infarction at Longview Hospital in the past year than in controls hospitalized for
pneumonia.
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This is a long sentence, but it communicates the nature of the study in a clear way
that minimizes any opportunity for testing something a little different once the study
findings have been examined. It would be incorrect to substitute, during the analysis
phase of the study, a different measurement of the predictor, such as the self-reported
use of pills for depression, without considering the issue of multiple hypothesis testing
(a topic we discuss at the end of the chapter). Usually, to keep the research hypothesis
concise, some of these details are made explicit in the study plan rather than being
stated in the research hypothesis. But they should always be clear in the investigator’s
conception of the study, and spelled out in the protocol.

It is often obvious from the research hypothesis whether the predictor variable
and the outcome variable are dichotomous, continuous, or categorical. If it is not
clear, then the type of variables can be specified:

Alcohol consumption (in mg/day) is associated with an increased visk of proteinuvia
(> 300 myg/day) in patients with diabetes.

If the research hypothesis begins to get too cumbersome, the definitions can be left
out, as long as they are clarified elsewhere in the protocol.

In-Advance versus After-the-Fact. The hypothesis should be stated in writing at
the outset of the study. Most important, this will keep the research effort focused
on the primary objective. A single prestated hypothesis also creates a stronger basis
for interpreting the study results than several hypotheses that emerge as a result of
inspecting the data. Hypotheses that are formulated after examination of the data are
a form of multiple hypothesis testing that can lead to overinterpreting the importance
of the findings.

Types of Hypotheses
For the purpose of testing statistical significance, the research hypothesis must be
restated in forms that categorize the expected difference between the study groups.

o Null and alternative hypotheses. The null hypothesis states that there is no
association between the predictor and outcome variables in the population (zhere
is no difference in the frequency of dvinking well water between subjects who develop
peptic ulcer disease and those who do not). The null hypothesis is the formal basis
for testing statistical significance. Assuming that there really is no association in
the population, statistical tests help to estimate the probability that an association
observed in a study is due to chance.

o The proposition that there is an association (the frequency of dvinking well water is
diffevent in subjects who develop peptic ulcer disease than in those who do not) is called
the alternative hypothesis. The alternative hypothesis cannot be tested directly; it
is accepted by default if the test of statistical significance rejects the null hypothesis
(see later).

o One- and two-sided alternative hypotheses. A one-sided hypothesis specifies the
direction of the association between the predictor and outcome variables. The
hypothesis that drinking well water is more common among subjects who develop
peptic ulcers is a one-sided hypothesis. A two-sided hypothesis states only that an
association exists; it does not specify the direction. The hypothesis that subjects
who develop peptic ulcer disease have a different frequency of drinking well water
than those who do not is a two-sided hypothesis.
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One-sided hypotheses may be appropriate in selected circumstances, such as
when only one direction for an association is clinically important or biologically
meaningful. An example is the one-sided hypothesis that a new drug for hypertension
is more likely to cause rashes than a placebo; the possibility that the drug causes
fewer rashes than the placebo is not usually worth testing (it might be if the drug had
anti-inflammatory properties!). A one-sided hypothesis may also be appropriate when
there is very strong evidence from prior studies that an association is unlikely to occur
in one of the two directions, such as a study that tested whether cigarette smoking
affects the risk of brain cancer. Because smoking has been associated with an increased
risk of many different types of cancers, a one-sided alternative hypothesis (e.g., that
smoking increases the visk of brain cancer) might suffice. However, investigators should
be aware that many well-supported hypotheses (e.g., that B-carotene therapy will
reduce the risk of lung cancer, or that treatment with drugs that veduce the number
of ventricular ectopic beats will reduce sudden death amonyg patients with ventricular
arvhythmins) turn out to be wrong when tested in randomized trials. Indeed, in these
two examples, the results of well-done trials revealed a statistically significant effect
that was opposite in direction from the one supported by previous data (1-3). Overall,
we believe that nearly all alternative hypotheses deserve to be two-sided.

It is important to keep in mind the difference between a research hypothesis,
which is often one-sided, and the alternative hypothesis that is used when planning
sample size, which is almost always two-sided. For example, suppose the research
hypothesis is that recurrent use of antibiotics during childhood is associated with an
increased risk of inflammatory bowel disease. That hypothesis specifies the direction
of the anticipated effect, so it is one-sided. Why use a two-sided alternative hypothesis
when planning the sample size? The answer is that most of the time, both sides
of the alternative hypothesis (i.e., greater risk or lesser risk) are interesting, and
the investigators would want to publish the results no matter which direction was
observed. Statistical rigor requires the investigator choose between one- and two-sided
hypotheses before analyzing the data; switching to a one-sided alternative hypothesis
to reduce the P value (see below) is not correct. In addition (and this is probably
the real reason that two-sided alternative hypotheses are much more common), most
grant and manuscript reviewers expect two-sided hypotheses, and are critical of a
one-sided approach.

. UNDERLYING STATISTICAL PRINCIPLES

A hypothesis, such as that 15 minutes or more of exercise per day is associated with a
lower mean fasting blood glucose level in middle-aged women with diabetes, is either true
or false in the real world. Because an investigator cannot study all middle-aged women
with diabetes, she must test the hypothesis in a sample of that target population. As
noted in Figure 1.6, there will always be a need to draw inferences about phenomena
in the population from events observed in the sample.

In some ways, the investigator’s problem is similar to that faced by a jury judging
a defendant (Table 5.1). The absolute truth about whether the defendant committed
the crime cannot usually be determined. Instead, the jury begins by presuming
innocence: the defendant did not commit the crime. The jury must decide whether
there is sufficient evidence to reject the presumed innocence of the defendant; the
standard is known as beyond a reasonable doubt. A jury can err, however, by
convicting an innocent defendant or by failing to convict a guilty one.
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TABLE 5.1 The Analogy between Jury Decisions and Statistical Tests

Jury Decision Statistical Test

Innocence: The defendant did not Null hypothesis: There is no association between dietary

counterfeit money. carotene and the incidence of colon cancer in the
population.

Guilt: The defendant did counterfeit Alternative hypothesis: There is an association between

money. dietary carotene and the incidence of colon cancer.

Standard for rejecting innocence: Standard for rejecting null hypothesis: Level of

Beyond a reasonable doubt. statistical significance (o).

Correct judgment: Convict a Correct inference: Conclude that there is an association

counterfeiter. between dietary carotene and colon cancer when one
does exist in the population.

Correct judgment: Acquit an Correct inference: Conclude that there is no association

innocent person. between carotene and colon cancer when one does not
exist.

Incorrect judgment: Convict an Incorrect inference (type | error): Conclude that there is

innocent person. an association between dietary carotene and colon
cancer when there actually is none.

Incorrect judgment: Acquit a Incorrect inference (type Il error): Conclude that there is

counterfeiter. no association between dietary carotene and colon

cancer when there actually is one.

In similar fashion, the investigator starts by presuming the null hypothesis of no
association between the predictor and outcome variables in the population. Based on
the data collected in her sample, the investigator uses statistical tests to determine
whether there is sufficient evidence to reject the null hypothesis in favor of the
alternative hypothesis that there is an association in the population. The standard for
these tests is known as the level of statistical significance.

Type I and Type Il Errors

Like a jury, an investigator may reach a wrong conclusion. Sometimes by chance
alone a sample is not representative of the population and the results in the sample
do not reflect reality in the population, leading to an erroneous inference. A type 1
error (false-positive) occurs if an investigator rejects a null hypothesis that is actually
true in the population; a type II error (false-negative) occurs if the investigator fails
to reject a null hypothesis that is actually not true in the population. Although type
I and type II errors can never be avoided entirely, the investigator can reduce their
likelihood by increasing the sample size (the larger the sample, the less likely that it
will differ substantially from the population) or by manipulating the design or the
measurements in other ways that we will discuss.

In this chapter and the next, we deal only with ways to reduce type I and type 11
errors due to chance variation, also known as random error. False-positive and false-
negative results can also occur because of bias, but errors due to bias are not usually
referred to as type I and II errors. Such errors are especially troublesome, because they
may be difficult to detect and cannot usually be quantified using statistical methods
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or avoided by increasing the sample size. (See Chapters 1, 3, 4, and 7 through 12 for
ways to reduce errors due to bias.)

Effect Size

The likelihood that a study will be able to detect an association between a predictor and
an outcome variable in a sample depends on the actual magnitude of that association
in the population. If it is large (mean fusting blood glucose levels ave 20 my/dL lower in
dinbetic women who exercise than in those who do not), it will be easy to detect in the
sample. Conversely, if the size of the association is small (& difference of 2 myg/dL), it
will be difficult to detect in the sample.

Unfortunately, the investigator does not usually know the exact size of the
association; one of the purposes of the study is to estimate it! Instead, the investigator
must choose the size of the association that she expects to be present in the sample.
That quantity is known as the effect size. Selecting an appropriate effect size is the
most difficult aspect of sample size planning (4). The investigator should first try
to find data from prior studies in related areas to make an informed guess about a
reasonable effect size. When data are not available, it may be necessary to do a small
pilot study. Alternatively, she can choose the smallest effect size that in her opinion
would be clinically meaningful (a 10 myg/dL reduction in the fasting glucose level).

Of course, from the public health point of view, even a reduction of 2 or 3 mg/dL
in fasting glucose levels might be important, especially if it was easy to achieve. The
choice of the effect size is always arbitrary, and considerations of feasibility are often
paramount. Indeed, when the number of available or affordable subjects is limited,
the investigator may have to work backward (Chapter 6) to determine the effect size
that her study will be able to detect.

There are many different ways to measure the size of an association, especially
when the outcome variable is dichotomous. For example, consider a study of whether
middle-aged men are more likely to have impaired hearing than middle-aged women.
Suppose an investigator finds that 20% of women and 30% of men 50 to 65 years
of age are hard of hearing. These results could be interpreted as showing that men
are 10% more likely to have impaired hearing than women (30% — 20%, the absolute
difference), or 50% more likely ([30% — 20%] = 20%, the relative difference). For
sample size planning, both of the proportions matter; the sample size tables in this
book use the smaller proportion (in this case, 20%) and the absolute difference (10%)
between the groups being compared.

Many studies measure several effect sizes, because they measure several different
predictor and outcome variables. For sample size planning, the sample size using the
desired effect size for the most important hypothesis should be determined; the effect
sizes for the other hypotheses can then be estimated. If there are several hypotheses of
similar importance, then the sample size for the study should be based on whichever
hypothesis needs the largest sample.

o, B, and Power

After a study is completed, the investigator uses statistical tests to try to reject the
null hypothesis in favor of its alternative, in much the same way that a prosecuting
attorney tries to convince a jury to reject innocence in favor of guilt. Depending on
whether the null hypothesis is true or false in the target population, and assuming
that the study is free of bias, four situations are possible (Table 5.2). In two of these,
the findings in the sample and reality in the population are concordant, and the
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TABLE 5.2  Truth in the Population versus the Results in the Study Sample: The
Four Possibilities

Truth in the Population

Association Between No Association Between
Results in the Study Sample Predictor and Outcome Predictor and Outcome
Reject null hypothesis Correct Type | error
Fail to reject null hypothesis Type Il error Correct

investigator’s inference will be correct. In the other two situations, either a type I or
type II error has been made, and the inference will be incorrect.

The investigator establishes the maximum chance that she will tolerate of making
type I and II errors in advance of the study. The probability of committing a type
I error (rejecting the null hypothesis when it is actually true) is called « (alpha).
Another name for « is the level of statistical significance.

If, for example, a study of the effects of exercise on fasting blood glucose levels is
designed with an @ of 0.05, then the investigator has set 5% as the maximum chance
of incorrectly rejecting the null hypothesis if it is true (and inferring that exercise
and fasting blood glucose levels are associated in the population when, in fact, they
are not). This is the level of reasonable doubt that the investigator will be willing to
accept when she uses statistical tests to analyze the data after the study is completed.

The probability of making a type II error (failing to reject the null hypothesis
when it is actually false) is called B (beta). The quantity [1 — B8] is called power, the
probability of correctly rejecting the null hypothesis in the sample if the actual effect
in the population is equal to (or greater than) the effect size.

If B is set at 0.10, then the investigator has decided that she is willing to accept a
10% chance of missing an association of a given effect size if it exists. This represents a
power of 0.90; that is, a 90% chance of finding an association of that size or greater. For
example, suppose that exercise really would lead to an average reduction of 20 mg/dL
in fasting glucose levels among diabetic women in the entire population. Suppose
that the investigator drew a sample of women from the population on numerous
occasions, each time carrying out the same study (with the same measurements and
the same 90% power each time). Then in nine of every ten studies the investigator
would correctly reject the null hypothesis and conclude that exercise is associated
with fasting glucose level. This does not mean, however, that the investigator doing a
single study will be unable to detect it if the effect actually present in the population
was smaller, say, a 15 mg/dL reduction; it means simply that she will have less than a
90% likelihood of doing so.

Ideally, o and B would be set at zero, eliminating the possibility of false-positive
and false-negative results. In practice they are made as small as possible. Reducing
them, however, requires increasing the sample size; other strategies are discussed in
Chapter 6. Sample size planning aims at choosing a sufficient number of subjects
to keep o and B at an acceptably low level without making the study unnecessarily
expensive or difficult.

Many studies set o at 0.05 and g at 0.20 (a power of 0.80). These are arbitrary
values, and others are sometimes used: the conventional range for « is between 0.01
and 0.10, and that for 8 is between 0.05 and 0.20. In general, the investigator should
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use a low o when the research question makes it particularly important to avoid a type
1 (false-positive) error—for example, in testing the efficacy of a potentially dangerous
medication. She should use a low B (and a small effect size) when it is especially
important to avoid a type II (false-negative) error—for example, in reassuring the
public that living near a toxic waste dump is safe.

P Value

The null hypothesis acts like a straw man: it is assumed to be true so that it can be
knocked down as false with a statistical test. When the data are analyzed, such tests
determine the P value, the probability of seeing an effect as big as or bigger than that
in the study by chance if the null hypothesis actually were true. The null hypothesis is
rejected in favor of its alternative if the P value is less than «, the predetermined level
of statistical significance.

A “‘nonsignificant” result (i.c., one with a P value greater than «) does not mean
that there is no association in the population; it only means that the result observed
in the sample is small compared with what could have occurred by chance alone. For
example, an investigator might find that men with hypertension were twice as likely to
develop prostate cancer as those with normal blood pressure, but because the number
of cancers in the study was modest this apparent effect had a P value of only 0.08.
This means that even if hypertension and prostatic carcinoma were not associated
in the population, there would be an 8% chance of finding such an association due
to random error in the sample. If the investigator had set the significance level as a
two-sided & of 0.05, she would have to conclude that the association in the sample
was ‘‘not statistically significant.” It might be tempting for the investigator to change
her mind about the level of statistical significance, reset the two-sided o to 0.10,
and report, “The results showed a statistically significant association (P < 0.10),” or
switch to a one-sided P value and report it as “P = 0.04.” A better choice would
be to report that ““The results, although suggestive of an association, did not achieve
statistical significance (P = 0.08).”

This solution acknowledges that statistical significance is not an all-or-none
situation. In part because of this problem, many statisticians and epidemiologists
are moving away from hypothesis testing, with its emphasis on P values, to using
confidence intervals to report the precision of the study results (5-7). However, for
the purposes of sample size planning for analytic studies, hypothesis testing is still the
standard.

Sides of the Alternative Hypothesis

Recall that an alternative hypothesis actually has two sides, either or both of which
can be tested in the sample by using one- or two-sided statistical tests. When a
two-sided statistical test is used, the P value includes the probabilities of committing
a type I error in each of two directions, which is about twice as great as the probability
in either direction alone. It is easy to convert from a one-sided P value to a two-sided
P value, and vice versa. A one-sided P value of 0.05, for example, is usually the same
as a two-sided P value of 0.10. (Some statistical tests are asymmetric, which is why
we said “‘usually.”)

In those rare situations in which an investigator is only interested in one of
the sides and has so formulated the alternative hypothesis, sample size should be
calculated accordingly. A one-sided hypothesis should never be used just to reduce
the sample size.
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Type of Statistical Test

The formulas used to calculate sample size are based on mathematical assumptions,
which differ for each statistical test. Before the sample size can be calculated, the
investigator must decide on the statistical approach to analyzing the data. That choice
depends mainly on the type of predictor and outcome variables in the study. Table 6.1
lists some common statistics used in data analysis, and Chapter 6 provides simplified
approaches to estimating sample size for studies that use these statistics.

. ADDITIONAL POINTS

Variability

It is not simply the size of an effect that is important; its variability also matters.
Statistical tests depend on being able to show a difference between the groups being
compared. The greater the variability (or spread) in the outcome variable among
the subjects, the more likely it is that the values in the groups will overlap, and the
more difficult it will be to demonstrate an overall difference between them. Because
measurement error contributes to the overall variability, less precise measurements
require larger sample sizes (8).

Consider a study of the effects of two isocaloric diets (low fat and low carbohy-
drate) in achieving weight loss in 20 obese patients. If all those on the low-fat diet
lost about 3 kg and all those on the low-carbohydrate diet failed to lose much weight
(an effect size of 3 kg), it is likely that the low-fat diet really is better (Fig. 5.1A).
On the other hand, suppose that although the average weight loss is 3 kg in the
low-fat group and 0 kg in the low-carbohydrate group, there is a great deal of overlap
between the two groups. (The changes in weight vary from a loss of 8 kg to a gain of
8 kg.) In this situation (Fig. 5.1B), although the effect size is still 3 kg, the greater
variability will make it more difficult to detect a difference between the diets, and a
larger sample size will be needed.

When one of the variables used in the sample size estimate is continuous (e.g.,
body weight in Figure 5.1), the investigator will need to estimate its variability. (See
the section on the ¢ test in Chapter 6 for details.) In the other situations, variability
is already included in the other parameters entered into the sample size formulas and
tables, and need not be specified.

Multiple and Post Hoc Hypotheses
When more than one hypothesis is tested in a study, especially if some of those
hypotheses were formulated after the data were analyzed (post hoc hypotheses), the
likelihood that at least one will achieve statistical significance on the basis of chance
alone increases. For example, if 20 independent hypotheses are tested at an o of 0.05,
the likelihood is substantial (64%; [1 — 0.952°]) that at least one hypothesis will be
statistically significant by chance alone. Some statisticians advocate adjusting the level
of statistical significance when more than one hypothesis is tested in a study. This
keeps the overall probability of accepting any one of the alternative hypotheses, when
all the findings are due to chance, at the specified level. For example, genomic studies
that look for an association between hundreds (or even thousands) of genotypes and
a disease need to use a much smaller o than 0.05, or they risk identifying many
false-positive associations.

One approach, named after the mathematician Bonferroni, is to divide the
significance level (say, 0.05) by the number of hypotheses tested. If there were four
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FIGURE 5.1. A: Weight loss achieved by two diets. All subjects on the low-fat
diet lost from 2 to 4 kg, whereas weight change in those on the low-
carbohydrate (CHO) diet varied from —1 to +1 kg. Because there is no
overlap between the two groups, it is reasonable to infer that the low-fat diet
is better at achieving weight loss than the low-carbohydrate diet (as would be
confirmed with a ¢ test, which has a P value < 0.0001). B: Weight loss
achieved by two diets. There is substantial overlap in weight change in the two
groups. Although the effect size is the same (3 kg) as in A, there is little
evidence that one diet is better than the other (as would be confirmed with a #
test, which has a P value of 0.19).

hypotheses, for example, each would be tested at an o of 0.0125 (i.e., 0.05 = 4). This
would require substantially increasing the sample size over that needed for testing
each hypothesis at an & of 0.05.

We believe that a Bonferroni-type of approach to multiple hypothesis testing is
usually too stringent. Investigators do not adjust the significance levels for hypotheses
that are tested in separate studies. Why do so when several hypotheses are tested in
the same study? In our view, adjusting o for multiple hypotheses is chiefly useful
when the likelihood of making false-positive errors is high, because the number of
tested hypotheses is substantial (say, more than ten) and the prior probability for each
hypothesis is low (e.g., in screening a large number of genes for association with a
phenotype). The first criterion is actually stricter than it may appear, because what
matters is the number of hypotheses that are tested, not the number that are reported.
Testing 50 hypotheses but only reporting or emphasizing the one or two P values
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that are less than 0.05 is misleading. Adjusting o for multiple hypotheses is especially
important when the consequences of making a false-positive error are large, such as
mistakenly concluding that an ineffective treatment is beneficial.

In general, the issue of what significance level to use depends more on the prior
probability of each hypothesis than on the number of hypotheses tested. There is an
analogy with the use of diagnostic tests that may be helpful (9). When interpreting
the results of a diagnostic test, a clinician considers the likelihood that the patient
being tested has the disease in question. For example, a modestly abnormal test result
in a healthy person (a serum alkaline phosphatase level that is 15% greater than the
upper limit of normal) is probably a false-positive test that is unlikely to have much
clinical importance. Similarly, a P value of 0.05 for an unlikely hypothesis is probably
also a false-positive result.

However, an alkaline phosphatase level that is 10 or 20 times greater than the
upper limit of normal is unlikely to have occurred by chance (although it might be
a laboratory error). So too a very small P value (say, <0.001) is unlikely to have
occurred by chance (although it could be due to bias). It is hard to dismiss very
abnormal test results as being false-positives or to dismiss very low P values as being
due to chance, even if the prior probability of the disease or the hypothesis was low.

Moreover, the number of tests that were ordered, or hypotheses that were tested,
is not always relevant. The interpretation of an elevated serum uric acid level in a
patient with a painful and swollen joint should not depend on whether the physician
ordered just a single test (the uric acid level) or obtained the result as part of a panel of
20 tests. Similarly, when interpreting the P value for testing a research hypothesis that
makes good sense, it should not matter that the investigator also tested several unlikely
hypotheses. What matters most is the reasonableness of the research hypothesis being
tested: that it has a substantial prior probability of being correct. (Prior probability, in
this “Bayesian” approach, is usually a subjective judgment based on evidence from
other sources.) Hypotheses that are formulated during the design of a study usually
meet this requirement; after all, why else would the investigator put the time and
effort into planning and doing the study?

What about unanticipated associations that appear during the collection and
analysis of a study’s results? This process is sometimes called hypothesis generation
or, less favorably, ‘‘data-mining’ or a ““fishing expedition.” The many informal
comparisons that are made during data analysis are a form of multiple hypothesis
testing. A similar problem arises when variables are redefined during data analysis,
or when results are presented for subgroups of the sample. Significant P values for
data-generated hypotheses that were not considered during the design of the study
are often due to chance. They should be viewed with interest but skepticism and
considered a fertile source of potential research questions for future studies.

Sometimes, however, an investigator fails to specify a particular hypothesis in
advance, although that hypothesis seems reasonable when it is time for the data to be
analyzed. This might happen, for example, if others discover a new risk factor while
the study is going on, or if the investigator just didn’t happen to think of a particular
hypothesis when the study was being designed. The important issue is not so much
whether the hypothesis was formulated before the study began, but whether there is a
reasonable prior probability based on evidence from other sources that the hypothesis
is true (9).

There are some definite advantages to formulating more than one hypothesis
when planning a study. The use of multiple unrelated hypotheses increases the
efficiency of the study, making it possible to answer more questions with a single
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research effort and to discover more of the true associations that exist in the population.
It may also be a good idea to formulate several related hypotheses; if the findings
are consistent, the study conclusions are made stronger. Studies in patients with
heart failure have found that the use of angiotensin-converting enzyme inhibitors is
beneficial in reducing cardiac admissions, cardiovascular mortality, and total mortality.
Had only one of these hypotheses been tested, the inferences from these studies would
have been less definitive. Lunch may not be free, however, when multiple hypotheses
are tested. Suppose that when these related and prestated hypotheses are tested, only
one turns out to be statistically significant. Then the investigator must decide (and
try to convince editors and readers) whether the significant results, the nonsignificant
results, or both sets of results are true.

Primary and Secondary Hypotheses

Some studies, especially large randomized trials, specify some hypotheses as being
“secondary.” This usually happens when there is one primary hypothesis around
which the study has been designed, but the investigators are also interested in other
research questions that are of lesser importance. For example, the primary outcome
of a trial of zinc supplementation might be hospitalizations or emergency department
visits for upper respiratory tract infections; a secondary outcome might be self-reported
days missed from work or school. If the study is being done to obtain approval for a
pharmaceutical agent, the primary outcome is what will matter most to the regulatory
body. The sample size calculations are always focused on the primary hypothesis, and
secondary hypotheses with insufficient power should be avoided. Stating a secondary
hypothesis in advance does increase the credibility of the results. Stating a secondary
hypothesis after the data have been collected and analyzed is another form of data
dredging.

A good rule, particularly for clinical trials, is to establish in advance as many
hypotheses as make sense, but specify just one as the primary hypothesis, which
can be tested statistically without argument about whether to adjust for multiple
hypothesis testing. More important, having a primary hypothesis helps to focus the
study on its main objective and provides a clear basis for the main sample size
calculation.

B sumMARY

1. Sample size planning is an important part of the design of both analytic and
descriptive studies. The sample size should be estimated carly in the process of
developing the research design, so that appropriate modifications can be made.

2. Analytic studies and experiments need a hypothesis that specifies, for the purpose
of subsequent statistical tests, the anticipated association between the main
predictor and outcome variables. Purely descriptive studies, lacking the strategy of
comparison, do not require a hypothesis.

3. Good hypotheses are specific about how the population will be sampled and the
variables measured, simple (there is only one predictor and one outcome variable),
and formulated in advance.

4. The null hypothesis, which proposes that the predictor and outcome variables
are not associated, is the basis for tests of statistical significance. The alternative
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5.

hypothesis proposes that they are associated. Statistical tests attempt to reject the
null hypothesis of no association in favor of the alternative hypothesis that there is
an association.

An alternative hypothesis is either one-sided (only one direction of association will
be tested) or two-sided (both directions will be tested). One-sided hypotheses
should only be used in unusual circumstances, when only one direction of the
association is clinically or biologically meaningful.

. For analytic studies and experiments, the sample size is an estimate of the number

of subjects required to detect an association of a given effect size and variability at
a specified likelihood of making type I (false-positive) and type II (false-negative)
errors. The maximum likelihood of making a type I error is called e; that of
making a type II error, . The quantity (1 — 8) is power, the chance of observing
an association of a given effect size or greater in a sample if one is actually present
in the population.

. It is often desirable to establish more than one hypothesis in advance, but the

investigator should specify a single primary hypothesis as a focus and for sample
size estimation. Interpretation of findings from testing multiple hypotheses in
the sample, including unanticipated findings that emerge from the data, is based
on a judgment about the prior probability that they represent real phenomena in
the population.
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Chapter 5 introduced the basic principles underlying sample size calculations. This
chapter presents several cookbook techniques for using those principles to esti-
mate the sample size needed for a research project. The first section deals with
sample size estimates for an analytic study or experiment, including some special
issues that apply to these studies such as multivariate analysis. The second section
considers studies that are primarily descriptive. Subsequent sections deal with stud-
ies that have a fixed sample size, strategies for maximizing the power of a study,
and how to estimate the sample size when there appears to be insufficient in-
formation from which to work. The chapter concludes with common errors to
avoid.

At the end of the chapter, there are tables and formulas in the appendixes for
several basic methods of estimating sample size. In addition, there is a calculator on
our website (www.epibiostat.ucsf.edu/dcr/), and there are many sites on the Web
that can provide instant interactive sample size calculations; try searching for “‘sample
size” and “‘power” and ‘“‘interactive”. Most statistical packages can also estimate
sample size for common study designs.

. SAMPLE SIZE TECHNIQUES FOR ANALYTIC STUDIES
AND EXPERIMENTS

There are several variations on the recipe for estimating sample size in an analytic
study or experiment, but they all have certain steps in common:

1. State the null hypothesis and either a one- or two-sided alternative hypothesis.

2. Select the appropriate statistical test from Table 6.1 based on the type of predictor
variable and outcome variable in those hypotheses.

3. Choose a reasonable effect size (and variability, if necessary).


http://www.epibiostat.ucsf.edu/dcr/
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TABLE 6.1 Simple Statistical Tests for Use in Estimating
Sample Size*

Outcome Variable

Predictor Variable Dichotomous Continuous
Dichotomous Chi-squared test" t test
Continuous t test Correlation coefficient

*See text for what to do about ordinal variables, or if planning to analyze the data with
another type of statistical test.
T The chi-squared test is always two-sided; a one-sided equivalent is the Z statistic.

4. Set o and B. (Specify a two-sided o unless the alternative hypothesis is clearly
one-sided.)
5. Use the appropriate table or formula in the appendix to estimate the sample size.

Even if the exact value for one or more of the ingredients is uncertain, it is
important to estimate the sample size early in the design phase. Waiting until the last
minute to prepare the sample size can be a rude awakening: it may be necessary to
start over with new ingredients, which may mean redesigning the entire study. This is
why this subject is covered early in this book.

Not all analytic studies fit neatly into one of the three main categories that follow;
a few of the more common exceptions are discussed in the section called “Other
Considerations and Special Issues.”

The t Test
The ¢ test (sometimes called “Student’s t test,” after the pseudonym of its developer)
is commonly used to determine whether the mean value of a continuous outcome
variable in one group differs significantly from that in another group. For example,
the # test would be appropriate to use when comparing the mean depression scores
in patients treated with two different antidepressants, or the mean change in weight
among two groups of participants in a placebo-controlled trial of a new drug
for weight loss. The ¢ test assumes that the distribution (spread) of the variable
in each of the two groups approximates a normal (bell-shaped) curve. However,
the ¢ test is remarkably robust, so it can be used for almost any distribution
unless the number of subjects is small (fewer than 30 to 40) or there are extreme
outliers.

To estimate the sample size for a study that will be analyzed with a ¢ test (see
Example 6.1), the investigator must

1. State the null hypothesis and whether the alternative hypothesis is one- or two-
sided.

2. Estimate the effect size (E) as the difference in the mean value of the outcome
variable between the study groups.

3. Estimate the variability of the outcome variable as its standard deviation ().

4. Calculate the standardized effect size (E/S), defined as the effect size divided by
the standard deviation of the outcome variable.

5. Set @ and .
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The effect size and variability can often be estimated from previous studies in
the literature and consultation with experts. Occasionally, a small pilot study will be
necessary to estimate the standard deviation of the outcome variable (also see the
Section ‘““How to estimate sample size when there is insufficient information,” later in
this chapter). When the outcome variable is the change in a continuous measurement
(e.g., change in weight during a study), the investigator should use the standard
deviation of the change in that variable (not the standard deviation of the variable
itself) in the sample size estimates. The standard deviation of the change in a variable
is usually smaller than the standard deviation of the variable; therefore the sample size
will also be smaller.

The standardized effect size is a unitless quantity that makes it possible to
estimate a sample size when an investigator cannot obtain information about the
variability of the outcome variable; it also simplifies comparisons between the effect
sizes of different variables. (The standardized effect size equals the effect size divided
by the standard deviation of the outcome variable. For example, a 10 mg/dL
difference in serum cholesterol level, which has a standard deviation in the population
of about 40 mg/dL, would equal a standardized effect size of 0.25.) The larger the
standardized effect size, the smaller the required sample size. For most studies, the
standardized effect size will be >0.1. Effect sizes smaller than that are difficult to
detect (they require very large sample sizes) and usually not very important clinically.

Appendix 6A gives the sample size requirements for various combinations of «
and B for several standardized effect sizes. To use Table 6A, look down its leftmost
column for the standardized effect size. Next, read across the table to the chosen
values for « and B for the sample size required per group. (The numbers in Table 6A
assume that the two groups being compared are of the same size; use the formula
below the table or an interactive Web-based program if that assumption is not true.)

Example 6.1 Calculating Sample Size When Using the ¢ Test

Problem: The research question is whether there is a difference in the efficacy of
salbutamol and ipratropinm bromide for the treatment of asthma. The investigator
plans o randomized trial of the effect of these drugs on FEV) (forced expiratory
volume in 1 second) after 2 weeks of treatment. A previous study has veported that
the mean FEVy in persons with treated asthma was 2.0 liters, with a standard
deviation of 1.0 liter. The investigator would like to be able to detect a difference of
10% or more in mean FEV between the two treatment groups. How many patients
are requived in each group (salbutamol and ipratropinm) at o (two-sided) = 0.05
and power = 0.807

Solution: The ingredients for the sample size calculation ave as follows:

1. Null Hypothesis: Mean FEV) after 2 weeks of treatment is the same in asthmatic
patients treated with salbutamol as in those treated with ipratropium.
Alternative Hypothesis (two-sided): Mean FEV\ after 2 weeks of treatment is
different in asthmatic patients treated with salbutamol from what it is in those
treated with ipratropium.

2. Effect Size = 0.2 liters (10% x 2.0 liters).

3. Standard Deviation of FEV, = 1.0 liter.
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4. Standardized Effect Size = effect size = standard deviation = 0.2 liters+— 1.0
liter = 0.2.
5. a(two-sided) = 0.05; 8 = 1 - 0.80 = 0.20. (Recall that B = 1 — power.)

Looking across from a standardized effect size of 0.20 in the leftmost column
of Table 6A and down from o (two-sided) = 0.05 and B = 0.20, 394 patients ave
required pev group. This is the number of patients in each group who need to complete
the study; even move will need to be envolled to account for dvopouts. This sample
size may not be feasible, and the investigator might reconsider the study design, or
perbaps settle for only being able to detect a lavger effect size. See the section on the t
test for paived samples (“Example 6.87) for a great solution.

The ¢ test is usually used for comparing continuous outcomes, but it can also be
used to estimate the sample size for a dichotomous outcome (e.g., in a case—control
study) if the study has a continuous predictor variable. In this situation, the ¢ test
compares the mean value of the predictor variable in the cases with that in the controls.

There is a convenient shortcut for approximating sample size using the ¢ test,
when more than about 30 subjects will be studied and the power is set at 0.80
(B =0.2) and « (two-sided) is set at 0.05 (1). The formula is

Sample size (per equal-sized group) = 16 + (standardized effect size)>.

For Example 6.1, the shortcut estimate of the sample size would be 16 + 0.22 = 400
per group.

The Chi-Squared Test
The chi-squared test (x2) can be used to compare the proportion of subjects in each
of two groups who have a dichotomous outcome. For example, the proportion of
men who develop coronary heart disease (CHD) while being treated with folate can
be compared with the proportion who develop CHD while taking a placebo. The
chi-squared test is always two-sided; an equivalent test for one-sided hypotheses is the
one-sided Z test.

In an experiment or cohort study, effect size is specified by the difference between
Py, the proportion of subjects expected to have the outcome in one group, and P,
the proportion expected in the other group. In a case—control study, P; represents
the proportion of cases expected to have a particular risk factor, and P, represents the
proportion of controls expected to have the risk factor. Variability is a function of P;
and P,, so it need not be specified.

To estimate the sample size for a study that will be analyzed with the chi-squared
test or Z test to compare two proportions, the investigator must

1. State the null hypothesis and decide whether the alternative hypothesis should be
one- or two-sided.

2. Estimate the effect size and variability in terms of P, the proportion with the out-
come in one group, and P, the proportion with the outcome in the other group.

3. Set o and B.

Appendix 6B gives the sample size requirements for several combinations of «
and B, and a range of values of P} and P;. To estimate the sample size, look down
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the leftmost column of Tables 6B.1 or 6B.2 for the smaller of P; and P, (if necessary
rounded to the nearest 0.05). Next, read across for the difference between Py and P;.
Based on the chosen values for « and B, the table gives the sample size required per

group.

Example 6.2 Calculating Sample Size When Using the Chi-Squared Test

Problem: The research question is whether elderly smokers have a greater incidence
of skin cancer than nonsmokers. A veview of previous litevature suggests that the 5-year
incidence of skin cancer is about 0.20 in elderly nonsmokers. At o (two-sided) = 0.05
and power = 0.80, how many smokers and nonsmokers will need to be studied to
determine whether the 5-year skin cancer incidence is at least 0.30 in smokers?

Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: The incidence of skin cancer is the same in elderly smokers
and nonsmokers.
Alternative Hypothesis (two-sided): The incidence of skin cancer is different
in elderly smokers and nonsmokers.

2. Py (incidence in nonsmokers) = 0.20; Py (incidence in smokers) = 0.30. The
smaller of these values is 0.20, and the difference between them (Py — P3) is 0.10.

3. a (two-sided) = 0.05; 8 = 1 - 0.80 = 0.20.

Looking across from 0.20 in the leftmost column in Table 6B.1 and down from
an expected diffevence of 0.10, the middle number for o (two-sided) = 0.05 and
B = 0.20 is the requived sample size of 313 smokers and 313 nonsmokers. If the
investigator had chosen to use o one-sided alternative hypothesis, given that theve is o
great deal of evidence suggesting that smoking is a carcinogen and none suggesting
that it prevents cancer, the sample size would be 251 smokers and 251 nonsmokers.

Often the investigator specifies the effect size in terms of the relative risk
(risk ratio) of the outcome in two groups of subjects. For example, an investigator
might study whether women who use oral contraceptives are at least twice as likely
as nonusers to have a myocardial infarction. In a cohort study (or experiment),
it is straightforward to convert back and forth between relative risk and the two
proportions (P and P), since the relative risk is just P divided by P, (or vice versa).

For a case—control study, however, the situation is a little more complex because
the relative risk must be approximated by the odds ratio, which equals [P} x (1 —
Py)] + [Py x (1 — P1)]. The investigator must specify the odds ratio (OR) and P, (the
proportion of controls exposed to the predictor variable). Then P (the proportion of
cases exposed to the predictor variable) is

OR x P2
(1-P)+(ORx P,)
For example, if the investigator expects that 10% of controls will be exposed to the

oral contraceptives (P, = 0.1) and wishes to detect an odds ratio of 3 associated with
the exposure, then

P =

B (3x0.1) _03_
S (1-01)+(3x0.1) 12

Py
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The Correlation Coefficient

Although the correlation coefficient (#) is not used frequently in sample size
calculations, it can be useful when the predictor and outcome variables are both
continuous. The correlation coefficient is a measure of the strength of the linear
association between the two variables. It varies between —1 and +1. Negative values
indicate that as one variable increases, the other decreases (like blood lead level and
1Q in children). The closer the absolute value of 7 is to 1, the stronger the association;
the closer to 0, the weaker the association. Height and weight in adults, for example,
are highly correlated in some populations, with » & 0.9. Such high values, however,
are uncommon; many biologic associations have much smaller correlation coefficients.

Correlation coeflicients are common in some fields of clinical research, such as
behavioral medicine, but using them to estimate the sample size has a disadvantage:
correlation coefficients have little intuitive meaning. When squared (#2) a correlation
coetlicient represents the proportion of the spread (variance) in an outcome variable
that results from its linear association with a predictor variable, and vice versa. That’s
why small values of r, such as those <0.3, may be statistically significant if the sample
is large enough without being very meaningful clinically or scientifically, since they
“explain” at most 9% of the variance.

An alternative—and often preferred—way to estimate the sample size for a study
in which the predictor and outcome variables are both continuous is to dichotomize
one of the two variables (say, at its median) and use the # test calculations instead. This
has the advantage of expressing the effect size as a ““difference’ between two groups.

To estimate sample size for a study that will be analyzed with a correlation
coeflicient, the investigator must

1. State the null hypothesis, and decide whether the alternative hypothesis is one or
two-sided.

2. Estimate the effect size as the absolute value of the smallest correlation coefficient
(7) that the investigator would like to be able to detect. (Variability is a function
of 7 and is already included in the table and formula.)

3. Set o and B.

In Appendix 6C, look down the leftmost column of Table 6C for the effect
size (7). Next, read across the table to the chosen values for o and B, yielding
the total sample size required. Table 6C yields the appropriate sample size when
the investigator wishes to reject the null hypothesis that there is no association
between the predictor and outcome variables (e.g., » = 0). If the investigator wishes
to determine whether the correlation coefficient in the study differs from a value other
than zero (e.g., » = 0.4), she should see the text below Table 6C for the appropriate
methodology.

Example 6.3 Calculating Sample Size When Using the Correlation Coefficient in
a Cross-Sectional Study

Problem: The research question is whether uvinary cotinine levels (a measure
of the intensity of curvent cigavette smoking) arve covvelated with bone density in
smokers. A previous study found a modest corrvelation (v = —0.3) between reported
smoking (in cigarettes per day) and bone density; the investigator anticipates that
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urinary cotinine levels will be at least as well corvelated. How many smokers will
need to be envolled, at a (two-sided) = 0.05 and B = 0.10?
Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: There is no correlation between urinary cotinine level and
bone density in smokers.
Alternative Hypothesis: There is a corvelation between urinary cotinine level
and bone density in smokers.

2. Effect size (r)=|— 0.3 = 0.3.

3. a(two-sided) = 0.05; 8 = 0.10.

Using Table 6C, reading across from v = 0.30 in the leftmost column and down
from o (two-sided) = 0.05 and B = 0.10, 113 smokers will be vequired.

. OTHER CONSIDERATIONS AND SPECIAL ISSUES

Dropouts

Each sampling unit must be available for analysis; subjects who are enrolled in a
study but in whom outcome status cannot be ascertained (such as dropouts) do
not count in the sample size. If the investigator anticipates that any of her subjects
will not be available for follow-up, she should increase the size of the enrolled
sample accordingly. If, for example, the investigator estimates that 20% of her sample
will be lost to follow-up, then the sample size should be increased by a factor of
(1+[1-0.20]), or 1.25.

Categorical Variables

Ordinal variables can often be treated as continuous variables, especially if the
number of categories is relatively large (six or more) and if averaging the values
of the variable makes sense. In other situations, the best strategy is to change the
research hypothesis slightly by dichotomizing the categorical variable. As an example,
suppose a researcher is studying whether the sex of a diabetic patient is associated
with the number of times the patient visits a podiatrist in a year. The number of visits
is unevenly distributed: many people will have no visits, some will make one visit,
and only a few will make two or more visits. In this situation, the investigator could
estimate the sample size as if the outcome were dichotomous (no visits versus one or
more Visits).

Survival Analysis

When an investigator wishes to compare which of two treatments is more effective
in prolonging life or in reducing the symptomatic phase of a disease, survival
analysis will be the appropriate technique for analyzing the data (2,3). Although
the outcome variable, say weeks of survival, appears to be continuous, the ¢ test is
not appropriate because what is actually being assessed is not time (a continuous
variable) but the proportion of subjects (a dichotomous variable) still alive at each
point in time. A reasonable approximation can be made by dichotomizing the
outcome variable at the end of the anticipated follow-up period (e.g., the proportion
surviving for 6 months or more), and estimating the sample size with the chi-squared
test.
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Clustered Samples

Some research designs involve the use of clustered samples, in which subjects are
sampled by groups (Chapter 11). Consider, for example, a study of whether an
educational intervention directed at clinicians improves the rate of smoking cessation
among their patients. Suppose that 20 physicians are randomly assigned to the group
that receives the intervention and 20 physicians are assigned to a control group.
One year later, the investigators plan to review the charts of a random sample of 50
patients who had been smokers at baseline in each practice to determine how many
have quit smoking. Does the sample size equal 40 (the number of physicians) or 2,000
(the number of patients)? The answer, which lies somewhere in between those two
extremes, depends upon how similar the patients within a physician’s practice are (in
terms of their likelihood of smoking cessation) compared with the similarity among
all the patients. Estimating this quantity often requires obtaining pilot data, unless
another investigator has previously done a similar study. There are several techniques
for estimating the required sample size for a study using clustered samples (4-7), but
they are challenging and usually require the assistance of a statistician.

Matching

For a variety of reasons (Chapter 9), an investigator may choose to use a matched
design. The techniques in this chapter, which ignore any matching, nevertheless
provide reasonable estimates of the required sample size. More precise estimates can
be made using standard approaches (8) or an interactive Web-based program.

Multivariate Adjustment and Other Special Statistical Analyses

When designing an observational study, an investigator may decide that one or
more variables will confound the association between the predictor and outcome
(Chapter 9), and plan to use statistical techniques to adjust for these confounders
when she analyzes her results. When this adjustment will be included in testing the
primary hypothesis, the estimated sample size needs to take this into account.

Analytic approaches that adjust for confounding variables often increase the
required sample size (9,10). The magnitude of that increase depends on several
factors, including the prevalence of the confounder, the strength of the association
between the predictor and the confounder, and the strength of the association
between the confounder and the outcome. These effects are complex and no general
rule covers all situations.

Statisticians have developed multivariate methods such as linear regression and
logistic regression that allow the investigator to adjust for confounding variables.
One widely used statistical technique, Cox proportional hazards analysis, can
adjust both for confounders and for differences in length of follow-up. If one of
these techniques is going to be used to analyze the data, there are corresponding
approaches for estimating the required sample size (3,11-14). Sample size techniques
are also available for other designs, such as studies of potential genetic risk factors
or candidate genes (15-17), economic studies (18-20), dose—response studies (21),
or studies that involve more than two groups (22). Again, the Internet is a useful
resource for these more sophisticated approaches (e.g., search for “‘sample size’” and
“logistic regression’”).

It is usually easier, at least for novice investigators, to estimate the sample size
assuming a simpler method of analysis, such as the chi-squared test or the ¢ test.
Suppose, for example, an investigator is planning a case—control study of whether
serum cholesterol level (a continuous variable) is associated with the occurrence of
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brain tumors (a dichotomous variable). Even if the eventual plan is to analyze the
data with the logistic regression technique, a ballpark sample size can be estimated
with the ¢ test. It turns out that the simplified approaches usually produce sample size
estimates that are similar to those generated by more sophisticated techniques. An
experienced statistician may need to be consulted, however, if a grant proposal that
involves substantial costs is being submitted for funding: grant reviewers will expect
you to use a sophisticated approach even if they accept that the sample size estimates
are based on guesses about the risk of the outcome, the effect size, and so on.

Equivalence Studies

Sometimes the goal of a study is to show that the null hypothesis is correct and
that there really is no substantial association between the predictor and outcome
variables (23-26). A common example is a clinical trial to test whether a new drug
is as effective as an established drug. This situation poses a challenge when planning
sample size, because the desired effect size is zero (i.e., the investigator would like to
show that the two drugs are equally effective).

One acceptable method is to design the study to have substantial power (say,
0.90 or 0.95) to reject the null hypothesis when the effect size is small enough that
it would not be clinically important (e.g., a difference of 5 mg/dL in mean fasting
glucose levels). If the results of such a well-powered study show “no effect’ (i.e.,
the 95% confidence interval excludes the prespecified difference of 5 mg/dL), then
the investigator can be reasonably sure that the two drugs have similar effects. One
problem with equivalence studies, however, is that the additional power and the small
effect size often require a very large sample size.

Another problem involves the loss of the usual safeguards that are inherent in the
paradigm of the null hypothesis, which protects a conventional study, such as one
that compares an active drug with a placebo, against Type I errors (falsely rejecting
the null hypothesis). The paradigm ensures that many problems in the design or
execution of a study, such as using imprecise measurements or inadequate numbers of
subjects, make it harder to reject the null hypothesis. Investigators in a conventional
study, who are trying to reject a null hypothesis, have a strong incentive to do the
best possible study. The same is not true for an equivalence study, in which the goal
is to find no difference, and the safeguards do not apply.

. SAMPLE SIZE TECHNIQUES FOR DESCRIPTIVE STUDIES

Estimating the sample size for descriptive studies, including studies of diagnostic tests,
is based on somewhat different principles. Such studies do not have predictor and
outcome variables, nor do they compare different groups. Therefore the concepts of
power and the null and alternative hypotheses do not apply. Instead, the investigator
calculates descriptive statistics, such as means and proportions. Often, however,
descriptive studies (What is the prevalence of depression among elderly patients in a
medical clinic?) are also used to ask analytic questions (What are the predictors of
depression amonyg these patients?). In this situation, sample size should be estimated
for the analytic study as well, to avoid the common problem of having inadequate
power for what turns out to be the question of greater interest.

Descriptive studies commonly report confidence intervals, a range of values
about the sample mean or proportion. A confidence interval is a measure of the
precision of a sample estimate. The investigator sets the confidence level, such as
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95% or 99%. An interval with a greater confidence level (say 99%) is wider, and
therefore more likely to include the true population value, than an interval with a
lower confidence level (90%).

The width of a confidence interval depends on the sample size. For example, an
investigator might wish to estimate the mean score on the U.S. Medical Licensing
Examination in a group of medical students. From a sample of 200 students, she
might estimate that the mean score in the population of all students is 215, with
a 95% confidence interval from 210 to 220. A smaller study, say with 50 students,
might have about the same mean score but would almost certainly have a wider 95%
confidence interval.

When estimating sample size for descriptive studies, the investigator specifies
the desired level and width of the confidence interval. The sample size can then be
determined from the tables or formulas in the appendix.

Continuous Variables

When the variable of interest is continuous, a confidence interval around the mean
value of that variable is often reported. To estimate the sample size for that confidence
interval, the investigator must

1. Estimate the standard deviation of the variable of interest.
2. Specify the desired precision (total width) of the confidence interval.
3. Select the confidence level for the interval (e.g., 95%, 99%).

To use Appendix 6D, standardize the total width of the interval (divide it by
the standard deviation of the variable), then look down the leftmost column of
Table 6D for the expected standardized width. Next, read across the table to the
chosen confidence level for the required sample size.

Example 6.4 Calculating Sample Size for a Descriptive Study of a Continuous
Variable

Problem: The investigator seeks to detevmine the mean 1Q amonyg third graders
n an urban avea with o 99% confidence interval of £3 points. A previous study
found that the standard deviation of IQ in a similar city was 15 points.

Solution: The ingredients for the sample size calculation ave as follows:

1. Standard deviation of variable (SD) = 15 points.

2. Total width of interval = 6 points (3 points above and 3 points below). The
standardized width of interval = total width ~ SD = 6+ 15= 0.4

3. Confidence level = 99%.

Reading across from a standavdized width of 0.4 in the leftmost column of
Table 6D and down from the 99% confidence level, the requived sample size is 166
third graders.

Dichotomous Variables
In a descriptive study of a dichotomous variable, results can be expressed as a
confidence interval around the estimated proportion of subjects with one of the values.
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This includes studies of the sensitivity or specificity of a diagnostic test, which appear
at first glance to be continuous variables but are actually dichotomous—proportions
expressed as percentages (Chapter 12). To estimate the sample size for that confidence
interval, the investigator must

1. Estimate the expected proportion with the variable of interest in the population.
(If more than half of the population is expected to have the characteristic, then plan
the sample size based on the proportion expected not to have the characteristic.)

2. Specify the desired precision (total width) of the confidence interval.

3. Sclect the confidence level for the interval (e.g., 95%).

In Appendix 6E, look down the leftmost column of Table 6E for the expected
proportion with the variable of interest. Next, read across the table to the chosen
width and confidence level, yielding the required sample size.

Example 6.5 provides a sample size calculation for studying the sensitivity of a
diagnostic test, which yields the required number of subjects with the disease. When
studying the specificity of the test, the investigator must estimate the required number
of subjects who do not have the discase. There are also techniques for estimating
the sample size for studies of receiver operating characteristic (ROC) curves (27),
likelihood ratios (28), and reliability (29) (Chapter 12).

Example 6.5 Calculating Sample Size for a Descriptive Study of a Dichotomous
Variable

Problem: The investigator wishes to determine the sensitivity of a new diagnostic
test for pancreatic cancer. Based on a pilot study, she expects that 80% of patients with
pancreatic cancer will have positive tests. How many such patients will be requirved
to estimate a 95% confidence interval for the test’s sensitivity of 0.80 = 0.05?

Solution: The ingredients for the sample size calculation ave as follows:

1. Expected proportion = 0.20. (Because 0.80 is more than half, sample size is
estimated from the proportion expected to have a negative vesult, that is, 0.20.)

2. Total width = 0.10 (0.05 below and 0.05 above).

3. Confidence level = 95%.

Reading across from 0.20 in the leftmost column of Table 6E and down from a
total width of 0.10, the middle number (vepresenting o 95% confidence level) yields
the required sample size of 246 patients with pancreatic cancer.

. WHAT TO DO WHEN SAMPLE SIZE IS FIXED

Especially when doing secondary data analysis, the sample size may have been
determined before you design your study. In this situation, or if the number of
participants who are available or affordable for study is limited, the investigator must
work backward from the fixed sample size. She estimates the effect size that can be
detected at a given power (usually 80%) or, less commonly, the power to detect a
given effect. The investigator can use the sample size tables in the chapter appendixes,
interpolating when necessary, or use the sample size formulas in the appendixes for
estimating the effect size.
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A good general rule is that a study should have a power of 80% or greater to
detect a reasonable effect size. It is often tempting to pursue research hypotheses that
have less power if the cost of doing so is small, such as when doing an analysis of
data that have already been collected. The investigator should keep in mind, however,
that she might face the difficulty of interpreting (and publishing) a study that may
have found no effect because of insufficient power; the broad confidence intervals will
reveal the possibility of a substantial effect in the population from which the small
study sample was drawn.

Example 6.6 Calculating the Detectable Effect Size When Sample Size is Fixed

Problem: An investigator detevmines that theve are 100 patients with systemic
lupus evythematosus (SLE) who might be willing to participate in a study of whether
a O-week meditation program affects disease activity, as compared with a control
group that veceives a pamphlet describing velaxation. If the standarvd deviation of the
change in a validated SLE disease activity scale scove is expected to be five points in
both the contvol and the treatment groups, what size difference will the investigator
be able to detect between the two groups, at o (two-sided) = 0.05 and g = 0.20?

Solution: In Table 6A, reading down from o (two-sided) = 0.05 and g = 0.20
(the vightmost colummn in the middle triad of numbers), 45 patients per group are
requirved to detect n standardized effect size of 0.6, which is equal to three points
(0.6 x 5 points). The investigator (who will have about 50 patients per group) will
be able to detect a difference of a little less than three points between the two groups.

STRATEGIES FOR MINIMIZING SAMPLE SIZE
AND MAXIMIZING POWER

When the estimated sample size is greater than the number of subjects that can be
studied realistically, the investigator should proceed through several steps. First, the
calculations should be checked, as it is easy to make mistakes. Next, the “‘ingredients”
should be reviewed. Is the effect size unreasonably small or the variability unreason-
ably large? Could o or B, or both, be increased without harm? Would a one-sided
alternative hypothesis be adequate? Is the confidence level too high or the interval
unnecessarily narrow?

These technical adjustments can be useful, but it is important to realize that
statistical tests ultimately depend on the information contained in the data. Many
changes in the ingredients, such as reducing power from 90% to 80%, do not
improve the quantity or quality of the data that will be collected. There are, however,
several strategies for reducing the required sample size or for increasing power for
a given sample size that actually increase the information content of the collected
data. Many of these strategies involve modifications of the research hypothesis; the
investigator should carefully consider whether the new hypothesis still answers the
research question that she wishes to study.

Use Continuous Variables
When continuous variables are an option, they usually permit smaller sample sizes
than dichotomous variables. Blood pressure, for example, can be expressed either as



Chapter 6 = Estimating Sample Size and Power: Applications and Examples 77

millimeters of mercury (continuous) or as the presence or absence of hypertension
(dichotomous). The former permits a smaller sample size for a given power or a
greater power for a given sample size.

In Example 6.7, the continuous outcome addresses the effect of nutrition supple-
ments on muscle strength among the elderly. The dichotomous outcome is concerned
with its effects on the proportion of subjects who have at least a minimal amount of
strength, which may be a more valid surrogate for potential fall-related morbidity.

Example 6.7 Use of Continuous versus Dichotomous Variables

Problem: Consider a placebo-controlled trial to determine the effect of nutrition
supplements on strength in eldevly nursing home residents. Previous studies have
established that quadriceps strength (as peak torque in newton-meters) is approxi-
mately normally distributed, with o mean of 33 N-m and a standard deviation of 10
N-m, and that about 10% of the elderly have very weak muscles (strength <20 N-m).
Nutrition supplements for 6 months ave anticipated to increase strength by 5 N-m as
compared with the usual diet. This change in mean stvength can be estimated, based
on the distribution of quadriceps strength in the elderly, to covvespond to a reduction
in the proportion of the elderly who are very weak to about 5%.

One design might treat strength as a dichotomous varviable: very weak versus not
very weak. Another might use all the information contained in the measurement
and treat strength as o continuous variable. How many subjects wounld each design
requive at o (two-sided) = 0.05 and B = 0.20? How does the change in design affect
the vesearch question?

Solution: The ingredients for the sample size calculation using a dichotomous
outcome varviable (very weak versus not very weak) arve as follows:

1. Null Hypothesis: The proportion of elderly nuvsing home residents who ave very
weak (peak quadriceps torque <20 N-m) after veceiving 6 months of nutrition
supplements is the same as the proportion who ave very weak in those on a usual diet.
Alternative Hypothesis: The proportion of elderly nursing home residents who
arve very weak (peak quadriceps torque <20 N-m) after veceiving 6 months of
nutrition supplements differs from the propovtion in those on o usual diet.

2. Py (prevalence of being very weak on usual diet) = 0.10; Py (in supplement
group) = 0.05. The smaller of these values is 0.05, and the difference between
them (P, — P5) is 0.05.

3. a(two-sided) = 0.05; B = 0.20.

Using Table 6B.1, veading across from 0.05 in the leftmost column and down
Sfrom an expected difference of 0.05, the middle number (for o [two-sided] = 0.05
and B = 0.20), this design would requirve 473 subjects per group.

The ingredients for the sample size calculation using a continuous outcome
varviable (quadriceps strength as peak torque) ave as follows:

1. Null Hypothesis: Mean quadriceps strength (as peak torque in N-m) in elderly
nursing home vesidents after veceiving 6 months of nutrition supplements is the
same as mean quadriceps strength in those on a usual diet.
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Alternative Hypothesis: Mean quadriceps strength (as peak torque in N-m) in
elderly nursing home rvesidents after veceiving 6 months of nutrition supplements
differs from mean quadriceps strength in those on o usual diet.

2. Effect size=5 N-m

. Standard deviation of quadviceps strength = 10 N-m

4. Standarvdized effect size = effect size =~ standavd deviation =5 N-m =10 N-m
= 0.5.

5. a (two-sided) 0.05; B = 0.20.

w

Using Table 0A, reading across from a standardized effect size of 0.50, with
o (two-sided) = 0.05 and B = 0.20, this design would require about 64 subjects in
each group. (In this example, the shovtcut sample size estimate from page 68 of
16 + (standardized effect size)?, or 16 = 0.5° gives the same estimate of 64 subjects
per group.) The bottom line is that the use of an outcome variable that was continuous
rather than dichotomous meant that a substantially smaller sample size needed to
study this vesearch question

Use Paired Measurements

In some experiments or cohort studies with continuous outcome variables, paired
measurements—one at baseline, another at the conclusion of the study—can be made
in each subject. The outcome variable is the change between these two measurements.
In this situation, a ¢ test on the paired measurements can be used to compare the
mean value of this change in the two groups. This technique often permits a smaller
sample size because, by comparing each subject with herself, it removes the baseline
between-subject part of the variability of the outcome variable. For example, the
change in weight on a diet has less variability than the final weight, because final
weight is highly correlated with initial weight. Sample size for this type of # test is
estimated in the usual way, except that the standardized effect size (E/S in Table 6A)
is the anticipated difference in the change in the variable divided by the standard
deviation of that change.

Example 6.8 Use of the  Test with Paired Measurements

Problem: Recall Example 6.1, in which the investigator studying the treatment
of asthma is intevested in detevmining whether salbutamol can improve FEVy by
200 mL compared with ipratropium bromide. Sample size calculntions indicated
that 394 subjects per group ave needed, more than ave likely to be availnble.
Fortunately, a colleague points out that asthmatic patients have great differences
in their FEVy values before treatment. These between-subject diffevences account
for much of the varviability in FEV\ after treatment, thevefore obscurving the effect
of treatment. She suggests using a paived t test to compave the changes in FEV)
in the two groups. A pilot study finds that the standard deviation of the change
in FEV) ds only 250 mL. How many subjects would be requived per group, at
a (two-sided) = 0.05 and B = 0.20?
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Solution: The ingredients for the sample size calculation are as follows:

1. Null Hypothesis: Change in mean FEV\ after 2 weeks of treatment is the
same in asthmatic patients treated with salbutamol as it is in those treated with
ipratropium bromide.

Alternative Hypothesis: Change in mean FEV) after 2 weeks of treatment is
diffevent in asthmatic patients treated with salbutamol from what it is in those
treated with ipratropium bromide.

2. Effect size = 200 mL.

. Standard deviation of the outcome variable = 250 mL.

4. Standardized effect size = effect size +— standard deviation = 200 mL
250 mL = 0.8.

5. a(two-sided) = 0.05; 8 = 1 — 0.80 = 0.20.

w

Using Table 6A, this design would require about 26 participants per group, a
much move reasonable sample size than the 394 per group in “Example 6.17. In
this example, the shortcut sample size estimate of 16 + (standardized effect size)?,
or 16 = 0.8’ gives o similar estimate of 25 subjects per group.

A Brief Technical Note. This chapter always refers to two-sample ¢ tests, which
are used when comparing the mean values of an outcome variable in two groups
of subjects. A two-sample ¢ test can be unpaired, if the outcome variable itself is
being compared between two groups (see “Example 6.1””), or paired if the outcome
is the change in a pair of measurements, say before and after an intervention (see
“Example 6.8”).

A third type of ¢ test, the one-sample paired t test, compares the mean change
in a pair of measurements within a single group to zero change. This type of analysis
is reasonably common in time series designs (Chapter 10), a before—after approach
to examining treatments that are difficult to randomize (for example, the eftect of
clective hysterectomy, a decision few women are willing to leave to a coin toss, on
quality of life). However, it is a fairly weak design because the absence of a comparison
group makes it difficult to know what would have happened had the subjects been
left untreated (Chapter 10). When planning a study that will be analyzed with a
one-sample paired # test, the sample size in Appendix 6A represents the toza/ number
of subjects (because there is only one group). Appendix 6F presents additional
information on the use and misuse of one- and two-sample ¢ tests.

Use More Precise Variables

Because they reduce variability, more precise variables permit a smaller sample size
in both analytic and descriptive studies. Even a modest change in precision can have
a substantial effect on sample size. For example, when using the # test to estimate
sample size, a 20% decrease in the standard deviation of the outcome variable results
in a 36% decrease in the sample size. Techniques for increasing the precision of a
variable, such as making measurements in duplicate, are presented in Chapter 4.

Use Unequal Group Sizes
Because an equal number of subjects in each of two groups usually gives the greatest
power for a given total number of subjects, Tables 6A, 6B.1, and 6B.2 in the
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appendixes assume equal sample sizes in the two groups. Sometimes, however, the
distribution of subjects is not equal in the two groups, or it is easier or less expensive
to recruit study subjects for one group than the other. It may turn out, for example,
that an investigator wants to estimate sample size based on the 30% of the subjects
in a cohort who smoke cigarettes (compared with 70% who do not smoke). Or, in
a case—control study, the number of persons with the disease may be small, but it
may be possible to sample a much larger number of controls. In general, the gain
in power when the size of one group is increased to twice the size of the other is
considerable; tripling and quadrupling one of the groups provide progressively smaller
gains. Sample sizes for unequal groups can be computed from the formulas found in
the text to Appendixes 6A and 6B or from the Web.

Here is a useful approximation for estimating sample size for case—control studies
of dichotomous risk factors and outcomes using ¢ controls per case. If # represents
the number of cases that would have been required for one control per case (at a given
o, B, and effect size), then the approximate number of cases (#') with ¢#’ controls
that will be required is

W =[(c+1)=+2c] x n

For example, with ¢ = 2 controls per case, then [(2+ 1)+ (2 x 2)] x n = 3/4 x
n, and only 75% as many cases are needed. As ¢ gets larger, #’ approaches 50% of »
(when ¢ = 10, for example, »* = 11/20 x ).

Example 6.9 Use of Multiple Controls per Case in a Case-Control Study

Problem: An investigator is studying whether exposure to household insecticide is
a visk fuctor for aplastic anemin. The oviginal sample size calculation indicated that
25 cases would be vequived, using one control per case. Suppose that the investigator
has access to only 18 cases. How should the investigator proceed?

Solution: The investigator should consider using multiple controls per case (after
all, she can find many patients who do not have aplastic anemin). By using three
controls per case, for example, the approximate number of cases that will be required
is[(3+1)+(2x 3)] x 25=17.

Use a More Common Outcome

When the outcome is dichotomous, using a more frequent outcome, up to a frequency
of 0.5, is usually one of the best ways to increase power: if an outcome occurs more
often, there is more of a chance to detect its predictors. Power actually depends
more on the number of subjects with a specified outcome than it does on the total
number of subjects in the study. Studies with rare outcomes, like the occurrence of
breast cancer in healthy women, require very large sample sizes to have adequate
power.

One of the best ways to make an outcome more common is to enroll sub-
jects at greater risk of developing that outcome (such as women with a family
history of breast cancer). Others are to extend the follow-up period, so that
there is more time to accumulate outcomes, or to loosen the definition of what
constitutes an outcome (e.g., by including ductal carcinoma i situ). All these tech-
niques, however, may change the research question, so they should be used with
caution.
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Example 6.10 Use of a More Common Outcome

Problem: Suppose an investigator is comparing the efficacy of an antiseptic gargle
versus a placebo gargle in preventing upper vespivatory infections. Her initinl
calculations indicated that her anticipated sample of 200 volunteer college students
was inadequate, in part because she expected thatr only about 20% of her subjects
would have an upper vespivatory infection durving the 3-month follow-up period.
Suggest a few changes in the study plan.

Solution: Here ave two possible solutions: (a) study a sample of pediatric interns
and vesidents, who arve likely to experience a much greater incidence of upper
respiratory infections than college students; or (b) follow the sample for a longer
period of time, say 6 or 12 months. Both of these solutions involve modification of the
reseavch hypothesis, but neither change seems sufficiently large to affect the overall
research question about the efficacy of antiseptic gargle.

HOW TO ESTIMATE SAMPLE SIZE WHEN THERE
IS INSUFFICIENT INFORMATION

Often the investigator finds that she is missing one or more of the ingredients for
the sample size calculation and becomes frustrated in her attempts to plan the study.
This is an especially frequent problem when the investigator is using an instrument
of her design (such as a new questionnaire on quality of life in patients with urinary
incontinence). How should she go about deciding what effect size or standard
deviation to use?

The first strategy is an extensive search for previous and related findings on the
topic and on similar research questions. Roughly comparable situations and mediocre
or dated findings may be good enough. (For example, are there data on quality of
life among patients with other urologic problems, or with related conditions like
having a colostomy?) If the literature review is unproductive, she should contact
other investigators about their judgment on what to expect, and whether they are
aware of any unpublished results that may be relevant. If there is still no information
available, she may consider doing a small pilot study or obtaining a data set for a
secondary analysis to obtain the missing ingredients before embarking on the main
study. (Indeed, a pilot study is highly recommended for almost all studies that involve
new instruments, measurement methods, or recruitment strategies. They save time in
the end by enabling investigators to do a much better job planning the main study).
Pilot studies are useful for estimating the standard deviation of a measurement,
or the proportion of subjects with a particular characteristic. Another trick is to
recognize that for continuous variables that have a roughly bell-shaped distribution,
the standard deviation can be estimated as one-quarter of the difference between
the high and low ends of the range of values that occur commonly, ignoring extreme
values. For example, if most subjects are likely to have a serum sodium level between
135 and 143 mEq/L, the standard deviation of serum sodium is about 2 mEq/L
(1/4 x 8 mEq/L).

Alternatively, the investigator can determine the detectable effect size based on
a value that she considers to be clinically meaningful. For example, suppose that an
INVESLIGALOr 1S StUdying o new invasive tveatment for seveve vefractory gastroparesis, a
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condition in which at most 5% of patients improve spontancously. If the treatment is
shown to be effective, she thinks that gastroenterologists would be willing to treat up to five
patients to produce a sustained benefit in one of those patients (because the treatment has
substantial side effects and is expensive, she doesn’t think that the number would be more
than 5). A number needed to treat (NNT) of 5 corvesponds to a visk diffevence of 20%
(NNT = 1/7isk diffevence), so the investigator should estimate the sample size based on
a comparison of P1 = 5% versus P2 = 25% (i.e., 59 subjects per group at a power of 0.80
and a two-sided o of 0.05).

Another strategy, when the mean and standard deviation of a continuous or
categorical variable are in doubt, is to dichotomize that variable. Categories can
be lumped into two groups, and continuous variables can be split at their mean
or median. For example, dividing quality of life into “‘better than the median” or
“the median or less’ avoids having to estimate its standard deviation in the sample,
although one still has to estimate what proportions of subjects would be above the
median in the two groups being studied. The chi-squared statistic can then be used
to make a reasonable, albeit somewhat high, estimate of the sample size.

If all this fails, the investigator should just make an educated guess about the
likely values of the missing ingredients. The process of thinking through the problem
and imagining the findings will often result in a reasonable estimate, and that is what
sample size planning is about. This is usually a better option than just deciding to
design the study to have 80% power at a two-sided & of 0.05 to detect a standardized
effect size of, say, 0.5 between the two groups (# = 64, per group, by the way). Very
few grant reviewers will accept that sort of arbitrary decision.

B coMMON ERRORS TO AVOID

Many inexperienced investigators (and some experienced ones!) make mistakes when
planning sample size. A few of the more common ones follow:

1. The most common error is estimating the sample size late during the design of
the study. Do it early in the process, when fundamental changes can still be made.

2. Dichotomous variables can appear to be continuous when they are expressed
as a percentage or rate. For example, vital status (alive or dead) might be
misinterpreted as continuous when expressed as percent alive. Similarly, in survival
analysis a dichotomous outcome can appear to be continuous (e.g., median survival
in months). For all of these, the outcome itself is actually dichotomous and the
appropriate simple approach in planning sample size would be the chi-squared test.

3. The sample size estimates the number of subjects with outcome data, not the num-
ber who need to be enrolled. The investigator should always plan for dropouts
and subjects with missing data.

4. The tables at the end of the chapter assume that the two groups being studied have
equal sample sizes. Often that is not the case; for example, a cohort study of whether
use of vitamin supplements reduces the risk of sunburn would probably not enroll
equal numbers of subjects who used, or did not use, vitamins. If the sample sizes
are not equal, then the formulas that follow the tables or the Web should be used.
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When using the # test to estimate the sample size, what matters is the standard
deviation of the outcome variable. Therefore if the outcome is change in a con-
tinuous variable, the investigator should use the standard deviation of that change
rather than the standard deviation of the variable itself.

. Be aware of clustered data. If there appear to be two “levels” of sample size (e.g.,

one for physicians and another for patients), clustering is a likely problem and the
tables in the appendices do not apply.

B summARY

1.

When estimating sample size for an analytic study, the following steps need to
be taken: (a) state the null and alternative hypotheses, specifying the number of
sides; (b) select a statistical test that could be used to analyze the data, based on
the types of predictor and outcome variables; (c) estimate the effect size (and
its variability, if necessary); and (d) specify appropriate values for e and f, based
on the importance of avoiding Type I and Type II errors.

. Other considerations in calculating sample size for analytic studies include adjusting

for potential dropouts, and strategies for dealing with categorical variables,
survival analysis, clustered samples, multivariate adjustment, and equivalence
studies.

. The steps for estimating sample size for descriptive studies, which do not have

hypotheses, are to (a) estimate the proportion of subjects with a dichotomous
outcome or the standard deviation of a continuous outcome; (b) specify the
desired precision (width of the confidence interval); and (c) specify the confidence
level (e.g., 95%).

. When sample size is predetermined, the investigator can work backward to estimate

the detectable effect size or, less commonly, the power.

. Strategies to minimize the required sample size include using continuous vari-

ables, more precise measurements, paired measurements, unequal group sizes,
and more common outcomes.

. When there seems to be not enough information to estimate the sample size, the

investigator should review the literature in related areas, do a small pilot study
or choose an effect size that is clinically meaningful; standard deviation can be
estimated as 1/4 of the range of commonly encountered values. If none of these
is feasible, an educated guess can give a useful ballpark estimate.
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B APPENDIX 6A

Sample Size Required per Group When Using the t Test to
Compare Means of Continuous Variables

TABLE 6A  Sample Size per Group for Comparing Two Means

One-sided « = 0.005 0.025 0.05

Two-sided « = 0.01 0.05 0.10
E/S* = 0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20
0.10 3,565 2978 2,338 2,600 2,103 1,571 2,166 1,714 1,238
0.15 1,586 1,325 1,040 1,157 935 699 963 762 551
0.20 893 746 586 651 527 394 542 429 310
0.25 572 478 376 417 338 253 347 275 189
0.30 398 333 262 290 2385 176 242 191 1€
0.40 225 188 148 164 133 100 136 108 78
0.50 145 121 96 105 86 64 88 70 51
0.60 101 85 67 74 60 45 61 49 36
0.70 75 63 50 55 44 34 45 36 26
0.80 58 49 39 42 34 26 35 28 21
0.90 46 39 21 34 27 21 28 22 16
1.00 38 32 26 27 23 17 23 18 14

* E/S is the standardized effect size, computed as £ (expected effect size) divided by S (SD of the outcome variable).
To estimate the sample size, read across from the standardized effect size, and down from the specified values of « and
B for the required sample size in each group.

Calculating Variability

Variability is usually reported as either the standard deviation or the standard error of
the mean (SEM). For the purposes of sample size calculation, the standard deviation
of the variable is most useful. Fortunately, it is easy to convert from one measure to
another: the standard deviation is simply the standard error times the square root of
N, where N is the number of subjects that makes up the mean. Suppose a study
reported that the weight loss in 25 persons on a low-fiber diet was 10 £ 2 kg (mean
4+ SEM). The standard deviation would be 2 x +/25 = 10 kg.

General Formula for Other Values
The general formula for other values of E, S, «, and B, or for unequal group sizes, is
as follows. Let:

%, = the standard normal deviate for o (If the alternative hypothesis is
two-sided, z, = 2.58when a = 0.01,
Ze = 1.96 when @ = 0.05,and z, = 1.645 when o = 0.10. If the

alternative hypothesis is one-sided,

2y = 1.645 when o = 0.05.)

zg = the standard normal deviate for B (zg = 0.84 when g = 0.20, and
zg = 1.282when g = 0.10)

g = proportion of subjects in group 1

4> = proportion of subjects in group 2

N = total number of subjects required
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Then:
N=[(1/q +1/02)8*(z + 25)°] + E*.

Readers who would like to skip the work involved in hand calculations with this for-
mula can get an instant answer from a calculator on our website (www.epibiostat.ucsf.
edu/dcr/)(Because this formula is based on approximating the ¢ statistic with a z
statistic, it will slightly underestimate the sample size when N is less than about 30.
Table 6A uses the ¢ statistic to estimate sample size.)


http://www.epibiostat.ucsf.edu/dcr/
http://www.epibiostat.ucsf.edu/dcr/
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) APPENDIX 6B

Sample Size Required per Group When Using the

Chi-Squared Statistic or Z Test to Compare Proportions of
Dichotomous Variables

TABLE 6B.1  Sample Size per Group for Comparing Two Proportions

Upper number: « =0.05 (one-sided) or « =0.10 (two-sided); $ =0.20
Middle number: « =0.025 (one-sided) or « =0.05 (two-sided); 8 = 0.20

Lower number: « =0.025 (one-sided) or « =0.05 (two-sided); $=0.10

Smaller Difference Between P; and P,
of P; and Py* 0.05 0.10 0.15 020 025 030 035 0.40 0.45 0.50

0.05 381 129 72 47 35 27 22 18 15 13
473 159 88 59 43 33 26 22 18 16

620 207 113 75 54 41 33 27 23 19

0.10 578 175 91 58 41 31 24 20 16 14
724 219 112 72 51 37 29 24 20 17

958 286 146 92 65 48 37 30 25 21

0.15 751 217 108 67 46 34 26 21 17 15
944 270 133 82 57 41 32 26 21 18

1,252 354 174 106 73 53 42 33 26 22

0.20 900 251 121 74 50 36 28 22 18 15
1,133 313 151 91 62 44 34 27 22 18

1,504 412 197 118 80 57 44 34 27 23

0.25 1,024 278 132 79 53 38 29 23 18 15
1,289 348 165 98 66 47 35 28 22 18

1,714 459 216 127 85 60 46 35 28 23

0.30 1,123 300 141 83 55 39 29 23 18 15
1,415 376 175 103 68 48 36 28 22 18

1,883 496 230 134 88 62 47 36 28 23

0.35 1,197 315 146 85 56 39 29 23 18 15
1,509 395 182 106 69 48 36 28 22 18

2,009 522 239 138 90 62 47 35 27 22

0.40 1,246 325 149 86 56 39 29 22 17 14
1,572 407 186 107 69 48 35 27 21 17

2,093 538 244 139 90 62 46 34 26 21

0.45 1,271 328 149 85 55 38 28 21 16 13
1,603 411 186 106 68 47 34 26 20 16

2,135 543 244 138 88 60 44 33 25 19

0.50 1,271 325 146 83 B8] 36 26 20 15 —
1,603 407 182 103 66 44 32 24 18 —

2,135 538 239 134 85 57 42 30 23 —

0.55 1,246 315 141 79 50 34 24 18 — —
1,572 395 175 98 62 41 29 22 — —

2,093 522 230 127 80 53 37 27 — —
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TABLE 6B.1 (Continued)

Upper number: « =0.05 (one-sided) or « =0.10 (two-sided); $=0.20
Middle number: « =0.025 (one-sided) or « =0.05 (two-sided); $=0.20
Lower number: « =0.025 (one-sided) or « =0.05 (two-sided); 3 =0.10

Difference Between P; and P,

Smaller
of P; and Py* 0.05 010 0.15 020 025 030 035 0.40 0.45 0.50

0.60 1,197 300 132 74 46 31 22 — — —
1,509 376 165 91 57 37 26 — — —

2,009 496 216 118 73 48 33 - — —

0.65 1,123 278 121 67 41 27 — - — —
1,415 348 151 82 51 33 — — — —

1,883 459 197 106 65 41 — - — —

0.70 1,024 251 108 58 35 — — — — —
1,289 313 133 72 43 — — — — —

1,714 412 174 92 54 — — — — —

0.75 900 217 91 47 — — — — — —
1,133 270 112 59 - — — - — —

1,504 354 146 75 — — — — — —

0.80 751 175 72 — — — — — — —
944 219 88 — — — — — — —

1,252 286 113 — — — — — — —

0.85 578 129 — — — — — — — —
724 159 - — - - — - — —

958 207 — — — — — — — —

0.90 381 — — — - — — - — —
473 — — — — — — — — —

620 — — — — — — — — —

The one-sided estimates use the z statistic.

* Py represents the proportion of subjects expected to have the outcome in one group; P, in the other group. (In a
case—control study, P; represents the proportion of cases with the predictor variable; P, the proportion of controls with
the predictor variable.) To estimate the sample size, read across from the smaller of P, and P,, and down the expected
difference between P; and P,. The three numbers represent the sample size required in each group for the specified
values of ¢ and B.

Additional detail for A, and P, between 0.01 and 0.10 is given in Table 6B.2.

General Formula for Other Values

The general formula for calculating the zotal sample size (N) required for a study
using the z statistic, where P; and P, are defined above, is as follows (see Appendix
6A for definitions of Z, and Zg). Let

g1 = proportion of subjects in group 1
g» = proportion of subjects in group 2
N = total number of subjects
P=qpDP+ph

Then

_ [2y/PA=P)A/qp +1/p) + 25/Pi(1 — P))(1 /1) + P(1 — P2)(1 /)
B (P — Py)? '

N
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Readers who would like to skip the work involved in hand calculations with this for-
mula can get an instant answer from a calculator on our website (www.epibiostat.ucsf.
edu/dcr/) (This formula does not include the Fleiss-Tytun-Ury continuity correc-
tion and therefore underestimates the required sample size by up to about 10%.
Tables 6B.1 and 6B.2 do include this continuity correction.)

TABLE 6B.2 Sample Size per Group for Comparing Two Proportions, the Smaller
of Which Is Between 0.01 and 0.10

Upper number: & = 0.05 (one-sided) or « = 0.10 (two-sided); § = 0.20
Middle number: « = 0.025 (one-sided) or « = 0.05 (two-sided); 8 = 0.20
Lower number: ¢ = 0.025 (one-sided) or « = 0.05 (two-sided); § = 0.10

Expected Difference Between P; and P,

Smaller
of P; and P, 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.01 2,019 700 396 271 204 162 134 114 98 87

2,512 864 487 332 249 197 163 138 120 106

3,300 1,125 631 428 320 254 209 178 154 135

0.02 3,205 994 526 343 249 193 157 131 113 97
4,018 1,237 651 423 306 238 192 161 137 120

5,320 1,625 852 550 397 307 248 207 177 154

0.03 4,367 1,283 653 414 294 224 179 148 126 109
5,493 1,602 813 512 363 276 220 182 154 133

7,296 2,114 1,067 671 474 359 286 236 199 172

0.04 5,505 1,564 777 482 337 254 201 165 139 119
6,935 1,959 969 600 419 314 248 203 170 146

9,230 2,593 1,277 788 548 410 323 264 221 189

0.05 6,616 1,838 898 549 380 283 222 181 151 129
8,347 2,308 1,123 686 473 351 275 223 186 159

11,123 3,061 1,482 902 620 460 360 291 242 206

0.06 7,703 2,107 1,016 615 422 312 243 197 163 11888
9,726 2,650 1,272 769 526 388 301 243 202 171

12,973 3,518 1,684 1,014 691 508 895 318 263 223

0.07 8,765 2,369 1,131 680 463 340 263 212 175 148
11,076 2,983 1,419 850 577 423 327 263 217 183

14,780 3,965 1,880 123 760 555 429 343 283 239

0.08 9,803 2,627 1,244 743 502 367 282 227 187 158
12,393 3,308 1,562 930 627 457 352 282 232 195

16,546 4,401 2072 1,229 827 602 463 369 303 255

0.09 10,816 2,877 1,354 804 541 393 302 241 198 167
13,679 3,626 1,702 1,007 676 491 377 300 246 207

18,270 4,827 2,259 1,333 893 647 495 393 322 270

0.10 11,804 3,121 1,461 863 578 419 320 255 209 175
14,933 3,936 1,838 1,083 724 523 401 318 260 218

19,952 5,242 2,441 1,434 957 690 527 417 341 285

—_

The one-sided estimates use the z statistic.


http://www.epibiostat.ucsf.edu/dcr/
http://www.epibiostat.ucsf.edu/dcr/
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# APPENDIX 6C
Total Sample Size Required When Using the Correlation
Coefficient (r)

TABLE 6C Sample Size for Determining Whether a Correlation Coefficient
Differs from Zero
One-sided o = 0.005 0.025 0.05
Two-sided o = 0.01 0.05 0.0101
B= 0.05 010 020 0.05 0.10 0.20 0.05 0.10 0.20
’.*

0.05 7,118 5947 4,663 5,193 4,200 3,134 4,325 3,424 2,469
0.10 1,773 1,481 1,162 1,294 1,047 782 1,078 854 616
0.15 783 655 514 572 463 346 477 378 273
0.20 436 365 287 319 259 194 266 211 153
0.25 276 231 182 202 164 123 169 134 98
0.30 189 158 125 139 113 85 116 92 67
0.35 136 114 90 100 82 62 84 67 49
0.40 102 86 68 75 62 47 63 51 37
0.45 79 66 53 58 48 36 49 39 29
0.50 62 52 42 46 38 29 39 31 23
0.60 40 34 27 30 25 19 26 21 16
0.70 27 23 19 20 17 13 17 14 11
0.80 18 15 13 14 12 9 12 10 8

*To estimate the total sample size, read across from r (the expected correlation coefficient) and down from the specified
values of « and 8.

General Formula for Other Values

The general formula for other values of 7, &, and 8 is as follows (see Appendix 6A for
definitions of Z, and Zg). Let

7 = expected correlation coefficient
C=0.5xIn[(I+7)/(1—7)]
N = Total number of subjects required
Then
N =[(z +2) = C]* +3.
Estimating Sample Size for Difference between Two Correlations

If testing whether a correlation, 7, is different from 7, (i.e., the null hypothesis is that
71 = 7; the alternative hypothesis is that 7 # 72), let

C1 =05 xIn[(14+7)/(1=7)]
Gy =0.5 x In[(14 73)/(1 = 72)]
Then

N =[(z+2)+(Cl— C) +3.
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) APPENDIX 6D

Sample Size for a Descriptive Study of a Continuous
Variable

TABLE 6D Sample Size for Common Values of W/ /S*

Confidence Level

w/s 90% 95% 99%
0.10 1,083 1,537 2,665
0.15 482 683 1,180
0.20 271 385 664
0.25 174 246 425
0.30 121 171 295
0.35 89 126 217
0.40 68 97 166
0.50 44 62 107
0.60 31 43 74
0.70 28 32 55
0.80 17 25 42
0.90 14 19 33
1.00 11 16 27

* W /S is the standardized width of the confidence interval, computed as W (desired total width) divided by S (standard
deviation of the variable). To estimate the total sample size, read across from the standardized width and down from the
specified confidence level.

General Formula for Other Values
For other values of W, S, and a confidence level of (1 — &), the total number of
subjects required (N) is

N =428+ W?
(see Appendix 6A for the definition of z,).
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# APPENDIX 6E

Sample Size for a Descriptive Study of a Dichotomous

Variable

TABLE 6E

Total Width of Confidence Interval (W)

Upper number: 90% confidence level
Middle number: 95% confidence level
Lower number: 99% confidence level

Sample Size for Proportions

Expected Proportion (P)* 0.10 0.15 020 0.25 0.30 0.35 0.40
0.10 98 44 — — — — —
138 61 - - — - —
239 106 — — — — —
0.15 139 62 35 22 — — —
196 87 49 31 — — —
339 151 85 54 — — —
0.20 174 77 44 28 19 14 —
246 109 61 39 27 20 —
426 189 107 68 47 35 —
0.25 204 91 51 33 23 17 13
288 128 72 46 32 24 18
499 222 125 80 59 41 31
0.30 229 102 57 37 25 19 14
323 143 81 52 36 26 20
559 249 140 89 62 46 35
0.40 261 116 65 42 29 21 16
369 164 92 59 41 30 23
639 284 160 102 71 52 40
0.50 272 121 68 44 30 22 17
384 171 96 61 43 31 24
666 296 166 107 74 54 42

*To estimate the sample size, read across the expected proportion (P) who have the variable of
interest and down from the desired total width (/) of the confidence interval. The three numbers

represent the sample size required for 90%, 95%, and 99% confidence levels.

General Formula for Other Values
The general formula for other values of P, W, and a confidence level of (1 — «),
where P and W are defined above, is as follows. Let

Zy = the standard normal deviate for a two-sided o, where (1 —«) is the

confidence level (e.g.,

since @ = 0.05 for a 95% confidence level, z, = 1.96;

therefore, for a 90% confidence level z, = 1.65, and for a 99% confidence level

zy = 2.58).

Then the total number of subjects required is:

N =422P(1— P) + W?
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B APPENDIX 6F

Use and Misuse of t Tests

Two-sample ¢ tests, the primary focus of this chapter, are used when comparing
the mean values of a variable in two groups of subjects. The two groups can be
defined by a predictor variable—active drug versus placebo in a randomized trial, or
presence versus absence of a risk factor in a cohort study—or they can be defined by
an outcome variable, as in a case—control study. A two-sample ¢ test can be unpaired,
if measurements obtained on a single occasion are being compared between two
groups, or paired if the change in measurements made at two points in time, say
before and after an intervention, are being compared between the groups. A third type
of ¢ test, the one-sample paired ¢ test, compares the mean change in measurements
at two points in time within a single group to zero change.

Table 6F illustrates the misuse of one-sample paired ¢ tests in a study designed
for between-group comparisons—a randomized blinded trial of the effect of a
new sleeping pill on quality of life. In situations like this, some investigators have
performed (and published!) findings with two separate one-sample ¢ tests—one each
in the treatment and placebo groups.

In the table, the P values designated with a dagger (1) are from one-sample
paired ¢-tests. The first P (0.05) shows a significant change in quality of life in the
treatment group during the study; the second P value (0.16) shows no significant
change in the control group. However, this analysis does not permit inferences about
differences between the groups, and it would be wrong to conclude that there was a
significant effect of the treatment.

The P values designated with a (*), represent the appropriate two-sample ¢
test results. The first two P values (0.87 and 0.64) are two-sample unpaired ¢ tests
that show no statistically significant between-group differences in the initial or final
measurements for quality of life. The last P value (0.17) is a two-sample paired ¢
test; it is closer to 0.05 than the P value for the end of study values (0.64) because
the paired mean differences have smaller standard deviations. However, the improved
quality of life in the treatment group (1.3) was not significantly different from that in
the placebo group (0.9), and the correct conclusion is that the study did not find the
treatment to be effective.

TABLE 6F Correct (and Incorrect) Ways to Analyze Paired Data

Quality of Life, as Mean + SD

Time of Measurement Treatment (n = 100) Control (n = 100) P value
Baseline 7.0+£4.5 7.1+ 4.4 0.87*
End of study 8.3+ 4.7 8.0+ 4.6 0.64*
P value 0.05" 0.16"

Difference 1.3+2.1 0.94+2.0 0.17*



Chapter 6 = Estimating Sample Size and Power: Applications and Examples 93

B REFERENCES

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Lehr R. Sixteen S-squared over D-squared: a relation for crude sample size estimates. Staz
Med 1992;11:1099-1102.

Lakatos E, Lan KK. A comparison of sample size methods for the logrank statistic. Stat
Med 1992;11:179-191.

. Shih JH. Sample size calculation for complex clinical trials with survival endpoints. Control

Clin Trials 1995;16:395—407.

. Donner A. Sample size requirements for stratified cluster randomization designs [ published

erratum appears in Stat Med 1997;30;16:2927]. Stat Med 1992;11:743-750.

. Liu G, Liang KY. Sample size calculations for studies with correlated observations. Biometrics

1997:53:937-947.

. Kerry SM, Bland JM. Trials which randomize practices II: sample size. Fam Pract

1998;15:84-87.

. Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J

Epidemiol 1999;28:319-326.

. Edwardes MD. Sample size requirements for case-control study designs. BMC Med Res

Methodol 2001;1:11.

. Drescher K, Timm J, Jockel KH. The design of case-control studies: the effect of con-

founding on sample size requirements. Staz Med 1990;9:765-776.

Lui KJ. Sample size determination for case-control studies: the influence of the joint
distribution of exposure and confounder. Star Med 1990;9:1485-1493.

Vaeth M, Skovlund E. A simple approach to power and sample size calculations in logistic
regression and Cox regression models. Star Med 2004;23:1781-1792.

Dupont WD, Plummer WD Jr. Power and sample size calculations for studies involving
linear regression. Control Clin Trials 1998;19:589-601.

Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear
and logistic regression. Stat Med 1998;17:1623-1634.

Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression
model with nonbinary covariates. Control Clin Trials 2000;21:552-560.

Sasieni PD. From genotypes to genes: doubling the sample size. Biometrics 1997;53:1253—
1261.

Elston RC, Idury RM, Cardon LR, et al. The study of candidate genes in drug trials: sample
size considerations. Stat Med 1999;18:741-751.

Garcia-Closas M, Lubin JH. Power and sample size calculations in case-control studies
of gene-environment interactions: comments on different approaches. Am | Epidemiol
1999;149:689-692.

Torgerson DJ, Ryan M, Ratcliffe J. Economics in sample size determination for clinical
trials. QJM 1995;88:517-521.

Laska EM, Meisner M, Siegel C. Power and sample size in cost-effectiveness analysis. Med
Decis Making 1999;19:339-343.

Willan AR, O’Brien BJ. Sample size and power issues in estimating incremental cost-
effectiveness ratios from clinical trials data. Health Econ 1999;8:203-211.

Patel HI. Sample size for a dose-response study [published erratum appears in J Biopharm
Stat 1994;4:127]. ] Biopharm Stat 1992;2:1-8.

Day SJ, Graham DF. Sample size estimation for comparing two or more treatment groups
in clinical trials. Stat Med 1991;10:33-43.

Nam JM. Sample size determination in stratified trials to establish the equivalence of two
treatments. Stat Med 1995;14:2037-2049.

Bristol DR. Determining equivalence and the impact of sample size in anti-infective studies:
a point to consider. J Biopharm Star 1996;6:319-326.

Tai BC, Lee J. Sample size and power calculations for comparing two independent
proportions in a “‘negative” trial. Psychiatry Res 1998;80:197-200.



94

Basic Ingredients

26.

27.

28.

29.

Hauschke D, Kieser M, Diletti E, et al. Sample size determination for proving equivalence
based on the ratio of two means for normally distributed data. Stat Med 1999;18:93-105.
Obuchowski NA. Computing sample size for receiver operating characteristic studies. Invest
Radiol 1994;29:238-243.

Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence: sample size estimation
for diagnostic test studies. J Clin Epidemiol 1991;44:763-770.

Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies.
Stat Med 1998;17:101-110.



. SEcTION |

Study Designs






]
Designing a Cohort Study

Steven R. Cummings, Thomas B. Newman,
and Stephen B. Hulley

Cohort studies involve following groups of subjects over time. There are two
primary purposes: descriptive, typically to describe the occurrence of certain out-
comes over time; and analytic, to analyze associations between predictors and
those outcomes. This chapter begins with a description of the classic prospec-
tive cohort study, in which the investigator defines the sample and measures
predictor variables before undertaking a follow-up period to observe outcomes.
We then review retrospective cohort studies, which save time and money because
the follow-up period and outcomes have already occurred when the study takes
place, and include highly efficient nested case—control and case-cohort options. The
chapter concludes by describing multiple-cohort studies and reviewing the methods
for optimizing a key ingredient for all cohort designs, cohort retention during
follow-up.

. PROSPECTIVE COHORT STUDIES

Structure

Cohort was the Roman term for a group of soldiers that marched together, and in
clinical research a cohort is a group of subjects followed over time. In a prospective
cohort study, the investigator begins by assembling a sample of subjects (Fig. 7.1).
She measures characteristics in each subject that might predict the subsequent
outcomes, and follows these subjects with periodic measurements of the outcomes of
interest.

97
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FIGURE 7.1. In a prospective cohort study, the investigator (a) selects a sample
from the population (the dotted line signifies its large and undefined size)

(b) measures the predictor variables (in this case whether a dichotomous risk
factor is present [shaded]), and (c¢) measures the outcome variables during
follow-up (in this case whether a disease occurs [outlined in bold]).

Example 7.1 Prospective Cohort Study

in women. The basic steps in performing the study were to:

to participate in the study; those who agreed became the cobort.

Sfactors that had been measured previously.

cancers and other diseases.

confounding fuctors did not change the vesult.

The Nurses’ Health Study examines incidence and risk factors for common diseases

1. Assemble the Cohort. In 1976, the investigators obtained lists of registered
nurses aged 25 to 42 in the 11 most populous states and mailed them an invitation

2. Measure Predictor Variables and Potential Confounders. They mailed
a questionnaive about weight, exercise and other potential risk factors and
obtained completed questionnairves from 121,700 nurses. They send questionnaires
perviodically to ask about additional visk factors and update the status of some risk

3. Follow-up the Cohort and Measure Outcomes. The periodic questionnaires
also included questions about the occurvence of o variety of disease outcomes.

The prospective approach allowed investigators to make measurements at baseline,
and collect data on subsequent outcomes. The large size of the cobort and long period
of follow-up have provided substantial statistical power to study risk factors for

For example, the investigators examined the hypothesis that gaining weight
increases a woman’s visk of breast cancer after menopause (1). The women reporvted
their weight at age 18 in an early questionnairve, and their cuvrent weights in
later questionnaives. The investigators succeeded in following 95% of the women
and 1,517 cases of breast cancer weve confirmed during the next 12 years. Heavier
women had a higher visk of breast cancer after menopause, and those who gained
move than 20 kg since age 18 had a twofold increased visk of developing breast cancer
(relative vish = 2.0; 95% confidence interval, 1.4 to 2.8). Adjusting for potentinl
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Strengths and Weaknesses

The prospective cohort design is a powerful strategy for assessing incidence (the
number of new cases of a condition in a specified time interval), and it is helpful in
investigating the potential causes of the condition. Measuring levels of the predictor
before the outcome occurs establishes the time sequence of the variables and prevents
the predictor measurements from being influenced by knowledge of the outcome.
The prospective approach also allows the investigator to measure variables more
completely and accurately than is possible retrospectively. This is important for
predictors such as dietary habits that are difficult for a subject to remember accurately.
When fatal diseases are studied retrospectively, predictor variables about the decedent
can only be reconstructed from indirect sources such as medical records or friends
and relatives.

All cohort studies share the general disadvantage of observational studies (relative
to clinical trials) that causal inference is challenging and interpretation often muddied
by the influences of confounding variables (Chapter 9). A particular weakness of
the prospective design is its expense and inefliciency for studying rare outcomes.
Even diseases we think of as relatively common, such as breast cancer, happen so
infrequently in any given year that large numbers of people must be followed for
long periods of time to observe enough outcomes to produce meaningful results.
Cohort designs become more efficient as the outcomes become more common
and immediate; a prospective study of risk factors for progression after treatment
of patients with breast cancer will be smaller and less time consuming than a
prospective study of risk factors for the occurrence of breast cancer in a healthy
population.

. RETROSPECTIVE COHORT STUDIES

Structure
The design of a retrospective cohort study (Fig. 7.2) differs from that of a prospective
one in that the assembly of the cohort, baseline measurements, and follow-up have

THE PAST THE PRESENT
l,’ \\‘
4 A Y
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II \\
r—>' Risk factor \ . No
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1 .
1 par Risk factor ll _ No
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FIGURE 7.2. In a retrospective cohort study, the investigator (a) identifies a
cohort that has been assembled in the past, (b) collects data on predictor
variables (measured in the past), and (c) collects data on outcome variables
(measured in the present).
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all happened in the past. This type of study is only possible if adequate data about the
risk factors and outcomes are available on a cohort of subjects that has been assembled
for other purposes.

Example 7.2 Retrospective Cohort Study

To describe the natural history of thovacic aortic aneurysms and visk factors for
rupture of these anenrysms, Clouse et al. analyzed data from the medical records
of 133 patients who had aneuwrysms (2). The basic steps in performing the study
were to

1. Identify a Suitable Cohort. The investigators used the vesidents of Olm-
sted County, Minnesota. They searched a database of diagnoses made between
1980 and 1995 and found 133 rvesidents who had a diagnosis of aortic
ANCUrySIm.

2. Collect Data about Predictor Variables. They reviewed patients’ recorvds to
collect gender, age, size of aneurysm, and visk factors for cavdiovascular disease
at the time of diagnosis.

3. Collect Data about Subsequent Outcomes. They collected data from the
medical records of the 133 patients to determine whether the aneurysm rupturved
or was surgically repaired.

The investigators found that the 5-year visk of rvuptuve was 20% and that women
were 6.8 times move likely to suffer a rupture than men (95% confidence interval,
2.3 t0 20). They also found that 31% of anenrvysms with diameters of move than 6 cm
rupturved, compared with none with diameters of less than 4 cm.

Strengths and Weaknesses

Retrospective cohort studies have many of the same strengths as prospective cohort
studies, and they have the advantage of being much less costly and time consuming.
The subjects are already assembled, baseline measurements have already been made,
and the follow-up period has already taken place. The main disadvantages are the
limited control the investigator has over the approach to sampling the population,
and over the nature and the quality of the predictor variables. The existing data may
be incomplete, inaccurate, or measured in ways that are not ideal for answering the
research question.

. NESTED CASE-CONTROL AND CASE-COHORT
STUDIES!

Structure

A nested case-control design has a case—control study ‘“‘nested” within a cohort
study (Fig. 7.3). It is an excellent design for predictor variables that are expen-
sive to measure and that can be assessed at the end of the study on subjects who

IThese terms are used inconsistently in the literature; the definitions provided here are the simplest. For a detailed
discussion, see Szklo and Nieto (3).
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FIGURE 7.3. In a nested case—control study, the investigator (a) identifies a cohort with banked
specimens, images, or information; (b) identifies those participants who developed the outcome
during follow-up (the cases); (c) selects a sample from the rest of the cohort (the controls); and
(d) measures predictor variables in cases and controls.

develop the outcome during the study (the cases), and on a sample of those who
do not (the controls). The investigator begins with a suitable cohort with enough
cases by the end of follow-up to provide adequate power to answer the research
question. At the end of the study she applies criteria that define the outcome of
interest to identify all those who have developed the outcome (the cases). Next,
she selects a random sample of the subjects who have not developed the out-
come (the controls); she can increase power by selecting two or three controls
for each case, and by matching on constitutional determinants of outcome such
as age and sex (see Chapter 9 for the pros and cons of matching). She then re-
trieves specimens, images or records that were collected before the outcomes had
occurred, measures the predictor variables, and compares the levels in cases and

controls.

The nested case—cohort approach is the same design except that the controls
are a random sample of all the members of the cohort regardless of outcomes.
This means that there will be some cases among those sampled for the comparison
group, who will also appear among the cases and be analyzed as such (removing
them from the cohort sample for purposes of analysis is a negligible problem
provided that the outcome is uncommon). This approach has the advantage that
the controls represent the cohort in general, and therefore provide a basis for
estimating incidence and prevalence in the population from which it was drawn.
More important, it means that this cohort sample can be used as the comparison
group for more than one type of outcome provided that it is not too common. In
Example 7.3, for instance, a single set of sex hormone levels from the baseline exam
measured in a random sample of the cohort could be compared with levels from
baseline in cases with breast cancer in one analysis, and in cases with fractures in

another.
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Example 7.3 Nested Case-Control Design

Cauley et al. carvied out o nested case—control study of whether higher levels of sex
hormones were risk factors for breast cancer, (4). The basic steps in this study weve to

1. Identify a Cohort with Banked Samples. The investigators used serum and
data from the Study of Osteoporotic Fractures, a prospective cobort of 9,704
women age 65 and older.

2. Identify Cases at the End of Follow-up. Based on responses to follow-up
questionnaires and review of death certificates, the investigators identified 97
subjects with a first occurvence of breast cancer during 3.2 years of follow-up.

3. Select Controls. The investigators selected a random sample of 244 women in
the cohort who did not develop breast cancer duving that follow-up peviod.

4. Measure Predictors on Baseline Samples from Cases and Controls. Levels
of estradiol and testosterone weve measured in serum specimens from the baseline
examination that had been stoved at — 190° C by labovatory staff who werve blinded
to case—control status.

Women who had high levels of either estradiol or testostevone had a threefold
increase in the risk of o subsequent diagnosis of breast cancer compared with women
who bad very low levels of these hormones.

Strengths and Weaknesses

Nested case—control and case—cohort studies are especially useful for costly mea-
surements on serum, electronic images, hospital charts, etc. that have been archived
at the beginning of the study and preserved for later analysis. In addition to the cost
savings of not making the measurements on the entire cohort, the design allows the
investigator to introduce novel measurements that were not available at the outset
of the study. The design preserves all the advantages of cohort studies that result
from collecting predictor variables before the outcomes have happened, and it avoids
the potential biases of conventional case—control studies that draw cases and controls
from different populations and cannot make measurements on cases and controls who
have died.

The chief disadvantage of this design is that many research questions and
circumstances are not amenable to the strategy of storing materials for later analysis
on a sample of the study subjects. Also, when data are available for the entire cohort
at no additional cost, nothing is gained by studying only a sample of controls—the
whole cohort should be used.

These are such great designs that an investigator planning a prospective study
should always consider preserving biologic samples and storing images or records that
involve expensive measurements for subsequent nested case—control or case—cohort
analyses. She should ensure that the conditions of storage will preserve substances of
interest for many years, and consider setting aside specimens for periodic measure-
ments to confirm that the components have remained stable. She may also find it
useful to collect new samples or information during the follow-up period that can be
used in the case—control comparisons.
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MULTIPLE-COHORT STUDIES AND EXTERNAL
CONTROLS

Structure

Multiple-cohort studies begin with two or more separate samples of subjects: typically,
one group with exposure to a potential risk factor and one or more other groups with
no exposure or a lower level of exposure (Fig. 7.4). After defining suitable cohorts
with different levels of exposure to the predictor of interest, the investigator measures
predictor variables, follows up the cohorts, and assesses outcomes as in any other type
of cohort study.

The use of two different samples of subjects in a double-cohort design should
not be confused with the use of two samples in the case—control design (Chapter 8).
In a double-cohort study the two groups of subjects are chosen based on the level of
a predictor variable, whereas in a case—control study the two groups are chosen based
on the presence or absence of the outcome.
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FIGURE 7.4. In a prospective double-cohort study, the investigator (a) selects cohorts from two
populations with different levels of the predictor, and (b) measures outcome variables during follow-up.
(Double-cohort studies can also be conducted retrospectively. )
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Example 7.4 Multiple-Cohort Design

To determine whether significant neonatal jaundice or dehydvation has any sig-
nificant adverse effects on neurvodevelopment, investigators from UCSF and the
Northern California Kaiser Permanente Medical Care Program (5) undertook a
triple- cobort study. The basic steps in performing the study were to

1. Identify Cohorts with Different Exposures. The investigators used electronic
databases to identify tevm and neav-tevm newborns who (1) had a total serum
bilirubin level of > 25 myg/dL, or (2) were veadmitted for dehydvation with a
serum sodinwm of > 150 mEq/L or weight loss of > 12% from birth, or (3) were
randomly selected from the bivth cobort.

2. Determine Outcomes: The investigators used electronic databases to search for
diagnoses of neurvological disorders and did full neurodevelopmental examina-
tions at the age of 5 for consenting participants.

With few exceptions, neither hyperbilivubinemia nor debydration was associated
with adverse outcomes.

In a variation on the multiple-cohort design, the outcome rate in a cohort can be
compared with outcome rates in a census or registry from a different population. For
example, in a classic study of whether uranium miners had an increased incidence of
lung cancer, Wagoner et al. (6) compared the incidence of respiratory cancer in 3,415
uranium miners with that of white men who lived in the same states. The increased
incidence of lung cancer observed in the miners helped establish occupational exposure
to ionizing radiation as an important cause of lung cancer.

Strengths and Weaknesses

The multiple-cohort design may be the only feasible approach for studying rare
exposures, and exposures to potential occupational and environmental hazards. Using
data from a census or registry as the external control group has the additional
advantage of being population based and economical. Otherwise, the strengths of this
design are similar to those of other cohort studies.

The problem of confounding is accentuated in a multiple-cohort study because
the cohorts are assembled from different populations that can differ in important ways
(besides exposure to the predictor variable) that influence the outcomes. Although
some of these differences, such as age and race, can be matched or used to adjust the
findings statistically, other characteristics may not be measurable and create problems
in the interpretation of observed associations.

Bl OTHER COHORT STUDY ISSUES

The hallmark of a cohort study is the need to define a group of subjects at the beginning
of a period of follow-up. The subjects should be appropriate to the research question
and available for follow-up. They should sufficiently resemble the population to which
the results will be generalized. The number of subjects should provide adequate power.

The quality of the study will depend on the precision and accuracy of the
measurements of predictor and outcome variables. The ability to draw inferences
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about cause and effect will also depend on the degree to which the investigator has
identified and measured all potential confounders and sources of effect modification
(Chapter 9). Predictor variables may change during the study; whether and how
frequently measurements should be repeated depends on cost, how much the variable
is likely to change, and the importance to the research question of observing these
changes. Outcomes should be assessed using standardized criteria and blindly—
without knowing the values of the predictor variables.

Follow-up of the entire cohort is important, and prospective studies should
take a number of steps to achieve this goal. Loss of subjects can be minimized in
several ways (Table 7.1). Those who plan to move out of reach during the study or
who will be difficult to follow for other reasons should be excluded at the outset. The
investigator should collect information early on that she can use to find subjects if they
move or die. This includes the address, telephone number and e-mail address of the
subject, personal physician and one or two close friends or relatives who do not live in
the same house. It is useful to obtain the social security number and (for those over

TABLE 7.1 Strategies for Minimizing Losses during Follow-up

During enrollment

1. Exclude those likely to be lost
a. Planning to move
b. Uncertainty about willingness to return
c. lll health or fatal disease unrelated to research question
2. Obtain information to allow future tracking
a. Address, telephone number(s), and e-mail address of subject
b. Social Security/Medicare numbers
c. Name, address, telephone number, and e-mail addresses for one or two close
friends or relatives who do not live with the subject
d. Name, e-mail, address, and telephone number of physician(s)

During follow-up

1. Periodic contact with subjects to collect information, provide results, express care, and
SO on.
a. By telephone: may require calls during weekends and evenings
b. By mail: repeated mailings by e-mail or with stamped, self-addressed return cards
c. Other: newsletters, token gifts
2. For those who are not reached by phone or mail:*
a. Contact friends, relatives, or physicians
b. Request forwarding addresses from postal service
c. Seek address through other public sources, such as telephone directories and the
Internet, and ultimately a credit bureau search.
d. For subjects receiving Medicare, collect data about hospital discharges from Social
Security Administration
e. Determine vital status from state health department or National Death Registry

At all times

1. Treat study subjects with appreciation, kindness and respect, helping them to
understand the research question so they will want to join as partners in making the
study successful

* This assumes that participants in the study have given informed consent to collect the tracking information
and for follow-up contact.
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65) the medicare number. This information will allow the investigator to determine
the vital status of subjects who are lost to follow-up using the National Death Index
and to obtain hospital discharge information from the Social Security Administration
for subjects who receive Medicare. Periodic contact with the subjects once or twice
a year helps in keeping track of them, and may improve the timeliness and accuracy
of recording the outcomes of interest. Finding subjects for follow-up assessments
sometimes requires persistent and repeated efforts by mail, e-mail, telephone, house
calls, or professional tracking.

B sumMmARY

1.

In cohort studies, subjects are followed over time to describe the incidence or
natural history of a condition and to analyze predictors (risk factors) for various
outcomes. Measuring the predictor before the outcome occurs establishes the
sequence of events and helps control bias in that measurement.

. Prospective cohort studies begin at the outset of follow-up and may require

large numbers of subjects followed for long periods of time. This disadvantage
can sometimes be overcome by identifying a retrospective cohort in which
measurements of predictor variables have already occurred.

. Another efficient variant is the nested case-control design. A bank of specimens,

images, or records is collected at baseline; measurements are made on the stored
materials for all subjects who have developed an outcome, and for a subset of those
who have not. In the nested case—cohort strategy, a single random sample of the
cohort can serve as the comparison group for several case—control studies.

. The multiple-cohort design, which compares the incidence of outcomes in cohorts

that differ in level of a predictor variable, is useful for studying the effects of rare
and occupational exposures.

. Inferences about cause and effect are strengthened by measuring all potential

confounding variables at baseline. Bias in the assessment of outcomes is prevented
by standardizing the measurements and blinding those assessing the outcome to
the predictor variable values.

. The strengths of a cohort design can be undermined by incomplete follow-up

of subjects. Losses can be minimized by excluding subjects who may not be
available for follow-up, collecting baseline information that facilitates tracking,
staying in touch with all subjects regularly, and involving subjects as partners in
the research.
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u Designing Cross-sectional

and Case-Control Studies
[ ]

Thomas B. Newman, Warren S. Browner, Steven R. Cummings,
and Stephen B. Hulley

Chapter 7 dealt with cohort studies, in which the sequence of the measurements is the
same as the chronology of cause and effect: first the predictor, then (after an interval
of follow-up) the outcome. In this chapter we turn to two kinds of observational
studies that are not guided by this logical time sequence.

In a cross-sectional study, the investigator makes all of her measurements on a
single occasion or within a short period of time. She draws a sample from the popula-
tion and looks at distributions of variables within that sample, sometimes designating
predictor and outcome variables based on biologic plausibility and information from
other sources. In a case—control study, the investigator works backward. She begins
by choosing one sample from a population of patients with the outcome (the cases)
and another from a population without it (the controls); then she compares the
distribution levels of the predictor variables in the two samples to see which ones are
associated with and might cause the outcome.

Bl CROSS-SECTIONAL STUDIES

Structure

The structure of a cross-sectional study is similar to that of a cohort study except that
all the measurements are made at about the same time, with no follow-up period
(Fig. 8.1). Cross-sectional designs are very well suited to the goal of describing
variables and their distribution patterns. In the National Health and Nutrition
Examination Survey (NHANES), for example, a sample designed to represent the
US population is interviewed and examined. NHANES surveys have been carried out
periodically, and an NHANES follow-up (cohort) study has been added to the original
cross-sectional design. Each cross-sectional study is a major source of information
about the health and habits of the US population in the year it is carried out, providing
estimates of such things as the prevalence of smoking in various demographic groups.
All NHANES datasets are available for public use.

109
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FIGURE 8.1. In a cross-sectional study, the
investigator (a) selects a sample from the population
and (b) measures predictor and outcome variables
(e.g., presence or absence of a risk factor and disease).

Cross-sectional studies can also be used for examining associations, although the
choice of which variables to label as predictors and which as outcomes depends on
the cause-and-effect hypotheses of the investigator rather than on the study design.
This choice is easy for constitutional factors such as age and race; these cannot be
altered by other variables and therefore are predictors. For other variables, however,
the choice can go either way. For example, a cross-sectional finding in NHANES 111
is an association between childhood obesity and hours spent watching television (1).
Whether to label obesity or TV-watching as the outcome depends on the question of
interest to the investigator.

Unlike cohort studies, which have a longitudinal time dimension and can be used
to estimate incidence (the proportion who get a disease or condition over time),
cross-sectional studies can generally provide information only about prevalence,
the proportion who have a disease or condition at one point in time (Table 8.1).
Prevalence is useful to health planners who want to know how many people have
certain diseases so that they can allocate enough resources to care for them, and it is
useful to the clinician who must estimate the likelihood that the patient sitting in her
office has a particular disease. When analyzing cross-sectional studies, the prevalence

TABLE 8.1 Statistics for Expressing Disease Frequency in Observational Studies

Type of Study Statistic Definition

N f le wh i iti
Cohort Incidence rate umber of people who .get a d|'sease qr cond|'t|on

Number of people at risk x Time period at risk
. Number of people who have a disease or condition
Cross-sectional Prevalence -
Number of people at risk
Number of people who get (cohort) or report ever
. having acquired (cross-sectional) a disease or condition

Both Cumulative

incidence Number of people at risk
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of the outcome is compared in those with and without an exposure, giving the relative
prevalence of the outcome, the cross-sectional equivalent of relative risk. An example
calculation of prevalence and relative prevalence is provided in Appendix 8A.

Sometimes cross-sectional studies describe the prevalence of ever having done
something or ever having had a disease or condition. In that case, the prevalence is
the same as the cumulative incidence, and it is important to make sure that follow-up
time is the same in those exposed and unexposed. This is illustrated in Example 8.1,
in which the prevalence of ever having tried smoking was studied in a cross-sectional
study of children with differing levels of exposure to movies in which the actors
smoke. Of course, children who had seen more movies were also older, and therefore
had longer to try smoking, so it was very important to adjust for age in analyses
(multivariate adjustment is discussed in Chapter 9).

Example 8.1 Cross-sectional Study

To determine whether exposure to movies in which the actors smoke is associated with
smoking initiation, Sargent et al. (2):

1. Selected the Sample: They did a random-digit-dial survey of 6,522 childven
aged 10 to 14 years.

2. Measured the Variables: They quantified smoking in 532 popular movies and
for each subject asked which of a randomly selected subset of 50 movies they had
seen. Subjects weve also asked about a variety of covaviates such as age, race,
gender, pavental smoking and education, sensation-secking (ey., I like to do
dangerous things”) and self-esteem (eyg., “I wish I were someone else.”’) The
outcome variable was whether the child had ever tried smoking a cigarette.

The prevalence of ever having tried smoking vavied from 2% in the lowest quartile
of movie smoking exposure to 22% in the highest quartile. After adjusting for age and
other confounders, odds ratios were much lower but still significant: 1.7, 1.8, and
2.6 for the second, thivd, and highest quartiles of movie smoking exposure, compared
with the lowest quartile. Based on the adjusted odds ratios, the authors estimated
that 38% of smoking initiation was attributable to exposure to movies in which the
actors smoke.

Strengths and Weaknesses of Cross-sectional Studies

A major strength of cross-sectional studies over cohort studies and clinical trials is that
there is no waiting for the outcome to occur. This makes them fast and inexpensive,
and it means that there is no loss to follow-up. A cross-sectional study can be included
as the first step in a cohort study or experiment at little or no added cost. The results
define the demographic and clinical characteristics of the study group at baseline and
can sometimes reveal cross-sectional associations of interest.

A weakness of cross-sectional studies is the difficulty of establishing causal
relationships from observational data collected in a cross-sectional time frame. Cross-
sectional studies are also impractical for the study of rare diseases if the design
involves collecting data on a sample of individuals from the general population. A
cross-sectional study of stomach cancer in a general population of 45- to 59-year-old
men, for example, would need about 10,000 subjects to find just one case.
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Cross-sectional studies can be done on rare diseases if the sample is drawn from
a population of diseased patients rather than from the general population. A case
series of this sort is better suited to describing the characteristics of the disease than
to analyzing differences between these patients and healthy people, although informal
comparisons with prior experience can sometimes identify very strong risk factors. Of
the first 1,000 patients with AIDS, for example, 727 were homosexual or bisexual
males and 236 were injection drug users (3). It did not require a formal control group
to conclude that these groups were at increased risk. Furthermore, within a sample
of persons with a disease there may be associations of interest (e.g., the higher risk
of Kaposi’s sarcoma among patients with AIDS who were homosexual than among
those who were injection drug users).

When cross-sectional studies measure only prevalence and not cumulative inci-
dence it limits the information they can produce on prognosis, natural history, and
disease causation. To show causation, investigators need to demonstrate that the
incidence of disease differs in those exposed to a risk factor. Because prevalence is
the product of disease incidence and disease duration, a factor that is associated with
higher prevalence of disease may be a cause of the disease but could also be associated
with prolonged duration of the disease. For example, the prevalence of severe depres-
sion is affected not just by its incidence, but by the duration of episodes, the suicide
rate and the responsiveness to medication of those affected. Therefore, cross-sectional
studies may show increased relative prevalence either because the condition occurs
more frequently in those with the exposure, or because the condition lasts longer in
those with the exposure.

Serial Surveys

A series of cross-sectional studies of a single population observed at several points
in time is sometimes used to draw inferences about changing patterns over time.
For example, Zito et al. (4), using annual cross-sectional surveys, reported that
the prevalence of prescription psychotropic drug use among youth (<20 years old)
increased more than threefold between 1987 and 1996 in a mid-Atlantic Medicaid
population. This is not a cohort design because it does not follow a single group of
people over time; there are changes in the population over time due to births, deaths,
aging, migration, and eligibility changes.

Bl CASE-CONTROL STUDIES

Structure
To investigate the causes of all but the most common diseases, both cohort and cross-
sectional studies of general population samples are expensive: each would require
thousands of subjects to identify risk factors for a rare disease like stomach cancer.
A case series of patients with the disease can identify an obvious risk factor (such
as, for AIDS, injection drug use), using prior knowledge of the prevalence of the
risk factor in the general population. For most risk factors, however, it is necessary
to assemble a reference group, so that the prevalence of the risk factor in subjects
with the disease (cases) can be compared with the prevalence in subjects without the
disease (controls).

The retrospective structure of a case—control study is shown in Fig. 8.2. The
study identifies one group of subjects with the disease and another without it, then
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FIGURE 8.2. In a case—control study, the investigator (a) selects a sample from a population
with the disease (cases), (b) selects a sample from a population at risk that is free of the disease
(controls), and (c¢) measures predictor variables.

looks backward to find differences in predictor variables that may explain why the
cases got the disease and the controls did not.

Case—control studies began as epidemiologic studies to try to identify risk factors
for diseases. Therefore the outcome traditionally used to determine case—control status
has been the presence or absence of a disease. For this reason and because it makes
the discussion easier to follow, we generally refer to ““cases’ as those with the disease.
However, the case—control design can also be used to look at other outcomes, such
as disability among those who already have a disease. In addition, when undesired
outcomes are the rule rather than the exception, the cases in a case—control study may
be the rare patients who have had a good outcome, such as recovery from a usually
fatal disease.

Case—control studies are the “house red” on the research design wine list:
more modest and a little riskier than the other selections but much less expensive
and sometimes surprisingly good. The design of a case—control study is challenging
because of the increased opportunities for bias, but there are many examples of
well-designed case—control studies that have yielded important results. These include
the links between maternal diethylstilbestrol use and vaginal cancer in daughters (a
classic study that provided a definitive conclusion based on just seven cases!) (5), and
prone sleeping position to prevent sudden infant death syndrome (6), a simple result
that has saved thousands of lives.
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Example 8.2 Case-Control Study

Becawse intramuscular (IM) vitamin K is given voutinely to newborns in the United
States, a pair of studies reporting a doubling in the visk of childhood cancer amony
those who had veceived IM vitamin K caused quite a stir (7,8). To investigate this
association further, German investigators (9)

1. Selected the Sample of Cases. 107 childven with leukemin from the German
Childbood Cancer Registry.

2. Selected the Sample of Controls. 107 childven matched by sex and date of
birth and vandomly selected from childven living in the same town as the case at
the time of diagnosis (from local government vesidentinl vegistration vecords).

3. Measured the Predictor Variable. Reviewed medical recovds to determine
which cases and controls had veceived IM vitamin K in the newborn period.

The authors found 69 of 107 cases (64%) and 63 of 107 controls (59%) had been
exposed to IM vitamin K, for an odds ratio of 1.2 (95% confidence interval [CI],
0.7 to 2.3). (See Appendix S8A for the calculation.) Therefore, this study did not
confirm the existence of an association between the receipt of IM vitamin K as a
newborn and subsequent childhood leukemin. The point estimate and upper limit of
the 95% CI leave open the possibility of a clinically important increase in lenkemin
in the population from which the samples were dvawn, but several other studies and
an analysis using an additional control group in the example study also foiled to
confirm the association (10,11).

Case—control studies cannot yield estimates of the incidence or prevalence of a
disease because the proportion of study subjects who have the disease is determined
by how many cases and how many controls the investigator chooses to sample, rather
than by their proportions in the population. What case—control studies do provide
is descriptive information on the characteristics of the cases and, more important, an
estimate of the strength of the association between each predictor variable and the
presence or absence of the disease. These estimates are in the form of the odds ratio,
which approximates the relative risk if the prevalence of the disease is relatively low
(about 10% or less) (Appendix 8B).

Strengths of Case-Control Studies

Efficiency for Rare Outcomes. One of the major strengths of case—control studies is
their rapid, high yield of information from relatively few subjects. Consider a study
of the effect of circumcision on subsequent carcinoma of the penis. This cancer is
very rare in circumcised men but is also rare in uncircumcised men: their lifetime
cumulative incidence is about 0.16% (12). To do a cohort study with a reasonable
chance (80%) of detecting even a very strong risk factor (say a relative risk of 50)
would require more than 6,000 men, assuming that roughly equal proportions were
circumcised and uncircumcised. A randomized clinical trial of circumcision at birth
would require the same sample size, but the cases would occur at a median of 67
years after entry into the study—it would take three generations of epidemiologists
to follow the subjects!
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Now consider a case—control study of the same question. For the same chance
of detecting the same relative risk, only 16 cases and 16 controls (and not much
investigator time) would be required. For diseases that are either rare or have long
latent periods between exposure and disease, case—control studies are far more efficient
than the other designs. In fact, they are often the only feasible option.

Usefulness for Generating Hypotheses. The retrospective approach of case—control
studies, and their ability to examine a large number of predictor variables makes them
useful for generating hypotheses about the causes of a new outbreak of disease. For
example, a case—control study of an epidemic of acute renal failure in Haitian children
found an odds ratio of 53 for ingestion of locally manufactured acetaminophen
syrup. Further investigation revealed that the renal failure was due to poisoning by
diethylene glycol, which was found to contaminate the glycerine solution used to
make the acetaminophen syrup (13).

Weaknesses of Case-Control Studies

Case—control studies have great strengths, but they also have major limitations. The
information available in case—control studies is limited: unless the population and
time period from which the cases arose are known, there is no direct way to estimate
the incidence or prevalence of the disease, nor the attributable or excess risk. There is
also the problem that only one outcome can be studied (the presence or absence of
the disease that was the criterion for drawing the two samples), whereas cohort and
cross-sectional studies (and clinical trials) can study any number of outcome variables.
But the biggest weakness of case—control studies is their susceptibility to bias. This
bias comes chiefly from two sources: the separate sampling of the cases and controls,
and the retrospective measurement of the predictor variables. These two problems
and the strategies for dealing with them are the topic of the next two sections.

Sampling Bias and How to Control It

The sampling in a case—control study begins with the cases. Ideally, the sample of
cases would be a complete or a random sample of everyone who develops the disease
under study. An immediate problem comes up, however. How do we know who
has developed the disease and who has not? In cross-sectional and cohort studies
the disease is systematically sought in all the study participants, but in case—control
studies the cases must be sampled from patients in whom the disease has already been
diagnosed and who are available for study. This sample may not be representative of all
patients who develop the disease because those who are undiagnosed, misdiagnosed,
unavailable for study or dead are less likely to be included (Fig. 8.3).

In general, sampling bias is important when the sample of cases is unrepresentative
with respect to the risk factor being studied. Diseases that almost always require
hospitalization and are relatively easy to diagnose, such as hip fracture and traumatic
amputations, can be safely sampled from diagnosed and accessible cases. On the other
hand, conditions that may not come to medical attention are not well suited to
retrospective studies because of the selection that precedes diagnosis. For example,
women seen in a gynecologic clinic with first-trimester spontaneous abortions would
probably differ from the entire population of women experiencing spontaneous
abortions because those with greater access to gynecologic care or with complications
would be overrepresented. If a predictor variable of interest is associated with
gynecologic care in the population (such as past use of an intrauterine device [IUD]),
sampling cases from the clinic could be an important source of bias. If, on the other
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New cases of the diseases

No medical attention

Seen elsewhere

Seen but misdiagnosed

Death or remission before diagnosis

Cases available for case-control study

FIGURE 8.3. Some reasons that the cases in a case—control study may
not be representative of all cases of the disease.

hand, a predictor is unrelated to gynecologic care (such as blood type) there would
be less likelihood of a clinic-based sample being unrepresentative.

Although it is important to think about these issues, in actual practice the selection
of cases is often straightforward because the accessible sources of subjects are limited.
The sample of cases may not be entirely representative, but it may be all that the
investigator has to work with. The more difficult decisions faced by an investigator de-
signing a case—control study then relates to the more open-ended task of selecting the
controls. The general goal is to sample controls from a population at risk for the disease
that is otherwise similar to the cases. Four strategies for sampling controls follow:

o Hospital- or clinic-based controls. One strategy to compensate for the possible
selection bias caused by obtaining cases from a hospital or clinic is to select controls
from the same facilities. For example, in a study of past use of an IUD as a risk
factor for spontaneous abortion, controls could be sampled from a population of
women seeking care for vaginitis at the same gynecologic clinic. Compared with
a random sample of women from the same area, these controls would presumably
better represent the population of women who, had they developed a spontaneous
abortion, would have come to the clinic and become a case.

However, selection of an unrepresentative sample of controls to compensate for
an unrepresentative sample of cases can be problematic. If the risk factor of interest
also causes diseases for which the controls seek care, the prevalence of the risk factor
in the control group will be falsely high, biasing the study results toward the null.
If, for example, many women in the control group had vaginitis and use of an IUD
increased the risk of vaginitis, there would be an excess of IUD users among the
controls, masking a possible real association between IUD use and spontaneous
abortion.

Because hospital-based and clinic-based control subjects are usually unwell and
because their diseases may be associated with the risk factors being studied, the
use of hospital- or clinic-based controls can produce misleading findings. For this
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reason, the added convenience of hospital- or clinic-based controls is not often
worth the possible threat to the validity of the study.
Matching. Matching is a simple method of ensuring that cases and controls are
comparable with respect to major factors that are related to the disease but not
of interest to the investigator. So many risk factors and diseases are related to age
and sex, for example, that the study results may be unconvincing unless the cases
and controls are comparable with regard to these two variables. One approach to
avoiding this problem is to choose controls that match the cases on these constitu-
tional predictor variables. For example, in a study that matched on sex and age (say,
within 2 years), for a 44-year-old male case the investigators would choose a male
control between the ages of 42 and 46 years. Alternatively, the investigators can try
to make sure that the overall proportions of men in each age-group are the same
in the cases and controls (a process known as frequency matching). Matching does
have its adverse consequences, however, particularly when modifiable predictors
such as income or serum cholesterol level are matched. The reasons for this and the
alternatives to matching are discussed in Chapter 9.
Using a population-based sample of cases. Population-based case—control studies
are now possible for many diseases, because of a rapid increase in the use of disease
registries, both in geographically defined populations and within health maintenance
organizations. Because cases obtained from such registries are generally representa-
tive of the general population of patients in the area with the disease, the choice of a
control group is simplified: it should be a representative sample from the population
covered by the registry. In Example 8.2, all residents of the town were registered
with the local government, making selection of such a sample straightforward.

When registries are available, population-based case—control studies are clearly
the most desirable. As the disease registry approaches completeness and the popu-
lation it covers approaches stability (no migration in or out), the population-based
case—control study approaches a case—control study that is nested within a cohort
study or clinical trial (Chapter 7). When information on the cases and controls
can come from previously recorded sources, (thereby not requiring consent of the
subject and the selection bias likely to accompany such consent) this design has
the potential for eliminating sampling bias, because both cases and controls are
selected from the same population. When designing the sampling approach for a
case—control study, the nested case—control design is useful to keep in mind as the
model to emulate.
Using two or move control groups. Because selection of a control group can be
so tricky, particularly when the cases are not a representative sample of those with
disease, it is sometimes advisable to use two or more control groups selected in
different ways. The Public Health Service study of Reye’s syndrome and medica-
tions (14), for example, used four types of controls: emergency room controls (seen
in the same emergency room as the case), inpatient controls (admitted to the same
hospital as the case), school controls (attending the same school or day care center
as the case), and community controls (identified by random-digit dialing). The
odds ratios for salicylate use in cases compared with each of these control groups
(in the order listed) were 39, 66, 33, and 44, and each was statistically significant.
The consistent finding of a strong association using control groups that would have
a variety of sampling biases makes a convincing case for the inference that there is
a real association in the population.

Unfortunately, many causal factors have odds ratios that are much closer to
unity, and the biases associated with different strategies for selecting controls can
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endanger causal inference. What happens if the control groups give conflicting
results? This is actually helpful, revealing inherent fragility to the case—control
method for the research question at hand. If possible, the investigator should seek
additional information to try to determine the magnitude of potential biases from
each of the control groups. In any case, it is better to have inconsistent results and
conclude that the answer is not known than to have just one control group and
draw the wrong conclusion.

Differential Measurement Bias and How to Control It

The second particular problem of case—control studies is bias due to measurement
error caused by the retrospective approach to measuring the predictor variables,
particularly when it occurs to a different extent in cases than in controls. Case—control
studies of birth defects, for example, are susceptible to recall bias: parents of babies
with birth defects may be more likely to recall drug exposures than parents of normal
babies, because they will already have been worrying about what caused the defect.
Recall bias cannot occur in a cohort study because the parents are asked about
exposures before the baby is born.

In addition to the strategies set out in Chapter 4 for controlling biased mea-
surements (standardizing the operational definitions of variables, choosing objective
approaches, supplementing key variables with data from several sources, etc.), there are
two specific strategies for avoiding bias in measuring risk factors in case—control studies:

o Use data vecovded before the outcome occurred. It may be possible, for example,
to examine prenatal records in a case—control study of IM vitamin K as a risk
factor for cancer. This excellent strategy is limited to the extent that recorded
information about the risk factor of interest is available and of satisfactory reliability.
For example, information about vitamin K administration was often missing from
medical records, and how that missing information was treated affected results of
some studies of vitamin K and subsequent cancer risk (10).

o Use blinding. The general approach to blinding was discussed in Chapter 4, but
there are some issues that are specific to designing interviews in case—control
studies. Because both observers and study subjects could be blinded both to the
case—control status of each subject and to the risk factor being studied, four types
of blinding are possible (Table 8.2).

TABLE 8.2  Approaches to Blinding Interview Questions in a Case-Control Study

Blinding Risk

Person Blinded Blinding Case-Control Status Factor Measurement

Subject Possible if both cases and controls have Include “dummy” risk factors and be
diseases that could plausibly be related to suspicious if they differ between cases
the risk factor and controls

Observer

May not work if the risk factor for the
disease has already been publicized

Possible if cases are not externally Possible if interviewer is not the
distinguishable from controls, but subtle investigator, but may be difficult to
signs and statements, volunteered by the maintain

subjects make it difficult
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Ideally, neither the study subjects nor the observers should know which subjects
are cases and which are controls. If this can be done successfully, differential bias in
measuring the predictor variable is eliminated. In practice, this is often difficult. The
subjects know whether they are sick or well, so they can be blinded to case—control
status only if controls are also ill with diseases that they believe might be related to
the risk factors being studied. (Of course, if the controls are selected for a disease that
ss related to the risk factor being studied, it will cause sampling bias.) Efforts to blind
interviewers are hampered by the obvious nature of some diseases (an interviewer
can hardly help noticing if the subject is jaundiced or has had a laryngectomy), and
by the clues that interviewers may discern in the subject’s responses.

Blinding to specific risk factors being studied is usually easier than blinding
to case—control status. Case—control studies are often first steps in investigating an
illness, so there may not be one risk factor of particular interest. When there is, the
study subjects and the interviewer can be kept in the dark about the study hypotheses
by including “‘dummy” questions about plausible risk factors not associated with
the disease. For example, if the specific hypothesis to be tested is whether honey
intake is associated with increased risk of infant botulism, equally detailed questions
about jelly, yogurt, and bananas could be included in the interview. This type of
blinding does not actually prevent differential bias, but it allows an estimate of
whether it is a problem: if the cases report more exposure to honey but no increase
in the other foods, then differential measurement bias is less likely. This strategy
would not work if the association between infant botulism and honey had previously
been widely publicized or if some of the dummy risk factors turned out to be real
risk factors.

Blinding the observer to the case—control status of the study subject is a
particularly good strategy for laboratory measurements such as blood tests and
x-rays. Blinding under these circumstances is easy and should always be done:
someone other than the individual who will make the measurement simply applies
coded identification labels to each specimen. The importance of blinding was
illustrated by 15 case—control studies comparing measurements of bone mass
between hip fracture patients and controls; much larger differences were found in
the studies that used unblinded measurements than in the blinded studies (15).

Case-Crossover Studies

A variant of the case—control design, useful for studying the short-term effects of
intermittent exposures, is the case-crossover design (16). As with regular case—control
studies, these are retrospective studies that begin with a group of cases: people who
have had the outcome of interest. However, unlike traditional case—control studies, in
which the exposures of the cases are compared with exposures of a group of controls,
in case-crossover studies each case serves as his or her own control. Exposures of the
cases at the time (or right before) the outcome occurred are compared with exposures
of those same cases at one or more other points in time.

For example, McEvoy et al. (17) studied cases who were injured in car crashes
and reported owning or using a mobile phone. Using phone company records, they
compared mobile phone usage in the 10 minutes before the crash with usage when the
subjects were driving at the same time of day 24 hours, 72 hours, and 7 days before
the crash. They found that mobile phone usage was more likely in the 10 minutes
before a crash than in the comparison time periods, with an odds ratio of about 4.
The analysis of a case-crossover study is like that of a matched case—control study,
except that the control exposures are exposures of the case at different time periods,
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TABLE 8.3  Advantages and Disadvantages of the Major Observational Designs
Design Advantages Disadvantages*
Cohort
All Establishes sequence of events Often requires large sample sizes
Multiple predictors and outcomes Less feasible for rare outcomes
Number of outcome events grows over time
Yields incidence, relative risk, excess risk
Prospective More control over subject selection and Follow-up can be lengthy
measurements Often expensive
Avoids bias in measuring predictors
Retrospective  Follow-up is in the past Less control over subject selection
Relatively inexpensive and measurements
Multiple cohort  Useful when distinct cohorts have different or Bias and confounding from

Cross-sectional

Case-Control

rare exposures

Relatively short duration

A good first step for a cohort study or clinical
trial

Yields prevalence of multiple predictors and
outcomes

Useful for rare outcomes

Short duration, small sample size

Relatively inexpensive

Yields odds ratio (resembles relative risk for
uncommon outcomes)

Combination Designs

Nested
case-control

Nested
case-cohort

Case-crossover

Advantages of a retrospective cohort design,
only much more efficient

Can use a single control group for multiple
case-control studies

Cases serve as their own controls, reducing
random error and confounding

sampling several populations

Does not establish sequence of
events

Not feasible for rare predictors or
rare outcomes

Does not yield incidence

Bias and confounding from
sampling two populations
Differential measurement bias
Limited to one outcome variable
Sequence of events unclear
Does not yield prevalence,
incidence, or excess risk

Suitable cohort and specimens
many not be available

Suitable cohort and specimens
many not be available

Requires special circumstances

* All these observational designs have the disadvantage (compared with randomized trials) of being susceptible to the influence
of confounding variables—See Chapter 9.
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rather than exposures of the matched control. This is illustrated in ““Case-crossover
Study” in Appendix 8A. Other examples of use of the case-crossover design include
a series of studies of possible triggers of myocardial infarction, including episodes of
anger (18), and use of marijuana (19) and of sildenafil (Viagra) (20).

. CHOOSING AMONG OBSERVATIONAL DESIGNS

The pros and cons of the main observational designs presented in the last two chapters
are summarized in Table 8.3. We have already described these issues in detail and
will make only one final point here. Among all these designs, none is best and none
is worst; each has its place and purpose, depending on the research question and the
circumstances.

B summARY

1.

In a cross-sectional study, the variables are all measured at a single point in time,
with no structural distinction between predictors and outcomes. Cross-sectional
studies are valuable for providing descriptive information about prevalence; they
also have the advantage of avoiding the time, expense, and dropout problems
of a follow-up-design.

. Cross-sectional studies yield weaker evidence for causality than cohort studies,

because the predictor variable is not shown to precede the outcome. A further
weakness is the need for a large sample size (compared with that of a case—control
study) when studying uncommon diseases. The cross-sectional design can be used
for an uncommon disease in a case series of patients with that disease, and it often
serves as the first step of a cohort study or experiment.

. In a case—control study, the prevalence of risk factors in a sample of subjects who

have a disease or other outcome of interest (the cases) is compared with that in a
separate sample who do not (the controls). This design is relatively inexpensive
and uniquely efficient for studying rare diseases.

One problem with case—control studies is their susceptibility to sampling bias.
Four approaches to reducing sampling bias are (a) to sample controls and cases in
the same (admittedly unrepresentative) way; (b) to match the cases and controls;
(c) to do a population-based study; and (d) to use several control groups sampled
in different ways.

The other major problem with case—control studies is their retrospective design,
which makes them susceptible to measurement bias that affects cases and controls
differentially. Such bias can be reduced by measuring the predictor prior to the
outcome and by blinding the subjects and observers.

. Case-crossover studies are a variation on the matched case—control design in

which observations at two points in time allow each case to serve as his or her own
control.
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B APPENDIX 8A

Calculating Measures of Association

1. Cross-sectional study. Reijneveld (21) did a cross-sectional study of maternal smok-
ing as a risk factor for infant colic. Partial results are shown below:

Outcome Variable:

Predictor Variable Infant Colic No Infant Colic Total

Mother smokes 15 (a) 167 (b) 182 (a+ b)
15-50 cigarettes/day

Mother does not 111 (o) 2,477 (d) 2,588 (c+ d)
smoke

Total 126 (a+¢) 2,644 (b+d) 2770 (@a+b+c+d)

Prevalence of colic with smoking mothers = a/(a+ ) = 15/182 = 8.2%.
Prevalence of colic with nonsmoking mothers = ¢/(¢ + 4) = 111/2,588 = 4.3%.
Prevalence of colic overall = (a + ¢)/(a+ b+ c+ d) = 126/2,770 = 4.5%.

8.2%

4.3%
Excess prevalence! = 8.2% — 4.3% = 3.9%

Relative prevalence'= =19

2. Case—control study. The research question for Example 8.2 was whether there is
an association between IM vitamin K and risk of childhood leukemia. The findings
were that 69 /107 leukemia cases and 63 /107 controls had received IM vitamin
K. A two-by-two table of these findings is as follows:

Outcome Variable: Diagnosis

Predictor Variable:
Medication History Childhood Leukemia Control

IM vitamin K 69(a) 63(b)
No IM vitamin K 38(c) 44(d)
Total 107 107
ad 69 x 44
Relative risk ~ odd. 0= —=——=1.27
clative ris 0 s ratio bc 63 X 38

Because the disease (leukemia in this instance) is rare, the odds ratio provides a
good estimate of the relative risk.?

3. Matched case—control study
(To illustrate the similarity between analysis of a matched case—control study
and a case-crossover study, we will use the same example for both.) The

IRelative prevalence and excess prevalence are the cross-sectional analogs of relative risk and excess risk.
2The authors actually did a multivariate, matched analysis, as was appropriate for the matched design, but in this case the

simple, unmatched odds ratio was almost the same as the one reported in the study.



Chapter 8 m Designing Cross-sectional and Case-Control Studies 123

research question is whether mobile telephone use increases the risk of car crashes
among mobile telephone owners. A traditional matched case—control study might
consider self-reported frequency of using a mobile telephone while driving as the
risk factor. Then the cases would be people injured in crashes and they could
be matched to controls who had not been in crashes by age, sex, and mobile
telephone prefix. The cases and controls would be asked whether they ever use a
mobile telephone while driving. (To simplify, for this example, we dichotomize the
exposure and consider people as either ““users’ or “‘nonusers”” of mobile telephones
while driving.) We then classify each case/control pair according to whether both
are users, neither is a user, or the case was a user but not the control, or the control
was a user but not the case. If we had 300 pairs, the results might look like this:

Cases (with crash injuries)

Matched Controls User Nonuser Total
User 110 40 150
Nonuser 90 60 150
Total 200 100 300

The table above shows that there were 90 pairs where the case ever used a mobile
phone while driving, but not the matched control, and 40 pairs where the matched
control but not the case was a ““‘user.”” Note that this 2 x 2 table is different from
the 2 x 2 table from the unmatched vitamin K study above, in which each cell in
the table is the number of people in that cell. In the 2 x 2 table for a matched
case—control study the number in each cell is the number of pairs of subjects
in that cell; the total N in the table above is therefore 600 (300 cases and 300
controls). The odds ratio for such a table is simply the ratio of the two types of
discordant pairs; in the table above the OR = 90/40 = 2.25.

. Case-crossover study

Now consider the case-crossover study of the same question. Data from the study
by McEvoy et al. are shown below.

Crash Time Period

Seven Days Before Crash Driver Using Phone  Not Using  Total

Driver using phone 5 6 11
Not using 27 288 315
Total 32 294 326

For the case-crossover study, each cell in the table is a number of subjects, not
a number of pairs, but each cell represents two time periods for that one subject:
the time period just before the crash and a comparison time period 7 days before.
Therefore the 5 in the upper left cell means there were 5 drivers involved in
crashes who were using a mobile phone just before they crashed, and also using a
mobile phone during the comparison period 7 days before, while the 27 just below
indicates that there were 27 drivers involved in crashes who were using a phone
just before crashing, but zot using a phone during the comparison period 7 days
before. The odds ratio is the ratio of the numbers of discordant time periods, in
this example 27/6 = 4.5.
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B APPENDIX 8B

Why the Odds Ratio Can Be Used as an Estimate for Relative
Risk in a Case-Control Study

The data in a case—control study represent two samples: the cases are drawn from
a population of people who have the disease and the controls from a population of
people who do not have the disease. The predictor variable is measured, and the
following two-by-two table produced:

Disease No Disease

Risk factor present a b
Risk factor absent c d

If this two-by-two table represented data from a cohort study, then the incidence
of the disease in those with the risk factor would be #/(a + b) and the relative risk
would be simply [a/(a + b)]/[¢/(c + 4)]. However, it is not appropriate to compute
either incidence or relative risk in this way in a case—control study because the two
samples are not drawn from the population in the same proportions. Usually, there
are roughly equal numbers of cases and controls in the study samples but many fewer
cases than controls in the population. Instead, relative risk in a case—control study can
be approximated by the odds ratio, computed as the cross-product of the two-by-two
table, ad/bc.

This extremely useful fact is difficult to grasp intuitively but easy to demonstrate
algebraically. Consider the situation for the full population, represented by #/, &', ¢/,
and 4'.

Disease No Disease

Risk factor present a b
Risk factor absent c d

Here it is appropriate to calculate the risk of disease among people with the risk
factor as a'/(a' + '), the risk among those without the risk factor as ¢//(¢' + &),
and the relative risk as [#'/(&' + &')]/[ /(¢ + d')]. We have already discussed the
fact that #'/(a' + ¥/) is not equal to a/(a + b). However, if the disease is relatively
uncommon (as most are), then 4’ is much smaller than #, and ¢ is much smaller than
d’. This means that a'/(#' + V') is closely approximated by #//& and that ¢//(¢ + d')
is closely approximated by ¢//d’. Therefore the relative risk of the population can be
approximated as follows:

ﬂ//(ﬂ/—i— b/) N ﬂ//b/
Cl/(5/+d/> E//d/
The latter term is the odds ratio of the population (literally, the ratio of the odds of

disease in those with the risk factor, 4’/ to the odds of disease in those without the
risk factor, ¢//d’). This can be rearranged as the cross-product:

(#)(2)-() (%)
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However, 4’/ in the population equals /¢ in the sample if the cases are representative
ofall cases in the population (i.e., have the same prevalence of the risk factor). Similarly,
U /d’ equals &/4 if the controls are representative.

Therefore the population parameters in this last term can be replaced by the

sample parameters, and we are left with the fact that the odds ratio observed in
the sample, ad/bc, is a close approximation of the relative risk in the population,
[a)(a +U)]/[c/(d +d)], provided that the discase is rare and sampling error
(systematic as well as random) is small.
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For many research questions, the inference that an association represents a cause—
effect relation is important. (Exceptions are studies of diagnostic and prognostic tests,
discussed in Chapter 12.) The ability to make that inference depends upon decisions
made during both the design and analysis phases of a study. Although this text is
concerned primarily with designing clinical research, in this chapter we discuss ways
to strengthen causal inference in both phases, because knowledge of analysis phase
options can help inform decisions about study design. We begin with a discussion
of how to avoid spurious associations and then concentrate on ruling out real
associations that do not represent cause—effect, especially those due to confounding.

Suppose that a study reveals an association between coffee drinking and myocardial
infarction (MI). One possibility is that coffee drinking is a cause of MI. Before reaching
this conclusion, however, four rival explanations must be considered (Table 9.1).
The first two of these, chance (random error) and bias (systematic error), represent
spurious associations: coffee drinking and MI are associated only in the study findings,
not in the population.

Even if the association is real, however, it may not represent a cause—eftect
relationship. Two rival explanations must be considered. One is the possibility of
effect-cause—that having an MI makes people drink more coffee. (This is just cause
and effect in reverse.) The other is the possibility of confounding, in which a third
factor (such as cigarette smoking) is both associated with coffee drinking and a cause
of MI.

B sPURIOUS ASSOCIATIONS

Ruling Out Spurious Associations Due to Chance

Imagine that there is no association between coftee drinking and MI in the population,
and that 60% of the entire population drinks coftee, whether or not they have had an
MI. If we were to select a random sample of 20 patients with MI, we would expect

127



128  Study Designs

TABLE 9.1

Explanation

The Five Explanations When an Association between Coffee
Drinking and Myocardial Infarction (MI) is Observed in a Sample

Type of
Association

What'’s Really Going
on in the Population?

Causal Model

1. Chance (random Spurious Coffee drinking and Ml are not —
error) related
2. Bias (systematic Spurious Coffee drinking and Ml are not —
error) related
3. Effect-cause Real Ml is a cause of coffee drinking Coffee drinking < Ml
4. Confounding Real Coffee drinking is associated Factor X
with a third, extrinsic factor that / \
is a cause of Ml Coffee drinking M
5. Cause-effect Real Coffee drinking is a cause of Ml Coffee drinking — Ml

about 12 of them to drink coffee. But by chance alone we might happen to get
19 coffee drinkers in a sample of 20 patients with MI. In that case, unless we were
lucky enough to get a similar chance excess of coffee drinkers among the controls, a
spurious association between coffee consumption and MI would be observed. Such
an association due to random error (chance), if statistically significant, is called a
type I error (Chapter 5).

Strategies for addressing random error are available in both the design and analysis
phases of research (Table 9.2). The design strategies of increasing the precision of
measurements and increasing the sample size are important ways to reduce random
error that are discussed in Chapters 4 and 6. The analysis strategy of calculating
P values helps the investigator quantify the magnitude of the observed association
in comparison with what might have occurred by chance alone. For example, a P
value of 0.10 indicates that the observed value of the test statistic (or larger) would
occur by chance alone about one time in ten. Confidence intervals show a range of
values for the parameter being estimated (e.g., risk ratio) that are consistent with that
estimate, based on the study’s results.

Ruling Out Spurious Associations Due to Bias

Associations that are spurious because of bias are trickier. To understand bias it
is helpful to distinguish between the research question and the question actually
answered by the study (Chapter 1). The research question is what the investigator
really wishes to answer, while the question answered by the study reflects the
compromises the investigator needed to make for the study to be feasible. Bias can
be thought of as a systematic difference between the research question and the actual
question answered by the study that causes the study to give the wrong answer to the
research question. Strategies for minimizing these systematic errors are available in
both the design and analysis phases of research (Table 9.2).

o Design Phase. Many kinds of bias have been identified, and dealing with some
of them has been a major topic of this book. To the specific strategies noted in
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Type of
Spurious
Association

Chapter 9

Design Phase
(How to Prevent
the Rival Explanation)
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Strengthening the Inference that an Association has a Cause-Effect
Basis: Ruling Out Spurious Associations

Analysis Phase
(How to Evaluate
the Rival Explanation)

Chance (due to
random error)

Bias (due to
systematic error)

Increase sample size and other
strategies to increase precision
(Chapters 4 and 6)

Carefully consider the potential
consequences of each difference
between the research question and
the study plan (see Fig. 1.6):

population/subjects
phenomena/measurements

Calculate P values and confidence
intervals

Interpret them in the context of prior
evidence (Chapter 5)

Obtain additional data to see if
potential biases have actually
occurred

Check consistency with other
studies (especially those using

different methods)

Chapters 3, 4, 7, and 8 we now add a general approach to minimizing sources

of bias. Write down the research question and the study plan side by side, as in

Figure 9.1. Then carefully think through the following three concerns as they

pertain to this particular research question:

a. Do the samples of study subjects (e.g., cases and controls or exposed and
unexposed subjects) represent the population(s) of interest?

b. Do the measurements of the predictor variables represent the predictors of
interest?

c. Do the measurements of the outcome variables represent the outcomes of
interest?

For each question, answered ““No”” or “Maybe not,” consider whether the bias
applies similarly to one or both groups studied (e.g., cases and controls or exposed
and unexposed) and whether it is large enough to affect the answer to the research
question.

To illustrate this with our coffee and MI example, consider the implications of
drawing the sample of control subjects from a population of hospitalized patients.
If many of these patients have chronic illnesses that have caused them to reduce
their coffee intake, the sample of controls will not represent the target population
from which the patients with MI arose; there will be a shortage of coffee drinkers.
Furthermore, if coffee drinking is measured by questionnaire, the answers on the
questionnaire may not accurately represent actual coffee drinking, the predictor
of interest. And if esophageal spasm, which can be exacerbated by coftee, is
misdiagnosed as MI, a spurious association between coffee and MI could be found
because the measured outcome (diagnosis of MI) did not accurately represent the
outcome of interest (actual MI).

The next step is to think about possible strategies for preventing each potential
bias. For example, as discussed in Chapter 8, selecting more than one control group
in a case—control study is one approach to addressing sampling bias. In Chapter 4
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FIGURE 9.1. Minimizing bias by comparing the research question and the study
plan.

we suggested strategies for reducing measurement bias. In each case, judgments
are required about the likelihood of bias, and how easily it could be prevented
with changes in the study plan. If the bias is easily preventable, revise the study
plan and ask the three questions again. If the bias is not easily preventable, decide
whether the study is still worth doing by making a judgment on the likelihood of
the potential bias and the degree to which it will compromise the conclusions.

o Analysis Phase. The investigator is often faced with one or more potential biases
after the data have been collected. Some may have been anticipated but too difficult
to prevent, and others may not have been suspected until it was too late to avoid
them.

In ecither situation, one approach is to obtain additional information to
estimate the magnitude of the potential bias. Suppose, for example, the inves-
tigator is concerned that the hospitalized control subjects do not represent the
target population of people free of MI because they have decreased their cof-
fee intake due to chronic illness. The magnitude of this sampling bias could
be estimated by reviewing the diagnoses of the control subjects and separating
them into two groups: those with illnesses that might alter coffee habits and
those with illnesses that would not. If both types of controls drank less coffee
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than the MI cases, then sampling bias would be a less likely explanation for the
findings. Similarly, if the investigator is concerned that a questionnaire does not
accurately capture coffee drinking (perhaps because of poorly worded questions),
she could assign a blinded interviewer to question a subset of the cases and con-
trols to determine the agreement with their questionnaire responses. Finally, if
it is the outcome measure that is in doubt, the investigator could specify ob-
jective electrocardiographic and serum enzyme changes needed for the diagnosis,
and reanalyze the data excluding the subset of cases that do not meet these
criteria.

The investigator can also look at the results of other studies. If the con-
clusions are consistent, the association is less likely to be due to bias. This is
especially true if the other studies have used different methods and are there-
fore unlikely to share the same biases. In many cases, potential biases turn
out not to be a major problem. The decision on how vigorously to pursue
additional information and how best to discuss these issues in reporting the
study are matters of judgment for which it is helpful to seek advice from col-
leagues.

. REAL ASSOCIATIONS OTHER THAN CAUSE-EFFECT

In addition to chance and bias, the two types of associations that are real but do not
represent cause—effect must be considered (Table 9.3).

Effect-Cause

One possibility is that the cart has come before the horse—the outcome has caused the
predictor. Effect—cause is often a problem in cross-sectional and case—control studies,
especially when the predictor variable is a laboratory test for which no previous values
are available, and in case-crossover studies if the timing of events is uncertain. For
example, in the study of mobile phone use and motor vehicle accidents described in

TABLE 9.3  Strengthening the Inference that an Association
has a Cause-Effect Basis: Ruling Out Other Real Associations

Design Phase Analysis Phase
Type of Real (How to Prevent (How to Evaluate
Association the Rival Explanation) the Rival Explanation)
Effect-cause (the outcome is Do a longitudinal Consider biologic
actually the cause of the predictor) study plausibility

Obtain data on the Consider findings of

historic sequence of other studies with

the variables different designs

(Ultimate solution: do
a randomized trial)

Confounding (another variable is See Table 9.4 See Table 9.5
associated with the predictor and a
cause of the outcome)
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Chapter 8, a car crash could cause a mobile phone call (to report the crash right after
it happened), rather than vice versa. To address this possibility, the investigators asked
drivers who had been involved in a crash about phone use both before and after the
crash, and verified the responses using phone records and the estimated time of the
crash (1).

Effect—cause is less commonly a problem in cohort studies because risk factor
measurements can be made in a group of people who do not yet have the disease.
Even in cohort studies, however, effect—cause is possible if the disease has a long
latent period and those with subclinical disease cannot be identified at baseline. For
example, type 2 diabetes is associated with subsequent risk of pancreatic cancer. Some
of this association is almost certainly effect—cause, because pancreatic cancer can cause
diabetes, and the association between diabetes and pancreatic cancer diminishes with
follow-up time (2). However, some association persists (a relative risk of about 1.5)
even when pancreatic cancer cases diagnosed within 4 years of the onset of diabetes
are excluded, leaving open the possibility that part of the relationship might be
cause—cffect.

This example illustrates a general approach to ruling out effect—cause: drawing
inferences from assessments of the variables at different points in time. In addition,
effect—cause is often unlikely on the grounds of biologic implausibility. For example,
it is unlikely that incipient lung cancer causes cigarette smoking.

Confounding

The other rival explanation in Table 9.3 is confounding, which occurs when there
is a third factor involved in the association that is the real cause of the outcome.
The word confounding usually means something that confuses interpretation, but in
clinical research the term has a more specific definition.

A confounding variable is one that is associated with the predictor variable,
and a cause of the outcome variable.

Cigarette smoking is a likely confounder in the coffee and MI example because
smoking is associated with coffee drinking and is a cause of MI. If this is the
actual explanation, then the association between coffee and MI does not represent
cause—effect although it is still real; the coffee is an innocent bystander. Appendix 9A
gives a numeric example of how cigarette smoking could cause an apparent association
between coftee drinking and MI.

Aside from bias, confounding is often the only likely alternative explanation to
cause—effect and the most important one to try to rule out. It is also the most
challenging; much of the rest of this chapter is devoted to strategies for coping with
confounders.

. COPING WITH CONFOUNDERS IN THE DESIGN PHASE

In observational studies, most strategies for coping with confounding variables require
that an investigator be aware of and able to measure them. It is helpful to list the
variables (like age and sex) that may be associated with the predictor variable of
interest and that may also be a cause of the outcome. The investigator must then
choose among design and analysis strategies for controlling the influence of these
potential confounding variables.
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Strategy
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Design Phase Strategies for Coping with Confounders

Advantages

Disadvantages

Specification

Matching

“Opportunistic”
study designs

Easily understood
Focuses the sample of subjects
for the research question at hand

Can eliminate the influence of
strong constitutional
confounders like age and sex
Can eliminate the influence of
confounders that are difficult to
measure

Can increase precision (power)
by balancing the number of
cases and controls in each
stratum

May be a sampling convenience,
making it easier to select the
controls in a case-control study

Can provide great strength of
causal inference

May be a lower cost and elegant
alternative to a randomized trial

Limits generalizability

May make it difficult to acquire
an adequate sample size

May be time consuming and
expensive; less efficient than
increasing the number of
subjects

Decision to match must be made
at the outset of the study and
can have an irreversible adverse
effect on the analysis and
conclusions

Requires an early decision about
which variables are predictors
and which are confounders
Eliminates the option of studying
matched variables as predictors
or as intervening variables
Requires a matched analysis

o Creates the danger of

overmatching (i.e., matching on
a factor that is not a confounder,
thereby reducing power)

Only feasible for case-control
and multiple-cohort studies
Only possible in select
circumstances where the
predictor variable is randomly or
virtually randomly assigned, and
an instrumental variable exists
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The first two design phase strategies (Table 9.4), specification and matching,
involve changes in the sampling scheme. Cases and controls (in a case—control study)
or exposed and unexposed subjects (in a cohort study) are sampled in such a way
that they have comparable values of the confounding variable. This removes the
confounder as an explanation for any association that is observed between predictor
and outcome. The third design phase strategy, use of what we call opportunistic
study designs, is only applicable to selected research questions for which the right
conditions exist. However, when applicable, these designs resemble randomized trials
in their ability to reduce or eliminate confounding not only by measured variables,
but by unmeasured variables as well.

Specification

The simplest strategy is to design inclusion criteria that specify a value of the potential
confounding variable and exclude everyone with a different value. For example, the
investigator studying coffee and MI could specify that only nonsmokers be included
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in the study. If an association were then observed between coftee and MI, it obviously
could not be due to smoking.

Specification is an effective strategy, but, as with all restrictions in the sampling
scheme, it has disadvantages. First, even if coffee does not cause MI in nonsmokers,
it may cause them in smokers. (This phenomenon—an effect of coffee on MI
that is different in smokers from that in nonsmokers—is called effect modification
or interaction.) Therefore, specification limits the generalizability of information
available from a study, in this instance compromising our ability to generalize to
smokers. Second, if smoking is highly prevalent among the patients available for the
study, the investigator may not be able to recruit a large enough sample of nonsmokers.

These problems can become serious if specification is used to control too many
confounders or to control them too narrowly. Sample size and generalizability would
be major problems if a study were restricted to lower-income, nonsmoking, 70- to
75-year-old men.

Matching

In a case—control study, matching involves selecting cases and controls with matching
values of the confounding variable(s). Matching and specification are both sampling
strategies that prevent confounding by allowing comparison only of cases and controls
that share comparable levels of the confounder. Matching differs from specification,
however, in preserving generalizability because subjects at all levels of the confounder
can be studied.

Matching is usually done individually (pairwise matching). In the study of coffee
drinking as a predictor of MI, for example, each case (a patient with an MI) could be
individually matched to one or more controls that smoked roughly the same amount
as the case (e.g., 10 to 20 cigarettes/day). The coftee drinking of each case would
then be compared with the coffee drinking of the matched control(s).

An alternative approach to pairwise matching is to match in groups (frequency
matching). For each level of smoking, the number of cases with that amount of
smoking could be counted, and an appropriate number of controls with the same
level of smoking could be selected. If the study called for two controls per case and
there were 20 cases that had smoked 10 to 20 cigarettes/day, the investigators would
select 40 controls that smoked this amount, matched as a group to the 20 cases.

Matching is most commonly used in case—control studies, but it can also be used
with multiple-cohort designs. For example, to investigate the effects of service in the
1990 to 1991 Gulf War on subsequent fertility in male veterans, Maconochie et al.
compared 51,581 men deployed to the Gulf region during the war with 51,688 men
who were not deployed, but were frequency-matched by service, age, fitness to be
deployed, serving status and rank (3). There was a slightly higher risk of reported
infertility and a longer time to conception in the Gulf War veterans.

There are four main advantages to matching (Table 9.4). The first three relate
to the control of confounding variables; the last is a matter of logistics.

e Matching is an effective way to prevent confounding by constitutional factors
like age and sex that are strong determinants of outcome, not susceptible to
intervention, and unlikely to be an intermediary in a causal pathway.

e Matching can be used to control confounders that cannot be measured and
controlled in any other way. For example, matching siblings (or, better yet, twins)
with one another can control for a whole range of genetic and familial factors that
would be impossible to measure, and matching for clinical center in a multicenter
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study can control for unspecified differences among the populations seen at the
centers.

o Matching may increase the precision of comparisons between groups (and therefore
the power of the study to find a real association) by balancing the number of
cases and controls at each level of the confounder. This may be important if the
available number of cases is limited or if the cost of studying the subjects is high.
However, the effect of matching on precision is modest and not always favorable
(see “‘overmatching,” below). In general, the desire to enhance precision is a less
important reason to match than the need to control confounding.

e Finally, matching may be used primarily as a sampling convenience, to narrow
down an otherwise impossibly large number of potential controls. For example, in a
nationwide study of toxic shock syndrome, victims were asked to identify friends to
serve as controls (6). This convenience, however, also runs the risk of overmatching.

There are a number of disadvantages to matching (Table 9.4).

o Matching sometimes requires additional time and expense to identify a match for
cach subject. In case—control studies, for example, the more matching criteria there
are, the larger the pool of controls that must be searched to match each case. Cases
for which no match can be found will need to be discarded. The possible increase
in statistical power from matching must therefore be weighed against the potential
loss of otherwise eligible cases or controls.

e Because matching is a sampling strategy, the decision to match must be made at
the beginning of the study and is irreversible. This precludes further analysis of the
effect of the matched variables on the outcome. It also can create a serious error if
the matching variable is not a fixed (constitutional) variable like age or sex, but a
variable intermediate in the causal pathway between the predictor and outcome. For
example, if an investigator wishing to investigate the effects of alcohol intake on risk
of MI matched on serum high-density lipoprotein (HDL) levels, she would miss any
beneficial effects of alcohol that are mediated through an increase in HDL. Although
the same error can occur with the analysis phase strategies discussed later, matching
builds the error into the study in a way that cannot be undone; with the analysis
phase strategies the error can be avoided simply by appropriately altering the analysis.

o Correct analysis of pair-matched data requires special analytic techniques that com-
pare each subject only with the individual(s) with whom she has been matched,
and not with subjects who have differing levels of confounders. The use of ordi-
nary statistical analysis techniques on matched data can lead to incorrect results
(generally biased toward no effect) because the assumption that the groups are
sampled independently is violated. This sometimes creates a problem because the
appropriate matched analyses, especially multivariate techniques, are less familiar to
most investigators and less readily available in packaged statistical programs than
are the usual unmatched techniques.

o A final disadvantage of matching is the possibility of overmatching, which occurs
when the matching variable is not a confounder because it is not associated with
the outcome. Overmatching can reduce the power of a case—control study, making
it more difficult to find an association that really exists in the population. In the
study of toxic shock syndrome that used friends for controls, for example, matching
may have inappropriately controlled for regional differences in tampon marketing,
making it more probable that cases and controls would use the same brand of
tampon. It is important to note, however, that overmatching will not distort the
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estimated relative risk (provided that a matched analysis is used); it will only reduce
its statistical significance.! Therefore when the findings of the study are statisti-
cally significant (as was the case in the toxic shock example), overmatching is not
a problem.

Opportunistic Studies

Under certain conditions or for certain research questions, there may be opportunities
to control for confounding variables in the design phase, even without measuring
them. Because these designs are not generally available, we call them ““opportunistic”
designs. One example for short-term exposures with immediate effects is the case-
crossover study (Chapter 8)—all potential confounding variables that are constant
over the time (e.g., sex, race, social class, genetic factors) are controlled because each
subject is compared only to herself in a different time period.

Occasionally, investigators discover a natural experiment, in which subjects are
either exposed or not exposed through a process that in effect randomly allocates
them to have or not have a risk factor or intervention. For example, Lofgren et al. (4)
studied the effects of discontinuity of care on test ordering and length of stay by
taking advantage of the fact that patients admitted after 5:00 PM to their institution
were alternately assigned to senior residents that either maintained care of the patients
or transferred them to another team the following morning. They found that patients
whose care was transferred had 38% more laboratory tests (P = 0.01) and 2-day
longer median length of stay (P = 0.06) than those kept on the same team. Similarly,
Bell and Redelmeier (5) studied effects of nursing staffing by comparing outcomes for
patients with selected diagnoses who were admitted on weekends to those admitted
on weekdays. They found higher mortality from all three conditions hypothesized to
be sensitive to staffing ratios, but not for other conditions.

As genetic differences in susceptibility to an exposure are elucidated, a strategy
called Mendelian randomization (6) becomes an option. Mendelian randomization
takes advantage of the fact that for common genetic polymorphisms, the allele a
person receives is determined at random within families, and usually not linked to
relevant confounding variables. Therefore, if people with alleles expected to confer
increased susceptibility to a risk factor do indeed have a higher rate of disease than
those who are either unexposed, or exposed but less susceptible, the study can provide
strong evidence for causality.

For example, some farmers who dip sheep in insecticides (to kill ticks, lice, etc.)
have health complaints that might or might not be due to their occupational exposures.
Investigators at the University of Manchester took advantage of a polymorphism in
the paraoxonase-1 gene, which leads to enzymes with differing ability to hydrolyze the
organophosphate sheep dip diazinonoxon. They hypothesized that if sheep dip was a
cause of'ill health in exposed farmers, that farmers with ill health would be more likely
to have alleles associated with reduced paraoxonase-1 activity. They asked farmers who
believed that sheep dip had adversely affected their health to suggest control farmers

IThe reason that overmatching reduces power can be seen with a matched pairs analysis of a case—control study. In
the matched analysis, only case—control pairs that are discordant for exposure to the risk factor are analyzed (Appendix
8A). Matching on a variable associated with the risk factor will lead to fewer discordant pairs, and hence smaller
effective sample size and less power. Of course, this happens to some extent any time matching is used, not just with
overmatching. The difference with overmatching is that this cost comes with no benefit, because the matching was
not necessary to control confounding. If a matched analysis is not used, then the estimate of the effect size will be
distorted, because the matching causes the cases and controls to be more likely to have the same value of the risk
factor.
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who were similarly exposed to sheep dip, but in good health. Their finding that
exposed farmers with health complaints had a higher frequency of alleles associated
with reduced paraoxonase-1 activity than similarly exposed but asymptomatic farmers
provided strong evidence of a causal relationship between exposure to sheep dip and
ill health (7).

Natural experiments and Mendelian randomization are examples of a more
general approach to enhancing causal inference in observational studies, use of
instrumental variables. These are variables associated with the predictor of interest,
but not independently associated with outcome. Whether someone is admitted on a
weekend, for example, is associated with staffing levels, but was thought not to be
independently associated with mortality risk (for the diagnoses studied), so admission
on a weekend can be considered an instrumental variable. Similarly, activity of the
paraoxonase-1 enzyme is associated with possible toxicity due to dipping sheep, but
not otherwise associated with ill health. Other examples of instrumental variables are
draft lottery number (used to investigate delayed effects of military service during the
Vietnam War era (8)) and the distance of residence from a facility that does coronary
revascularization procedures (used to investigate the effects of these procedures on
mortality (9)).

. COPING WITH CONFOUNDERS IN THE ANALYSIS
PHASE

Design phase strategies require deciding at the outset of the study which variables
are predictors and which are confounders. An advantage of analysis phase strategies
is that they allow the investigator to defer that decision until she has examined the
data for evidence as to which variables may be confounders (i.e., associated with the
predictor of interest and a cause of the outcome).

Sometimes there are several predictor variables, each of which may act as a
confounder to the others. For example, although coffee drinking, smoking, male
sex, and personality type are associated with MI, they are also associated with each
other. The goal is to determine which of these predictor variables are independently
associated with MI and which are associated with MI only because they are associated
with other (causal) risk factors. In this section, we discuss analytic methods for assessing
the independent contribution of predictor variables in observational studies. These
methods are summarized in Table 9.5.

Stratification

Like specification and matching, stratification ensures that only cases and controls (or
exposed and unexposed subjects) with similar levels of a potential confounding variable
are compared. It involves segregating the subjects into strata (subgroups) according
to the level of a potential confounder and then examining the relation between
the predictor and outcome separately in each stratum. Stratification is illustrated in
Appendix 9A. By considering smokers and nonsmokers separately (“‘stratifying on
smoking””), the confounding effects of smoking can be removed.

Appendix 9A also illustrates interaction, in which stratification reveals that
the association between predictor and outcome varies with the level of a third
factor. Because the third factor (smoking in this example) modifies the effect of the
predictor (coffee drinking) on outcome (MI), interaction is sometimes also called
effect modification. By chance alone the estimates of association in different strata
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TABLE 9.5  Analysis Phase Strategies for Coping with Confounders
Strategy Advantages Disadvantages
Stratification o Easily understood  Number of strata limited by sample
e Hexible and reversible; can choose size needed for each stratum
which variables to stratify upon after e Few covariables can be
data collection considered

o Few strata per covariable leads to
incomplete control of
confounding

¢ Relevant covariables must have
been measured
Statistical « Multiple confounders can be  Model may not fit:
adjustment controlled simultaneously o Incomplete control of
¢ Information in continuous variables confounding (if model does not fit
can be fully used confounder-outcome
e Fexible and reversible relationship)

o Inaccurate estimates of strength
of effect (if model does not fit
predictor-outcome relationship)

¢ Results may be hard to understand.

(Many people do not readily

comprehend the meaning of a

regression coefficient.)

e Relevant covariables must have
been measured
Propensity e Multiple confounders can be ¢ Results may be hard to understand
Scores controlled simultaneously Relevant covariables must have

Information in continuous variables
can be fully used

Enhances control for confounding
when more people receive the
treatment than get the outcome

been measured

Can only be done for exposed and
unexposed subjects with
overlapping propensity scores,
reducing sample size

e |f a stratified or matched analysis is
used, does not require model
assumptions

Flexible and reversible

will rarely be precisely the same, and interaction introduces additional complexity,
because a single measure of association no longer can summarize the relationship
between predictor and outcome. For this reason, before concluding that an interaction
is present, it is necessary to assess its biological plausibility and statistical significance
(using a formal test for interaction, or, as a shortcut, checking to see whether the
confidence intervals in the different strata overlap). The issue of interaction also arises
for subgroup analyses of clinical trials (Chapter 11), and for meta-analyses when
homogeneity of studies is being considered (Chapter 13).

Stratification resembles matching and specification in being easily understood.
An advantage of stratification is its flexibility: by performing several stratified analyses,
the investigators can decide which variables appear to be confounders and ignore
the remainder. (This is done by determining whether the results of stratified analyses
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substantially differ from those of unstratified analyses; see Appendix 9A.) Stratification
also has the advantage over design phase strategies of being reversible: no choices
need be made at the beginning of the study that might later be regretted.

The principal disadvantage of stratified analysis is the limited number of variables
that can be controlled simultaneously. For example, possible confounders in the coffee
and MI study might include age, systolic blood pressure, serum cholesterol, cigarette
smoking, and alcohol intake. To stratify on these five variables, with three strata for
each, would require 3%(= 243) strata! With this many strata there will be some with
no cases or no controls, and these strata cannot be used.

To maintain a sufficient number of subjects in each stratum, a variable is often
divided into just two strata. When the strata are too broad, however, the confounder
may not be adequately controlled. For example, if the preceding study stratified using
only two age strata (e.g., age < 50 and age >50), some residual confounding would
still be possible if within each stratum the subjects drinking the most coftee were older
and therefore at higher risk of MI.

Adjustment

Several statistical techniques are available to adjust for confounders. These techniques
model the nature of the associations among the variables to isolate the effects of
predictor variables and confounders. For example, a study of the effect of lead levels
on IQ in children might examine parental education as a potential confounder.
Statistical adjustment might model the relation between parents’ years of schooling
and the child’s IQ as a straight line, in which each year of parent education is
associated with a fixed increase in child IQ. The 1Qs of children with different lead
levels could then be adjusted to remove the effect of parental education using the
approach described in Appendix 9B. Similar adjustments can be made for several
confounders simultaneously, using software for multivariate analysis.

One of the great advantages of multivariate adjustment techniques is the
capacity to adjust for the influence of many confounders simultaneously. Another
advantage is their use of all the information in continuous variables. It is easy, for
example, to adjust for a parent’s education level in 1-year intervals, rather than
stratifying into just two categories.

There are, however, two disadvantages of multivariate adjustment. First,
the model may not fit. Computerized statistical packages have made these models
so accessible that the investigator may not stop to consider whether their use is
appropriate for the predictor and outcome variables in the study. Taking the example
in Appendix 9B, the investigator should examine whether the relation between the
parents’ years of schooling and the child’s IQ is actually linear. If the pattern is very
different (e.g., the slope of the line becomes steeper with increasing education) then
attempts to adjust IQ for parental education using a linear model will be imperfect
and the estimate of the independent effect of lead will be incorrect.

Second, the resulting highly derived statistics are difficult to understand intuitively.
This is particularly a problem if a simple model does not fit and transformations (e.g.,
parental education squared) or interaction terms (used when the effect of one variable
is modified by another) are needed.

Propensity Scores

Propensity scores are a relatively new analytic technique that can be useful in ob-
servational studies of treatment efficacy. They are a tool for controlling confounding
by indication—the problem that patients for whom a treatment is indicated (and
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hence prescribed) are often at higher risk or otherwise intrinsically different from
those who do not get the treatment. Recall that in order to be a confounder, a
variable must be associated with both the predictor and outcome. Instead of ad-
justing for all other factors that predict outcome, use of propensity scores involves
creating a multivariate (usually logistic) model to predict receipt of the treatment.
Each subject can then be assigned a predicted probability of treatment—a propensity
score. This single score can be used as the only confounding variable in stratified or
multivariate analysis. Alternatively, subjects who did and did not receive the treatment
can be matched by propensity score, and outcomes compared between matched
pairs.

Example 9.1 Propensity analysis

Gum et al. (10) prospectively studied 6,174 consecutive adults undergoing stvess
echocardiography, 2,310 of whom (37%) werve taking aspivin and 276 of whom
died in the 3.1-year follow-up period. In unadjusted analyses, aspivin use was not
associated with movtality (4.5% in both groups). However, when 1,351 patients
who had received aspivin were matched to 1,351 patients with the same propensity

to receive aspivin but who did not, morvtality was 47% lower in those treated
(P =0.002).

Analysis using propensity scores has three distinct advantages. First, the num-
ber of potential confounding variables that can be modeled as predictors of the
intervention in the propensity score is greater than if one is modeling the pre-
dictors of outcome because the number of people treated is generally much
greater than the number who develop the outcome (2,310 compared with 276
in Example 9.1).2 Second, because the potential confounding variables are reduced
to a single score, the primary analysis of the relationship between the main predic-
tor and outcome can be a stratified or matched analysis, which does not require
assumptions about the form of the relationship between predictor, outcome, and
confounding variables. Finally, if the predictor variable is receipt of a prescribed
treatment, investigators might be more confident in understanding determinants of
treatment than determinants of outcome, because after all, treatment decisions are
made by clinicians based on a limited and potentially knowable number of patient
characteristics.

Of course, like other multivariate techniques, use of propensity scores still requires
that potential confounding variables be identified and measured. A limitation of this
technique is that it does not provide information about the relationship between
any of the confounding variables and outcome—the only result is for the treatment
that was modeled with the propensity score. However, because this is an analysis
phase strategy, it does not preclude doing more traditional multivariate analyses as
well, and both types of analysis are usually done. The main disadvantages of this
technique are that it requires an additional step and is less intuitive, less familiar
and less well understood by journals and reviewers than traditional multivariate
analyses.

2 Another reason that more confounders can be included is that there is no danger of “overfitting” the propensity
model—interaction terms, quadratic terms, and multiple indicator variables can all be included (11).
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. UNDERESTIMATION OF CAUSAL EFFECTS

To this point, we have focused on determining whether observed associations are
causal. The emphasis has been on whether alternative bases for an association exist,
that is, on avoiding a false conclusion that an association is real and causal when it
is not. However, another type of error is also possible—underestimation of causal
effects. It is important to remember that chance, bias and confounding can all be
reasons why a real association might be missed or underestimated.

We discussed chance as a reason for missing an association in Chapter 5, when
we reviewed type II errors and the need to make sure the sample size will provide
adequate power to find real associations. After a study has been completed, however,
the power calculation is no longer the best way to quantify uncertainty due to random
error. At this stage estimating the probability of finding an effect of a specified size is
less relevant than the actual findings, expressed as the observed estimate of association
(e.g., risk ratio) and its 95% confidence interval.

Bias can also distort estimates of association toward no effect. In Chapter 8,
the need for blinding in ascertaining risk factor status among cases and controls was
to avoid differential measurement bias, for example, differences between the cases
and controls in the way questions were asked or answers interpreted that might lead
observers to get the answers they desire. Because observers might desire results in
either direction, differential measurement bias can bias results in either direction.

Confounding can also lead to attenuation of real associations. For example,
suppose coftee drinking actually protected against MI, but was more common in
smokers. If smoking were not controlled for, the beneficial effects of coffee might
be missed—ocoffee drinkers might appear to have the same risk of MI as those
who did not drink coffee, when (based on their greater smoking) one would have
expected their risk to be higher. This type of confounding, in which the effects
of a beneficial factor are hidden by its association with a cause of the outcome, is
sometimes called suppression (12). It is a common problem for observational studies
of treatments, because treatments are often most indicated in those at higher risk of
a bad outcome. The result, noted earlier, is confounding by indication in which a
beneficial treatment can appear to be useless (as aspirin did in Example 9.1) or even
harmful.

Bl CHOOSING A STRATEGY

What general guidelines can be offered for deciding whether to cope with confounders
during the design or analysis phases, and how best to do it? The use of specification
to control confounding is most appropriate for situations in which the investigator is
chiefly interested in specific subgroups of the population; this is really just a special
form of the general process in every study of establishing criteria for selecting the
study subjects (Chapter 3).

An important decision to make in the design phase of the study is whether to
match. Matching is most appropriate for case—control studies and fixed constitutional
factors such as age, race, and sex. Matching may also be helpful when the sample
size is small compared with the number of strata necessary to control for known
confounders, and when the confounders are more easily matched than measured.
However, because matching can permanently compromise the investigator’s ability
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to observe real associations, it should be used sparingly, particularly for variables
that may be in the causal chain. In many situations the analysis phase strategies
(stratification, adjustment, and propensity scores) are just as good for controlling
confounding, and have the great advantage of being reversible—they allow the
investigator to add or subtract covariates to the statistical model in her efforts to infer
causal pathways.

The decision to stratify, adjust or use propensity scores can wait until after
the data are collected; in many cases the investigator may wish to do all of the
above. However, it is important at the time the study is designed to consider which
factors may later be used for adjustment, in order to know which variables to
measure. Also, because strategies to adjust for the influence of a specific confounding
variable can only succeed to the degree that the confounder is well measured, it
is important to design measurement approaches that have adequate precision and
accuracy (Chapter 4).

Evidence Favoring Causality

The approach to enhancing causal inference has largely been a negative one thus
far—how to rule out the four rival explanations in Table 9.1. A complemen-
tary strategy is to seeck characteristics of associations that provide positive evidence
for causality, of which the most important are the consistency and strength of
the association, the presence of a dose-response relation, and biologic plausi-
bility.

When the results are consistent in studies of various designs, it is less likely
that chance or bias is the cause of an association. Real associations that repre-
sent effect—cause or confounding, however, will also be consistently observed. For
example, if cigarette smokers drink more coffee and have more MIs in the pop-
ulation, studies will consistently observe an association between coffee drinking
and MI.

The strength of the association is also important. For one thing, stronger
associations give more significant P values, making chance a less likely explanation.
Stronger associations also provide better evidence for causality by reducing the
likelihood of confounding. Associations due to confounding are indirect (i.e., via the
confounder) and therefore are generally weaker than direct cause—effect associations.
This is illustrated in Appendix 9A: the strong associations between coftee and smoking
(odds ratio = 16) and between smoking and MI (odds ratio = 4) led to a much weaker
association between coffee and MI (odds ratio = 2.25).

A dose-response relation provides positive evidence for causality. The association
between cigarette smoking and lung cancer is an example: moderate smokers have
higher rates of cancer than do nonsmokers, and heavy smokers have even higher
rates. Whenever possible, predictor variables should be measured continuously or in
several categories, so that any dose-response relation that is present can be observed.
Once again, however, a dose-response relation can be observed with effect—cause
associations or with confounding. For example, if heavier coffee drinkers also were
heavier smokers, their MI risk would be greater than that of moderate coffee
drinkers.

Finally, biologic plausibility is an important consideration for drawing causal
inference—if a causal mechanism that makes sense biologically can be proposed,
evidence for causality is enhanced, whereas associations that do not make sense given
our current understanding of biology are less likely to represent cause—eftect. It is
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important not to overemphasize biologic plausibility, however. Investigators seem to
be able to come up with a plausible mechanism for virtually any association.

B sumMmARY

1.

The design of observational studies should anticipate the need to interpret asso-
ciations. The inference that the association represents a cause—effect relationship
(often the goal of the study) is strengthened by strategies that reduce the likelihood
of the four rival explanations—chance, bias, effect—cause, and confounding.

. The role of chance can be minimized by designing a study with adequate sample

size and precision to assure a low type I error rate. Once the study is completed,
the likelihood that chance is the basis of the association can be judged from the P
value and the consistency of the results with previous evidence.

. Bias arises from differences between the population and phenomena addressed by

the research question and the actual subjects and measurements in the study. Bias
can be avoided by basing design decisions on a judgment as to whether these
differences will lead to a wrong answer to the research question.

. Effect-cause is made less likely by designing a study that permits assessment of

temporal sequence, and by considering biologic plausibility.

. Confounding is made less likely by the following strategies, most of which require

potential confounders to be anticipated and measured:

a. Specification or matching in the design phase, which alters the sampling
strategy to ensure that only groups with similar levels of the confounder
are compared. These strategies should be used sparingly because they can
irreversibly limit the information available from the study.

b. Stratification, adjustment or propensity analysis in the analysis phase, which
accomplish the same goal statistically and preserve more options for inferring
causal pathways. Stratification is the easiest to grasp intuitively, and adjustment
can permit many factors to be controlled simultaneously. Propensity scores
are particularly helpful for addressing confounding by indication in studies of
treatment efficacy.

. Investigators should be on the lookout for opportunistic observational designs,

including natural experiments, Mendelian randomization and other instru-
mental variable designs, that offer a strength of causal inferences that can
approach that of a randomized clinical trial.

In addition to serving as rival explanations for observed associations, chance, bias,
and confounding can also lead to suppression (underestimation) of real causal
associations.

. Causal inference can be enhanced by positive evidence, notably the consistency

and strength of the association, the presence of a dose-response relation, and
prior evidence on biologic plausibility.
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B APPENDIX 9A

Hypothetical Example of Confounding and Interaction

The entries in these tables are numbers of subjects. Therefore, the top left entry means
that there were 90 subjects with MI who drank coffee.

1. If we look at the entire group of study subjects, there appears to be an association
between coftee drinking and MI (odds ratio = 2.25):

Smokers and Nonsmokers

Combined

Mi No MI
Coffee 90 60
No coffee 60 90

Odds ratio for MI associated with coffee:

90 x 90

60 x 60

=2.25 (P =0.0005;95% CI1 1.4,3.7)

2. However, this could be due to confounding, as shown by the tables stratified on

smoking below. These tables show that coftee drinking is not associated with MI
in either smokers or nonsmokers:

in smokers and non smokers combined =

Smokers Nonsmokers

Ml No MI Ml No Ml
Coffee 80 40 10 20
No coffee 20 10 40 80

Odds ratio for MI associated with coffee:

80 x 10
in smokers = A | (95% CI10.4,2.5)
20 x 40
10 x 80
in nonsmokers =~ — | (95% CI10.4,2.5)
40 x 20

Smoking is a confounder because it is strongly associated with coffee drinking
(below, left panel) and with MI (below, right panel):

MI and No MI Coffee and No Coffee
Combined Combined
Coffee No Coffee M No MI
Smokers 120 30 Smokers 100 50
Nonsmokers 30 120 Nonsmokers 50 100

Odds ratio for coffee drinking associated Odds ratio for MI associated with

120x120 _ . 100x100
_— = m mg—= —7m4mFm—=
30 x 30 SMORINS = =507 50

with smoking =
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3. A more complicated situation is interaction. In that case, the association between
coffee drinking and MI differs in smokers and nonsmokers. (In this example, the
association between coffee drinking and MI in the whole study is due entirely to
a strong association in smokers). When interaction is present, the odds ratios in
different strata are different, and must be reported separately:

Smokers Nonsmokers
Mi No Mi Mi No Mi
Coffee 50 15 Coffee 40 45
No Coffee 10 33 No Coffee 50 57
R= 2223 _ 1y 950 0l 4.1, 30.6) OR = 20X57 _ 4 0 (95%Cl, 055, 19)

15 x 10 T 45 x 50

#J APPENDIX 9B

A Simplified Example of Adjustment

Suppose that a study finds two major predictors of the IQ of children: the parental
education level and the child’s blood lead level. Consider the following hypothetical
data on children with normal and high lead levels:

Average Years Average 1Q
of Parental Education of Child
High lead level 10.0 95
Normal lead level 12.0 110

Note that the parental education level is also associated with the child’s blood
lead level. The question is, “Is the difference in IQ more than can be accounted for
on the basis of the difference in parental education?” To answer this question we look
at how much difference in IQ the difference in parental education levels would be
expected to produce. We do this by plotting parental educational level versus IQ in
the children with normal lead levels (Fig. 9.2).3

The dotted line in Figure 9.2 shows the relationship between the child’s 1Q
and parental education in children with normal lead levels; there is an increase in
the child’s I1Q of five points for each 2 years of parental education. Therefore, we
can adjust the IQ of the normal lead group to account for the difference in mean
parental education by sliding down the line from point A to point A’. (Because the
group with normal lead levels had 2 more years of parental education on the average,
we adjust their IQs downward by five points to make them comparable in mean
parental education to the high lead group.) This still leaves a 10-point difference in
1Q between points A and B, suggesting that lead has an independent effect on IQ of
this magnitude. Therefore, of the 15-point difference in IQ of children with low and
high lead levels, five points can be accounted for by their parents’ different education
levels and the remaining ten are attributable to the lead exposure.

3This description of analysis of covariance (ANCOVA) is simplified. Actually, parental education is plotted against the child’s 1Q
in both the normal and high lead groups, and the single slope that fits both plots the best is used. The model for this form of
adjustment therefore assumes linear relationships between education and 1Q in both groups, and that the slopes of the lines in
the two groups are the same.
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FIGURE 9.2. Hypothetical graph of child’s IQ as a linear function (dotted line)
of years of parental education.
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m Designing a Randomized

Blinded Trial

Steven R. Cummings, Deborah Grady, and Stephen B. Hulley

In clinical trials, the investigator applies an intervention and observes the effect on
outcomes. The major advantage of a trial over an observational study is the ability
to demonstrate causality. In particular, randomly assigning the intervention can
eliminate the influence of confounding variables, and blinding its administration
can eliminate the possibility that the observed effects of the intervention are due to
differential use of other treatments in the treatment and control groups or to biased
ascertainment or adjudication of the outcome.

However, clinical trials are generally expensive, time consuming, address narrow
clinical questions, and sometimes expose participants to potential harm. For these
reasons, trials are best reserved for relatively mature research questions, when
observational studies and other lines of evidence suggest that an intervention might
be effective and safe but stronger evidence is required before it can be approved or
recommended. Not every research question is amenable to the clinical trial design—it
is not feasible to study whether drug treatment of high LDL-cholesterol in children
will prevent heart attacks many decades later. But clinical trial evidence on clinical
interventions should be obtained whenever possible.

This chapter focuses on designing the classic randomized blinded trial (Fig.
10.1), addressing the choice of intervention and control, defining outcomes,
selecting participants, measuring baseline variables, and approaches to random-
izing and blinding. In the next chapter we will cover alternative trial designs and
implementation and analysis issues.

SELECTING THE INTERVENTION AND CONTROL
CONDITIONS

In a clinical trial, the investigator compares the outcome in groups of participants
that receive different interventions. Between-group designs always include a group
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FIGURE 10.1. In a randomized trial, the investigator (a) selects a sample from the population,

(b) measures baseline variables, (c) randomizes the participants (R), (d) applies interventions (one
should be a blinded placebo, if possible), (¢) measures outcome variables during follow-up (blinded to
randomized group assignment).

that receives an intervention to be tested, and another that receives either no active
treatment (preferably a placebo) or a comparison treatment.

Choice of Intervention

The choice of intervention is the critical first step in designing a clinical trial. Investi-
gators should consider several issues as they design their interventions, including the
intensity, duration and frequency of the intervention that best balances effectiveness
and safety. It is also important to consider the feasibility of blinding, whether to
treat with one or a combination of interventions, and generalizability to the way
the treatment will be used in practice. If important decisions are uncertain, such as
which dose best balances effectiveness and safety, it is generally best to postpone
major or costly trials until pilot studies have been completed to help resolve the issue.
Choosing the best treatment can be especially difficult in studies that involve years
of follow-up because a treatment that reflects current practice at the outset of the
study may have become outmoded by the end, transforming a pragmatic test into an
academic exercise.

The best balance between effectiveness and safety depends on the condition
being studied. On the one hand, effectiveness is generally the paramount consideration
in designing interventions to treat illnesses that cause severe symptoms and a high
risk of death. Therefore, it may be best to choose the “‘highest tolerable dose” for
treatment of metastatic cancer. On the other hand, safety should be the primary
criterion for designing interventions to treat less severe conditions or to prevent
illness. Preventive therapy in healthy people should meet stringent tests of safety: if it
is effective, the treatment will prevent the condition in a few persons, but everyone
treated will be at risk of the adverse effects of the drug. In this case, it is generally
best to choose the “lowest effective dose.”” If the best dose is not certain based on
prior animal and human research findings, there may be a need for additional trials
that compare the effects of multiple doses on surrogate outcomes (see phase II trials,
Chapter 11).

Sometimes an investigator may decide to compare several promising doses with
a single control group in a major disease endpoint trial. For example, at the time
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the Multiple Outcomes of Raloxifene Evaluation Trial was designed, it was not clear
which dose of raloxifene (60 or 120 mg) was best, so the trial tested two doses of
raloxifene for preventing fractures (1). This is sometimes a reasonable strategy, but
it has its costs: a larger and more expensive trial, and the complexity of dealing with
multiple hypotheses (Chapter 5).

Trials to test single interventions are generally much easier to plan and implement
than those testing combinations of treatments. However, many medical conditions,
such as HIV infection or congestive heart failure, are treated with combinations
of drugs or therapies. The most important disadvantage of testing combinations
of treatments is that the result cannot provide clear conclusions about any one
of the interventions. In the first Women’s Health Initiative trial, for example,
postmenopausal women were treated with estrogen plus progestin therapy or placebo.
The intervention increased the risk of several conditions, such as breast cancer;
however, it was unclear whether the effect was due to the estrogen or the progestin (2).
In general, it is preferable to design trials that have only one major difference between
any two study groups.

The investigator should consider how well the intervention can be incorporated in
practice. Simple interventions are generally better than complicated ones (patients
are more likely to take a pill once a day than two or three times). Complicated
interventions, such as multifaceted counseling about changing behavior, may not be
feasible to incorporate in general practice because they require rare expertise or are
too time consuming or costly. Such interventions are less likely to have clinical impact,
even if a trial proves that they are effective.

Some treatments are generally given in doses that vary from patient to patient.
In these instances, it may be best to design an intervention so that the active drug
is titrated to achieve a clinical outcome such as reduction in the hepatitis C viral
load. To maintain blinding, corresponding changes should be made (by someone not
otherwise involved in the trial) in the “‘dose” of placebo for a randomly selected or
matched participant in the placebo group.

Choice of Control

The best control group receives no active treatment in a way that can be blinded,
which for medications generally requires a placebo that is indistinguishable from
active treatment. This strategy compensates for any placebo effect of the active in-
tervention (i.e., through suggestion and other nonpharmacologic mechanisms) so
that any outcome difference between study groups can be ascribed to a biological
effect.

The cleanest comparison between the intervention and control groups occurs
when there are no cointerventions—medications, therapies or behaviors (other than
the study intervention) that reduce the risk of developing the outcome of interest.
If participants use effective cointerventions, power will be reduced and the sample
size will need to be larger or the trial longer. In the absence of effective blinding,
the trial protocol must include plans to obtain data to allow statistical adjustment
for differences between the groups in the rate of use of such cointerventions dur-
ing the trial. However, adjusting for such postrandomization differences violates
the intention-to-treat principle and should be viewed as a secondary or explanatory
analysis (Chapter 11).

Often it is not possible to withhold treatments other than the study intervention.
For example, in a trial of a new drug to reduce the risk of myocardial infarction in
persons with known coronary heart disease (CHD), the investigators cannot ethically
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prohibit or discourage participants from taking medical treatments that are indicated
for persons with known CHD, including aspirin, statins and beta-blockers. One
solution is to give standard care drugs to all participants in the trial; although this
approach reduces the event rate and therefore increases the required sample size, it
minimizes the potential for differences in cointerventions between the groups and
tests whether the new intervention improves outcome when given in addition to
standard care.

When the treatment to be studied is a new drug that is believed to be a good
alternative to standard care, one option is to design an equivalence trial in which
new treatments are compared with those already proven effective (see Chapter 11).
When the treatment to be studied is a surgery or other procedure that is so attractive
that prospective participants are reluctant to be randomized to something different,
an excellent approach may be randomization to immediate intervention versus a
wait-list control. This design requires an outcome that can be assessed within a few
months of starting the intervention. It provides an opportunity for a randomized
comparison between the immediate intervention and wait-list control groups during
the first several months, and also for a within-group comparison before and after
the intervention in the wait-list control group (see Chapter 11 for time-series and
cross-over designs).

B CHOOSING OUTCOME MEASUREMENTS

The definition of the specific outcomes of the trial influences many other design
components, as well as the cost and even the feasibility of answering the question.
Trials should include several outcome measurements to increase the richness of the
results and possibilities for secondary analyses. However, a single outcome must be
chosen that reflects the main question, allows calculation of the sample size and sets
the priority for efforts to implement the study.

Clinical outcomes provide the best evidence about whether and how to use
treatments. However for outcomes that are uncommon, such as the occurrence of
cancer, trials must generally be large, long, and expensive. As noted in Chapter 6,
outcomes measured as continuous variables, such as quality of life, can generally be
studied with fewer subjects and shorter follow-up times than rates of a dichotomous
clinical outcome, such as recurrence of treated breast cancer.

Intermediate markers, such as bone density, are measurements that are related
to the clinical outcome. Trials that use intermediate outcomes can further our
understanding of pathophysiology and provide information to design the best dose or
frequency of treatment for use in trials with clinical outcomes. The clinical relevance
of trials with intermediate outcomes depends in large part on how accurately changes
in these markers, especially changes that occur due to treatment, represent changes
in the risk or natural history of clinical outcomes. Intermediate markers can be
considered surrogate markers for the clinical outcome to the extent that treatment-
induced changes in the marker consistently predict how treatment changes the clinical
outcome (3). Generally, a good surrogate measures changes in an intermediate factor
in the main pathway that determines the clinical outcome.

HIV viral load is a good surrogate marker because treatments that reduce the
viral load consistently reduce morbidity and mortality in patients with HIV infection.
In contrast, bone mineral density (BMD) is considered a poor surrogate marker (3).
It reflects the amount of mineral in a section of bone, but treatments that improve
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BMD sometimes have little or no effect on fracture risk, and the magnitude of change
in BMD can substantially underestimate how much the treatment reduces fracture
risk (4). The best evidence that a biological marker is a good surrogate comes from
randomized trials of the clinical outcome (fractures) that also measure change in the
marker (BMD) in all participants. If the marker is a good surrogate, then statistical
adjustment for changes in the marker will account for much of the effect of treatment
on the outcome (3).

Number of Outcome Variables

It is often desirable to have several outcome variables that measure different aspects
of the phenomena of interest. In the Heart and Estrogen/progestin Replacement
Study (HERS), CHD events were chosen as the primary endpoint. Nonfatal my-
ocardial infarction, coronary revascularization, hospitalization for unstable angina or
congestive heart failure, stroke and transient ischemic attack, venous thromboembolic
events, and all-cause mortality were all assessed and adjudicated to provide a more
detailed description of the cardiovascular effects of hormone therapy (5). However, a
single primary endpoint (CHD events) was designated for the purpose of planning
the sample size and duration of the study and to avoid the problems of interpreting
tests of multiple hypotheses (Chapter 5).

Adverse Effects

The investigator should include outcome measures that will detect the occurrence
of adverse effects that may result from the intervention. Revealing whether the
beneficial effects of an intervention outweigh the adverse ones is a major goal of
most clinical trials, even those that test apparently innocuous treatments like a health
education program. Adverse effects may range from relatively minor symptoms such
as a mild or transient rash, to serious and fatal complications. The investigator should
consider the problem that the rate of occurrence, the effect of treatment and the
sample size requirements for detecting adverse effects will generally be different from
those for detecting benefits. Unfortunately, rare side effects will usually be impossible
to detect no matter how large the trial and are discovered (if at all) only after an
intervention is in widespread clinical use.

In the early stages of testing a new treatment when potential adverse effects
are unclear, investigators should ask broad, open-ended questions about all types
of potential adverse effects. In large trials, assessment and coding of all potential
adverse events can be very expensive and time consuming, often with a low yield of
important results. Investigators should consider strategies for minimizing this burden
while preserving an adequate assessment of potential harms of the intervention. For
example, in very large trials, common and minor events, such as upper respiratory
infections and gastrointestinal upset, might be recorded in a subset of the participants.
Important potential adverse events or effects that are expected because of previous
research or clinical experience should be ascertained by specific queries. For example,
because rhabdomyolysis is a reported side effect of treatment with statins, the signs
and symptoms of myositis should be queried in any trial of a new statin.

When data from a trial is used to apply for regulatory approval of a new drug,
the trial design must satisty regulatory expectations for reporting adverse events
(see ““Good Clinical Practices” on the U.S. Food and Drug Administration [FDA]
website). Certain disease areas, such as cancer, have established methods for classifying
adverse events (see “NCI Common Toxicity Criteria” on the National Cancer
Institute website).



152  Study Designs

. SELECTING THE PARTICIPANTS

Chapter 3 discussed how to specify entry criteria defining a target population that is
appropriate to the research question and an accessible population that is practical to
study, how to design an efficient and scientific approach to selecting participants, and
how to recruit them. Here we cover issues that are especially relevant to clinical trials.

Define Entry Criteria

In a clinical trial, inclusion and exclusion criteria have the joint goal of identifying
a population in which it is feasible, ethical and relevant to study the impact of the
intervention on outcomes. Inclusion criteria should produce a sufficient number of
enrollees who have a high enough rate of the primary outcome to achieve adequate
power to find an important effect on the outcome. On the other hand, criteria should
also maximize the generalizability of findings from the trial and ease of recruitment.
For example, if the outcome of interest is a rare event, such as breast cancer, it is
usually necessary to recruit participants who have a high risk of the outcome to reduce
the sample size and follow-up time to feasible levels. On the other hand, narrowing
the inclusion criteria to higher-risk women limits the generalizability of the results
and makes it more difficult to recruit participants into the trial.

To plan the right sample size, the investigator must have reliable estimates of
the rate of the primary outcome in people who might be enrolled. These estimates
can be based on data from vital statistics, longitudinal observational studies, or rates
observed in the untreated group in trials with outcomes similar to those in the planned
trial. For example, expected rates of breast cancer in postmenopausal women can be
estimated from cancer registry data. The investigator should keep in mind, however,
that screening and healthy volunteer effects generally mean that event rates among
those who qualify and agree to enter clinical trials are lower than in the general
population; it may be preferable to obtain rates of breast cancer from the placebo
group of other trials with similar inclusion criteria.

Including participants with a high risk of the outcome can decrease the number
of subjects needed for the trial. If risk factors for the outcome have been established,
then the selection criteria can be designed to include participants who have a minimum
estimated risk of the outcome of interest. The Raloxifene Use for The Heart trial,
designed to test the effect of raloxifene for prevention of cardiovascular disease (CVD)
and breast cancer, enrolled women who were at increased risk of CVD based on a
combination of risk factors (6). Another way to increase the rate of events is to limit
enrollment to people who already have the disease. The Heart and Estrogen /Progestin
Replacement Study included 2,763 women who already had CHD to test whether
estrogen plus progestin reduced the risk of new CHD events (5). This approach
was much less costly than the Women’s Health Initiative trial of the same research
question in women without CHD, which required about 17,000 participants (7).

Additionally, a trial can be smaller and shorter if it includes people who are likely
to have the greatest benefit from the treatment. For example, tamoxifen blocks
the binding of estradiol to its receptor and decreases the risk of breast cancer that is
estrogen receptor positive but not that of cancer that is estrogen receptor negative (8).
Therefore, a trial testing the effect of tamoxifen on the risk of breast cancer would be
somewhat smaller and shorter if the selection criteria specify participants at high risk
of estrogen receptor—positive breast cancer.
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Although probability samples of general populations confer advantages in obser-
vational studies, this type of sampling is generally not feasible and has limited value for
randomized trials. Inclusion of participants with diverse characteristics will increase
the confidence that the results of a trial apply broadly. However, setting aside issues
of adherence to randomized treatment, it is generally true that results of a trial done
in a convenience sample (e.g., women with CHD who respond to advertisements) will
be similar to results obtained in probability samples of eligible people (all women with
CHD).

Stratification by a characteristic, such as racial group, allows investigators to
enroll a desired number of participants with a characteristic that may have an influence
on the effect of the treatment or its generalizability. Recruitment to a stratum is
generally closed when the goal for participants with that characteristic has been
reached.

Exclusion criteria should be parsimonious because unnecessary exclusions may
diminish the generalizability of the results, make it more difficult to recruit the
necessary number of participants, and increase the complexity and cost of recruitment.
There are five reasons for excluding people from a clinical trial (Table 10.1).

The treatment may be unsafe in people who are susceptible to known or suspected
adverse effects of the active treatment. For example, myocardial infarction is a rare
adverse effect of treatment with sildenafil (Viagra). Therefore, trials of Viagra to
treat painful vasospasm in patients with Raynaud’s disease should exclude patients
who have CHD (9). Conversely receiving placebo may be considered unsafe for
some participants. For example, bisphosphonates are known to be so beneficial in
women with vertebral fractures that it would be unacceptable to enter them in a
placebo-controlled trial of a new treatment for osteoporosis unless bisphosphonates
could also be provided for all trial participants. Persons in whom the active treatment

TABLE 10.1  Reasons for Excluding People from a Clinical Trial
Example (A trial of raloxifene vs. placebo
Reason to prevent heart disease)

1. A study treatment would be harmful
e Unacceptable risk of adverse reaction to
active treatment
e Unacceptable risk of assignment to
placebo

Prior venous thromboembolic event (raloxifene
increases risk of venous thromboembolic events)

Recent estrogen receptor-positive breast cancer
(treatment with an anti-estrogen is an effective
standard of care)

2. Active treatment is unlikely to be effective
o At low risk for the outcome
e Has a type of disease that is not likely to

respond to treatment

Low coronary heart disease risk factors

o Taking a treatment that is likely to interfere
with the intervention
3. Unlikely to adhere to the intervention
4. Unlikely to complete follow-up

5. Practical problems with participating in the
protocol

Taking estrogen therapy (which competes with
raloxifene)

Poor adherence during run-in

Plans to move before trial ends

Short life expectancy because of a serious illness

Unreliable participation in visits before
randomization

Impaired mental state that prevents accurate
answers to questions



154

Study Designs

is unlikely to be effective should be excluded, as well as those who are unlikely
to be adherent to the intervention or unlikely to complete follow-up. It is wise to
exclude people who are not likely to contribute a primary outcome to the study
(e.g., because they will move during the peviod of follow-up). Occasionally, practical
problems such as impaired mental status that makes it difficult to follow instructions
justify exclusion. Investigators should carefully weigh potential exclusion criteria
that apply to many people (e.g., diabetes or upper age limits) as these may have a
large impact on the feasibility and costs of recruitment and the generalizability of
results.

Design an Adequate Sample Size and Plan the Recruitment Accordingly
Trials with too few participants to detect substantial effects are wasteful, unethical,
and may produce misleading conclusions (10). Estimating the sample size is one of
the most important early parts of planning a trial (Chapter 6). Outcome rates in
clinical trials are commonly lower than estimated, primarily due to screening and
volunteer bias. Recruitment for a trial is usually more difficult than recruitment for
an observational study. For these reasons, the investigator should plan an adequate
sample from a large accessible population, and enough time and money to get the
desired sample size when (as usually happens) the barriers to doing so turn out to be
greater than expected.

. MEASURING BASELINE VARIABLES

To facilitate contacting participants who are lost to follow-up, it is important to record
the names, phone numbers, addresses, and e-mail addresses of two or three friends
or relatives who will always know how to reach the participant. It is also valuable
to record Social Security numbers or other national I.D. numbers. These can be
used to determine the vital status of participants (through the National Death Index)
or to detect key outcomes using health records (e.g., health insurance systems).
However, this is confidential “‘protected personal health information” that must be
kept confidential and should not accompany data that are sent to a coordinating
center or sponsoring institution.

Describe the Participants

Investigators should collect enough information (e.g., age, gender, and measurements
of the severity of disease) to help others judge the generalizability of the findings.
These measurements also provide a means for checking on the comparability of the
study groups at baseline; the first table of the final report of a clinical trial typically
compares the levels of baseline characteristics in the study groups. The goal is to
make sure that differences in these levels do not exceed what might be expected from
the play of chance, which might suggest a technical error or bias in carrying out the
randomization.

Measure Variables that are Risk Factors for the Outcome or can be
Used to Define Subgroups

It is a good idea to measure baseline variables that are likely to be strong predictors
of the outcome (e.g., smoking habits of the spouse in a trial of a smoking intervention).
This allows the investigator to study secondary research questions, such as predictors
of the outcomes. In small trials where randomization is more prone to produce chance
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maldistributions of baseline characteristics, measurement of important predictors of
the outcome permits statistical adjustment of the primary randomized comparison
to reduce the influence of these chance maldistributions on the outcome of the
trial. Baseline measurements of potential predictors of the outcome also allow the
investigator to examine whether the intervention has different effects in subgroups
classified by baseline variables, an uncommon but important phenomenon termed
effect modification or interaction (Chapter 9). For example, bone density measured
at baseline in the Fracture Intervention Trial led to the finding that treatment with
alendronate significantly decreased the risk of nonspine fractures in women with
very low bone density (osteoporosis) but had no effect in women with higher bone
density (11). Importantly, a specific test for the interaction was of bone density and
treatment effect was statistically significant (P = 0.02).

Measure Baseline Value of the Outcome Variable

If outcomes include change in a variable, the outcome variable must be measured at
the beginning of the study in the same way that it will be measured at the end. In
studies that have a dichotomous outcome (zncidence of CHD, for example) it may
be important to demonstrate by history and electrocardiogram that the disease is
not present at the outset. In studies that have a continuous outcome variable (effects
of antibypertensive drugs on blood pressure) the best measure is generally a change
in the outcome over the course of the study. This approach usually minimizes the
variability in the outcome between study participants and offers more power than
simply comparing blood pressure values at the end of the trial. Similarly, it may also
be useful to measure secondary outcome variables, and outcomes of planned ancillary
studies, at baseline.

Be Parsimonious

Having pointed out all these uses for baseline measurements, we should stress
that the design of a clinical trial does not require that any be measured, because
randomization eliminates the problem of confounding by factors that are present
at the outset. Making a lot of measurements adds expense and complexity. In a
randomized trial that has a limited budget, time and money are usually better spent
on things that are vital to the integrity of the trial, such as the adequacy of the sample
size, the success of randomization and blinding, and the completeness of follow-up.
Yusuf et al. have promoted the use of large trials with very few measurements (12).

Establish Banks of Materials

Storing images, sera, DNA, and other biologic specimens at baseline will allow
subsequent measurement of biological effects of the treatment, biological markers
that predict the outcome, and factors (such as genotype) that might identify people
who respond well or poorly to the treatment. Stored specimens can also be a rich
resource to study other research questions not directly related to the main outcome.

B RANDOMIZING AND BLINDING

The third step in Figure 10.1 is to randomly assign the participants to two or more
groups. In the simplest design, one group receives an active treatment intervention and
the other receives a placebo. The random allocation of participants to one or another of
the study groups establishes the basis for testing the statistical significance of differences
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between these groups in the measured outcome. Random assignment provides that
age, sex, and other prognostic baseline characteristics that could confound an observed
association (even those that are unknown or unmeasured) will be distributed equally,
except for chance variation, among the randomized groups.

Do a Good Job of Random Assignment

Because randomization is the cornerstone of a clinical trial, it is important that it
be done correctly. The two most important features are that the procedure truly
allocates treatments randomly and that the assignments are tamperproof so that
neither intentional nor unintentional factors can influence the randomization.

Ordinarily, the participant completes the baseline examinations, is found eligible
for inclusion, and gives consent to enter the study before randomization. He is
then randomly assigned by computerized algorithm or by applying a set of random
numbers, which are typically computer-generated. Once a list of the random order of
assignment to study groups is generated, it must be applied to participants in strict
sequence as they enter the trial.

It is essential to design the random assignment procedure so that members of the
research team who have any contact with the study participants cannot influence the
allocation. For example, random treatment assignments can be placed in advance in a
set of sealed envelopes by someone who will not be involved in opening the envelopes.
Each envelope must be numbered (so that all can be accounted for at the end of
the study), opaque (to prevent transillumination by a strong light), and otherwise
tamperproof. When a participant is randomized, his name and the number of the
next unopened envelope are first recorded in the presence of a second staft member
and both staft sign the envelope; #hen the envelope is opened and the randomization
number contained therein assigned to the participant.

Multicenter trials typically use a separate tamperproof randomization facility that
the trial staff contact when an eligible participant is ready to be randomized. The staff
member provides the name and study ID of the new participant. This information is
recorded and the treatment group is then randomly assigned by providing a treatment
assignment number linked to the interventions. Treatment can also be randomly
assigned by computer programs at a single research site as long as these programs
are tamperproof. Rigorous precautions to prevent tampering with randomization are
needed because investigators sometimes find themselves under pressure to influence
the randomization process (e.g., for an individual who seems particularly suitable for
an active treatment group in a placebo-controlled trial).

Consider Special Randomization Techniques

The preferred approach is typically simple randomization of individual participants in
an equal ratio to each intervention group. Trials of small to moderate size will have a
small gain in power if special randomization procedures are used to balance the study
groups in the numbers of participants they contain (blocked randomization) and in
the distribution of baseline variables known to predict the outcome (stratified blocked
randomization).

Blocked randomization is a commonly used technique to ensure that the number
of participants is equally distributed among the study groups. Randomization is done
in “‘blocks” of predetermined size. For example, if the block size is six, randomization
proceeds normally within each block until the third person is randomized to one
group, after which participants are automatically assigned to the other group until
the block of six is completed. This means that in a study of 30 participants exactly 15
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will be assigned to each group, and in a study of 33 participants, the disproportion
could be no greater than 18:15. Blocked randomization with a fixed block size is less
suitable for nonblinded studies because the treatment assignment of the participants
at the end of each block could be predicted and manipulated. This problem can be
minimized by varying the size of the blocks randomly (ranging, for example, from
four to eight) according to a schedule that is not known to the investigator.

Stratified blocked randomization ensures that an important predictor of the
outcome is more evenly distributed between the study groups than chance alone
would dictate. In a trial of the effect of a drug to prevent fractures, having a prior
vertebral fracture is such a strong predictor of outcome and response to treatment
that it may be best to ensure that similar numbers of people who have vertebral
fractures are assigned to each group. This can be achieved by dividing participants
into two groups—those with and those without vertebral fractures—as they enroll in
the trial and then carrying out blocked randomization separately in each of these two
“strata.”” Stratified blocked randomization can slightly enhance the power of a small
trial by reducing the variation in outcome due to chance disproportions in important
baseline variables. It is of little benefit in large trials (more than 1,000 participants)
because chance assignment ensures nearly even distribution of baseline variables.
An important limitation of stratified blocked randomization is the small number of
baseline variables, not more than two or three, that can be balanced by this technique.

Randomizing equal numbers of participants to each group maximizes study
power, but unequal allocation of participants to treatment and control groups
may sometimes be appropriate (13). Occasionally, investigators increase the ratio of
active to placebo treatment to make the trial more attractive to potential subjects who
would like a greater chance of receiving active treatment if they enroll, or decrease the
ratio (as in the Women’s Health Initiative low-fat diet trial (14)) to save money if the
intervention is expensive. A trial comparing multiple active treatments to one control
group may increase the power of those comparisons by enlarging the control group
(as in the Coronary Drug Project trial (15)). In this case there is no clear way to pick
the best proportions to use, and disproportionate randomization might complicate
the process of obtaining informed consent. Because the advantages are marginal (the
effect of even a 2:1 disproportion on power is surprisingly modest (16)), the best
decision is usually to assign equal numbers to each group.

Randomization of matched pairs is a strategy for balancing baseline confound-
ing variables that requires selecting pairs of subjects who are matched on important
factors like age and sex, then randomly assigning one member of each pair to each
study group. A drawback of randomizing matched pairs is that it complicates recruit-
ment and randomization, requiring that an eligible participant wait for randomization
until a suitable match has been identified. In addition, matching is generally not
necessary in large trials in which random assignment prevents confounding. However,
a particularly attractive version of this design can be used when the circumstances per-
mit a contrast of treatment and control effects in two parts of the same individual. In
the Diabetic Retinopathy Study, for example, each participant had one eye randomly
assigned to photocoagulation treatment while the other served as a control (17).

Blinding

Whenever possible, the investigator should design the interventions in such a fashion
that the study participants, staft who have contact with them, persons making
laboratory measurements, and those adjudicating outcomes have no knowledge of
the study group assignment. When it is not possible to blind all of these individuals, it is
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TABLE 10.2 In a Randomized Blinded Trial, Randomization Eliminates
Confounding by Baseline Variables and Blinding Eliminates
Confounding by Colnterventions

Explanation Strategy to Rule Out
for Association Rival Explanation
1. Chance Same as in observational studies
2. Bias Same as in observational studies
3. Effect—Cause (Not a possible explanation in a trial)

Prerandomization confoundin

era domization confounding Randomization

variables
4. Confounding

Postrandomization confoundin -

9 Blinding

variables (cointerventions)
5. Cause—Effect

highly desirable to blind as many as possible (always, for example, blinding laboratory
personnel). In a randomized trial, blinding is as important as randomization: it
prevents bias due to use of cointerventions and biased ascertainment of outcomes.

Randomization only eliminates the influence of confounding variables that are
present at the time of randomization; it does not eliminate differences that develop
between the groups during follow-up (Table 10.2). In an unblinded study the
investigator or study staff may give extra attention or treatment to participants he
knows are receiving the active drug, and this ‘“‘cointervention” may be the actual
cause of any difference in outcome that is observed between the groups. For example,
in an unblinded trial of the effect of exercise to prevent myocardial infarction, the
investigator’s eagerness to find a benefit might lead him to suggest that participants
in the exercise group stop smoking. Cointerventions can also affect the control group
if, for example, participants who know that they are receiving placebo seck out other
treatments that affect the outcome. Concern by a participant’s family or private
physician might also lead to effective cointerventions if the study group is not blinded.
Cointerventions that are delivered similarly in both groups may decrease the power
of the study by decreasing outcome rates, but cointerventions that affect one group
more than the other can cause bias in either direction.

The other important value of blinding is to prevent biased ascertainment and
adjudication of outcome. In an unblinded trial, the investigator may be tempted
to look more carefully for outcomes in the untreated group or to diagnose the
outcome more frequently. For example, in an unblinded trial of estrogen therapy,
the investigators may be more likely to ask women in the active treatment group
about pain or swelling in the calf and to order ultrasound or other tests to make the
diagnosis of deep vein thrombosis.

After a possible outcome event has been ascertained, it is important that personnel
who will adjudicate the outcome are blinded. Results of the Canadian Cooperative
Multiple Sclerosis trial nicely illustrate the importance of blinding in unbiased out-
come adjudication (18). Persons with multiple sclerosis were randomly assigned to
combined plasma exchange, cyclophosphamide and prednisone, or to sham plasma
exchange and placebo medications. At the end of the trial, the severity of multiple
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sclerosis was assessed using a structured examination by neurologists blinded to
treatment assignment and again by neurologists who were unblinded. Therapy was
not effective based on the assessment of the blinded neurologists, but was statistically
significantly effective based on the assessment of the unblinded neurologists.

Blinded assessment of outcome may not be important if the outcome of the trial is
a “‘hard” outcome such as death, about which there is no uncertainty or opportunity
for biased assessment. Most other outcomes, such as cause-specific death, disease
diagnosis, physical measurements, questionnaire scales, and self-reported conditions,
are susceptible to biased ascertainment.

After the study is over, it is a good idea to assess whether the participants and
investigators were unblinded by asking them to guess which treatment the participant
was assigned to; if a higher than expected proportion guesses correctly, the published
discussion of the findings should include an assessment of the potential biases that
partial unblinding may have caused.

What to do When Blinding is Difficult or Impossible. In some cases blinding is
difficult or impossible, either for technical or ethical reasons. For example, it is
difficult to blind participants if they are assigned to an educational, dietary or exercise
intervention. However, the control group in such studies might receive a different form
of education, diet or exercise of a type and intensity unlikely to be effective. Surgical
interventions often cannot be blinded because it may be unethical to perform sham
surgery in the control group. However, surgery is always associated with some risk, so it
is very important to determine if the procedure is truly effective. For example, a recent
randomized trial found that arthroscopic debridement of the cartilage of the knee was
no more effective than sham arthroscopy for relieving osteoarthritic knee pain (19).
In this case, the risk to participants in the control group may have been outweighed
if thousands of patients were prevented from undergoing an ineftective procedure.

If the interventions cannot be blinded, the investigator should limit and stan-
dardize other potential cointerventions as much as possible and blind study staftf who
ascertain and adjudicate the outcomes. For example, an investigator testing the effect
of yoga for relief of hot flashes could specity a precise regimen of yoga sessions in
the treatment group and general relaxation sessions of equal duration in the control
group. To minimize other differences between the groups, he could instruct both
yoga and control participants to refrain from starting new recreational, exercise or
relaxation activities or other treatments for hot flushes until the trial has ended. Also,
study staff who collect information on the severity of hot flushes could be different
from those who provide yoga training.

B sumMmARY

1. The choice and dose of intervention is a difficult decision that balances effec-
tiveness and safety; other considerations include relevance to clinical practice,
simplicity, suitability for blinding, and feasibility of enrolling subjects.

2. The best comparison group is a placebo control that allows participants, investi-
gators and study staff to be blinded.

3. Clinically relevant outcome measures such as pain, quality of life, occurrence
of cancer, and death are the most meaningful outcomes of trials. Intermediary
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markers, such as HIV viral load, are valid surrogate markers for clinical outcomes
to the degree that treatment-induced changes in the marker consistently predict
changes in the clinical outcome.

. All clinical trials should include measures of potential adverse effects of the

intervention.

. The criteria for selecting study participants should identify those who are likely

to benefit and not be harmed by treatment, easy to recruit, and likely to adhere
to treatment and follow-up protocols. Choosing participants at high risk of an
uncommon outcome can decrease sample size and cost, but may make recruitment
more difficult and decrease generalizability of the findings.

. Baseline variables should be measured parsimoniously to track the participants,

describe their characteristics, measure risk factors for and bascline values of the
outcome, and enable later examination of disparate intervention effects in various
subgroups (interactions); serum, genetic material, and so on should be stored for
later analysis.

. Randomization, which eliminates bias due to baseline confounding variables,

should be tamperproof; matched pair randomization is an excellent design when
feasible, and in small trials stratified blocked randomization can reduce chance
maldistributions of key predictors.

. Blinding the intervention is as important as randomization and serves to control

cointerventions and biased outcome ascertainment and adjudication.
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m Alternative Trial Designs
and Implementation Issues

Deborah Grady, Steven R. Cummings, and Stephen B. Hulley

In the last chapter, we discussed the classic randomized, blinded, parallel group trial:
how to select the intervention, choose outcomes, select participants, measure baseline
variables, randomize, and blind. In this chapter, we describe alternative clinical trial
designs and address the conduct of clinical trials, including interim monitoring
during the trial.

. ALTERNATIVE CLINICAL TRIAL DESIGNS

Other Randomized Designs
There are a number of variations on the classic parallel group randomized trial that
may be useful when the circumstances are right.

The factorial design aims to answer two (or more) separate research questions
in a single cohort of participants (Fig. 11.1). A good example is the Women’s Health
Study, which was designed to test the effect of low-dose aspirin and vitamin E on risk
for cardiovascular events among healthy women (1). The participants were randomly
assigned to four groups, and two hypotheses were tested by comparing two halves
of the study cohort. First, the rate of cardiovascular events in women on aspirin is
compared with women on aspirin placebo (disregarding the fact that half of each of
these groups received vitamin E); then the rate of cardiovascular events in those on
vitamin E is compared with all those on vitamin E placebo (now disregarding the
fact that half of each of these groups received aspirin). The investigators have two
complete trials for the price of one.

The factorial design can be very efficient. For example, the Women’s Health
Initiative randomized trial was able to test the effect of three interventions (hormone
therapy, low-fat diet and calcium plus vitamin D) on a number of outcomes in
one cohort (2). A limitation is the possibility of interactions between the effects of
the treatments on the outcomes. For example, if the effect of aspirin on risk for
cardiovascular disease is different in women treated with vitamin E compared to those
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FIGURE 11.1. In a factorial randomized trial, the investigator (a) selects a sample from the population,
(b) measures baseline variables, (¢) randomly assigns two active interventions and their controls to four
groups as shown, (d) applies interventions, (e) measures outcome variables during follow-up,

(f) analyzes the results, first combining the two drug A groups to be compared with the two placebo A
groups and then combining the two drug B groups to be compared with the two placebo B groups.

not treated with vitamin E, an interaction exists and the effect of aspirin would have
to be calculated separately in these two groups. This would reduce the power of these
comparisons, because only half of the participants would be included in each analysis.
Factorial designs can actually be used to study such interactions, but trials designed to
test interactions are more complicated and difficult to implement, larger sample sizes
are required, and the results can be hard to interpret. Other limitations of the factorial
design are that the same study population must be appropriate for each intervention
and multiple treatments may interfere with recruitment and adherence.

Group or cluster randomization requires that the investigator randomly assign
naturally occurring groups or clusters of participants to the intervention groups rather
than assign individuals. A good example is a trial that enrolled players on 120 college
baseball teams, randomly allocated half of the teams to an intervention to encourage
cessation of spit-tobacco use, and observed a significantly lower rate of spit-tobacco
use among players on the teams that received the intervention compared to control
teams (3). Applying the intervention to groups of people may be more feasible
and cost effective than treating individuals one at a time, and it may better address
research questions about the effects of public health programs in the population. Some
interventions, such as a low-fat diet, are difficult to implement in only one member of
a family. Similarly, when participants in a natural group are randomized individually,
those who receive the intervention are likely to discuss or share the intervention
with family members, colleagues or acquaintances who have been assigned to the
control group. For example, a clinician in a group practice who is randomly assigned
to an educational intervention is very likely to discuss this intervention with his
colleagues. In the cluster randomization design, the units of randomization and
analysis are groups, not individuals. Therefore, the effective sample size is smaller
than the number of individual participants and power is diminished. In fact, the
effective sample size depends on the correlation of the effect of the intervention
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among participants in the clusters and is somewhere between the number of clusters
and the number of participants (4). Another drawback is that sample size estimation
and data analysis are more complicated in cluster randomization designs than for
individual randomization (5).

In equivalence trials, an intervention is compared to an active control. Equiva-
lence trials may be necessary when there is a known effective treatment for a condition,
or an accepted “‘standard of care.” In this situation, it may be unethical to assign
participants to placebo treatment. For example, because bisphosphonates effectively
prevent osteoporotic fractures in women at high risk, new drugs should be compared
against or added to this standard of care. In general, there should be strong evidence
that the active comparison treatment is effective for the types of participants who will
be enrolled in the trial.

The objective of equivalence trials is to prove that the new intervention is at least as
effective as the established one. It is impossible to prove that two treatments are exactly
equivalent because the sample size would be infinite. Therefore, the investigator sets
out to prove that the difference between the new treatment and the established
treatment is no more than a defined amount. If the acceptable difference between the
new and the established treatment is small, the sample size for an equivalence trial
can be large—much larger than for a placebo-controlled trial. However, there is little
clinical reason to test a new therapy if it does not have significant advantages over an
established treatment, such as less toxicity or cost, or greater ease of use. Depending
on how much advantage the new treatment is judged to have, the allowable difference
between the efficacy of the new treatment and the established treatment may be
substantial. In this case, the sample size estimate for an equivalence trial may be
similar to that for a placebo-controlled trial.

An important problem with equivalence trials is that the traditional roles of the
null and alternative hypotheses are reversed. The null hypothesis for equivalence trials
is that the effects of the two treatments are not more different than a prespecified
amount; the alternative hypothesis is that the difference does exceed this amount. In
this case, failure to reject the null hypothesis results in accepting the hypothesis that
the two treatments are equal. Inadequate sample size, poor adherence to the study
treatments and large loss to follow-up all reduce the power of the study to reject the
null hypothesis in favor of the alternative. Therefore, an inferior new treatment may
appear to be equivalent to the standard when in reality the findings just represent an
underpowered and poorly done study.

Nonrandomized Between-Group Designs

Trials that compare groups that have not been randomized are far less effective
than randomized trials in controlling for the influence of confounding variables.
Analytic methods can adjust for baseline factors that are unequal in the two study
groups, but this strategy does not deal with the problem of unmeasured confounding.
When the findings of randomized and nonrandomized studies of the same research
question are compared, the apparent benefits of intervention are much greater in the
nonrandomized studies, even after adjusting statistically for differences in baseline
variables (5). The problem of confounding in nonrandomized clinical studies can be
serious and not fully removed by statistical adjustment (6).

Sometimes participants are allocated to study groups by a pseudorandom mech-
anism. For example, every other subject (or every subject with an even hospital record
number) may be assigned to the treatment group. Such designs sometimes offer
logistic advantages, but the predictability of the study group assignment permits the
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investigator to tamper with it by manipulating the sequence or eligibility of new
subjects.

Participants are sometimes assigned to study groups by the investigator according
to certain specific criteria. For example, patients with diabetes may be allocated to
receive either insulin four times a day or long-acting insulin once a day according
to their willingness to accept four daily injections. The problem with this design is
that those willing to take four injections per day might be more compliant with other
health advice, and this might be the cause of any observed difference in the outcomes
of the two treatment programs.

Nonrandomized designs are sometimes chosen in the mistaken belief that they
are more ethical than randomization because they allow the participant or clinician
to choose the intervention. In fact, studies are only ethical if they have a reasonable
likelihood of producing the correct answer to the research question, and randomized
studies are more likely to lead to a conclusive and correct result than nonrandomized
designs. Moreover, the ethical basis for any trial is the uncertainty as to whether the
intervention will be beneficial or harmful. This uncertainty, termed equipoise, means
that an evidence-based choice of interventions is not possible and justifies random
assignment.

Within-Group Designs

Designs that do not include randomization can be useful options for some types
of questions. In a time-series design, measurements are made before and after
each participant receives the intervention (Fig. 11.2). Therefore, each participant
serves as his own control to evaluate the effect of treatment. This means that innate
characteristics such as age, sex, and genetic factors are not merely balanced (as they
are in between-group studies) but actually eliminated as confounding variables.

The major disadvantage of within-group designs is the lack of'a concurrent control
group. The apparent efficacy of the intervention might be due to learning effects
(participants do better on follow-up cognitive function tests because they learned
from the baseline test), regression to the mean (participants who were selected for
the trial because they had high blood pressure at baseline are found to have lower
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FIGURE 11.2. In a time-series trial, the investigator (a) selects a sample from the population,
(b) measures baseline and outcome variables, (¢) applies the intervention to the whole cohort,
(d) follows up the cohort and measures outcome variables again, (e) (optional) removes the
intervention and measures outcome variables again, and so on.
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blood pressure at follow-up simply due to random variation in blood pressure), or
secular trends (upper respiratory infections are less frequent at follow-up because
the trial started during flu season). Within-group designs sometimes use a strategy
of repeatedly starting and stopping the treatment. If repeated onset and offset of the
intervention produces similar patterns in the outcome, this provides strong support
that these changes are due to the treatment. This approach is only useful when the
outcome variable responds rapidly and reversibly to the intervention (e.g., the effect
of a statin on LDL-cholesterol level). The design has a clinical application in the
so-called “N-of-one” study in which an individual patient can alternate between
active and inactive versions of a drug (using identical-appearing placebo prepared by
the local pharmacy) to detect his particular response to the treatment (7).

The crossover design has features of both within- and between-group designs
(Fig. 11.3). Half of the participants are randomly assigned to start with the control
period and then switch to active treatment; the other half begin with the active
treatment and then switch to control. This approach (or the Latin square for more than
two treatment groups) permits between-group, as well as within-group analyses. The
advantages of this design are substantial: it minimizes the potential for confounding
because each participant serves as his own control and the paired analysis substantially
increases the statistical power of the trial so that it needs fewer participants. However,
the disadvantages are also substantial: a doubling of the duration of the study, and the
added complexity of analysis and interpretation created by the problem of potential
carryover effects. A carryover effect is the residual influence of the intervention on the
outcome during the period after it has been stopped—Dblood pressure not returning
to baseline levels for months after a course of diuretic treatment, for example. To
reduce the carryover effect, the investigator can introduce an untreated ‘“washout”
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FIGURE 11.3. In a crossover randomized trial, the investigator (a) selects a sample from the
population, (b) measures baseline and outcome variables, (c¢) randomizes the participants (R),

(d) applies interventions, (e) measures outcome variables during follow-up, (f) allows washout period
to reduce carryover effect, (g) applies the intervention to former placebo group and placebo to former
intervention group, (h) measures outcome variables again at the end of follow-up.
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period between treatments with the hope that the outcome variable will return to
normal before starting the next intervention, but it is difficult to know whether all
carryover effects have been eliminated. In general, crossover studies are chiefly a good
choice when the number of study subjects is limited and the outcome responds rapidly
and reversibly to an intervention.

A variation on the crossover design may be appropriate when participants are
randomly assigned to usual care or to a very appealing intervention (such as weight
loss, yoga or elective surgery). Participants assigned to usual care may be provided the
active intervention at the end of the parallel, two-group period, making enrollment
much more attractive. The outcome can be measured at the end of the intervention
period in this group, providing within group crossover data on the participants who
receive the delayed intervention.

Trials for Regulatory Approval of New Interventions

Many trials are done to test the effectiveness and safety of new treatments that might
be considered for approval for marketing by the U.S. Food and Drug Administration
(FDA) or another international regulatory body. Trials are also done to determine
whether drugs that have FDA approval for one condition might be approved for
the treatment or prevention of other conditions. The design and conduct of these
trials is generally the same as for other trials, but regulatory requirements must be
considered.

The FDA publishes general and specific guidelines on how such trials should be
conducted (search for “FDA” on the web). It would be wise for investigators and
staff conducting trials with the goal of obtaining FDA approval of a new medication
or device to seek specific training on these general guidelines, called “Good Clinical
Practice.” In addition, the FDA provides specific guidelines for studies of certain
outcomes. For example, studies designed to obtain FDA approval of treatments for
hot flashes in menopausal women must currently include participants with at least
seven hot flashes per day or 50 per week. FDA guidelines are regularly updated and
similar guidelines are available from international regulatory agencies.

Trials for regulatory approval of new treatments are generally described by phase.
This system refers to an orderly progression in the testing of a new treatment, from
experiments in animals (preclinical) and initial unblinded, uncontrolled treatment of
a few human volunteers to test safety (phase I), to small randomized blinded trials that
test the effect of a range of doses on side effects and clinical outcomes (or surrogate
outcomes) (phase II), to randomized trials large enough to test the hypothesis that
the treatment improves the targeted condition (such as blood pressure) or reduces the
risk of disease (such as stroke) with acceptable safety (phase IIT) (Table 11.1). Phase
IV refers to large studies (which may or may not be randomized trials) conducted after
a drug is approved. These studies are often conducted (and financed) by marketing
departments of pharmaceutical companies with the goals of assessing the rate of
serious side effects when used in large populations and identifying additional uses of
the drug that might be approved by the FDA.

Pilot Clinical Trials

Designing and conducting a successful clinical trial requires extensive information on
the type, dose and duration of the intervention, the likely effect of the intervention on
the outcome, potential adverse effects and the feasibility of recruiting, randomizing
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TABLE 11.1  Stages in Testing New Therapies

Preclinical Studies in cell cultures and animals

Phase | Unblinded, uncontrolled studies in a few volunteers to test safety

Phase Il Relatively small randomized blinded trials to test tolerability and
different intensity or dose of the intervention on surrogate or clinical
outcomes

Phase Il Relatively large randomized blinded trials to test the effect of the

therapy on clinical outcomes

Phase IV Large trials or observational studies conducted after the therapy
has been approved by the FDA to assess the rate of serious side
effects and evaluate additional therapeutic uses

and maintaining participants in the trial. Often, the only way to obtain some of this
information is to conduct a good pilot study.

Pilot studies vary from a brief test of the feasibility of recruitment to a full-scale
pilot in hundreds of participants. Pilot studies should be as carefully planned as
the main trial, with clear objectives and methods. Many pilot studies are focused
primarily on determining the feasibility, time required and cost of recruiting
adequate numbers of eligible participants, and discovering if they are willing to
accept randomization and can comply with the intervention. Pilot studies may also be
designed to demonstrate that planned measurements, data collection instruments and
data management systems are feasible and efficient. For pilot trials focused primarily
on feasibility, a control group is generally not included.

An important goal of many pilot studies is to define the optimal intervention—the
frequency, intensity and duration of the intervention that will result in minimal toxicity
and maximal effectiveness. Phase I and II studies can be viewed as pilot studies with
these goals.

Another important goal of pilot studies is to provide parameters to allow more
accurate estimation of sample size. Sound estimates of the rate of the outcome or
mean outcome measure in the placebo group, the effect of the intervention on the
main outcome (effect size), and the statistical variability of this outcome are crucial
to planning the sample size. In some situations, an estimate of the effect size and
its variability can be achieved by delivering the intervention to all pilot subjects. For
example, if it is known that a surgical procedure results in a certain volume of blood
loss, evaluating the amount of blood loss in a small group of pilot study participants
who undergo a new procedure might provide a good estimate of the effect size.
However, if there is likely to be a placebo effect, it may be better to randomize pilot
participants to receive the new intervention or placebo. For example, to obtain an
estimate of the effect of a new treatment for pain related to dental extractions, the fact
that pain responds markedly to placebo treatment would result in a biased estimate of
effect if no placebo group is included.

Many trials fall short of estimated power not because the effect of the intervention
is less than anticipated, but because the rate of outcome events in the placebo group is
much lower than expected. This “‘screening bias’’ likely occurs because persons who
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fit the enrollment criteria for a clinical trial and agree to be randomized are healthier
than the general population with the condition of interest. Therefore, in some trials,
it is crucial to determine the rate of the outcome in the placebo group, which can
only be done by randomizing participants to placebo in a pilot study.

A pilot study should have a short but complete protocol (approved by the
Institutional Review Board), data collection forms and analysis plans. Variables
should include the typical baseline measures, predictors and outcomes included in a
clinical trial; but also estimates of the number of subjects available or accessible for
recruitment, the number who are contacted or respond using different sources or
recruitment techniques, the number and proportion eligible for the trial, those who
are eligible but refuse (or say they would refuse) randomization, the time and cost
of recruitment and randomization, and estimates of adherence to the intervention
and other aspects of the protocol, including study visits. It may be very helpful to
“debrief” both subjects and staft after the pilot study to obtain their views on how
the trial methods could be improved.

A good pilot study requires substantial time and can be costly, but markedly
improves the chance of funding for major clinical trials and the likelihood that the
trial will be successfully completed.

. CONDUCTING A CLINICAL TRIAL

Follow-up and Adherence to the Protocol

If a substantial number of study participants do not receive the study intervention, do
not adhere to the protocol, or are lost to follow-up, the results of the trial are likely
to be underpowered or biased. Strategies for maximizing follow-up and adherence
are outlined in Table 11.2.

The effect of the intervention (and the power of the trial) is reduced to the degree
that participants do not receive it. The investigator should try to choose a study drug
or intervention that is easy to apply or take and is well tolerated. Adherence is likely to
be poor if a behavioral intervention requires hours of practice by participants. Drugs
that can be taken in a single daily dose are the easiest to remember and therefore
preferable. The protocol should include provisions that will enhance adherence, such
as instructing participants to take the pill at a standard point in the morning routine
and giving them pill containers labeled with the day of the week.

There is also a need to consider how best to measure adherence to the
intervention, using such approaches as self-report, pill counts, pill containers with
computer chips that record when the container is opened, and serum or urinary
metabolite levels. This information can identify participants who are not complying,
so that approaches to improving adherence can be instituted and the investigator can
interpret the findings of the study appropriately.

Adherence to study visits and measurements can be enhanced by discussing what
is involved in the study before consent is obtained, by scheduling the visits at a time
that is convenient and with enough staft to prevent waiting, by calling the participant
the day before each visit, and by reimbursing travel expenses and other out-of-pocket
costs.

Failure to follow trial participants and measure the outcome of interest can
result in biased results, diminished credibility of the findings, and decreased statistical
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TABLE 11.2

Principle

Alternative Trial Designs and Implementation Issues

Maximizing Follow-up and Adherence to the Protocol

Example

Choose subjects who are likely to be
adherent to the intervention and
protocol

Make the intervention easy

Make study visits convenient and
enjoyable

Make study measurements painless,
useful and interesting

Encourage subjects to continue in the
trial

Find subjects who are lost to follow-up

Require completion of two or more comprehensive visits
before randomization

Exclude those who are nonadherent in a
prerandomization run-in period

Exclude those who are likely to move or be noncompliant
Use a single tablet once a day if possible

Schedule visits often enough to maintain close contact but
not frequently enough to be tiresome

Schedule visits at night or on weekends, or collect
information by phone or e-mail

Have adequate and well-organized staff to prevent waiting
Provide reimbursement for travel
Establish inter-personal relationships with subjects

Choose noninvasive, informative tests that are otherwise
costly or unavailable

Provide test results of interest to participants and
appropriate counseling or referrals

Never discontinue subjects from follow-up for protocol
violations, adverse events, or side effects

Send participants birthday and holiday cards
Send newsletters and e-mail messages

Emphasize the scientific importance of adherence and
follow-up

Pursue contacts of subjects

Use a tracking service

171

power. For example, a trial of nasal calcitonin spray to reduce the risk of osteoporotic
fractures reported that treatment reduced fracture risk by 36% (8). However, about
60% of those randomized were lost to follow-up, and it was not known if fractures had
occurred in these participants. Because the overall number of fractures was small, even
a few fractures in the participants lost to follow-up could have altered the findings of
the trial. This uncertainty diminished the credibility of the study findings (9).

Even if participants violate the protocol or discontinue the trial intervention,
they should be followed so that their outcomes can be used in intention-to-treat
analyses. In many trials, participants who violate the protocol by enrolling in another
trial, missing study visits, or discontinuing the study intervention are discontinued
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from follow-up; this can result in biased or uninterpretable results. Consider, for
example, a drug that causes a symptomatic side effect that results in more frequent
discontinuation of the study medication in those on active treatment compared to
those on placebo. If participants who discontinue study medication are not continued
in follow-up, this can bias the findings if the side effect is associated with the main
outcome.

Some strategies for achieving complete follow-up are similar to those discussed
for cohort studies (Chapter 7). At the outset of the study, participants should be
informed of the importance of follow-up and investigators should record the name,
address, and telephone number of one or two close acquaintances who will always
know where the participant is. In addition to enhancing the investigator’s ability to
assess vital status, the ability to contact participants by phone or e-mail may give
him access to proxy outcome measures from those who refuse to come for a visit at
the end. The Heart and Estrogen/Progestin Replacement Study (HERS) trial used
all of these strategies: 89% of the women returned for the final clinic visit after an
average of 4 years of follow-up, another 8% had a final telephone contact for outcome
ascertainment, and information on vital status was determined for every participant
by using phone contact, registered letters, contacts with close relatives, and a tracking
service (10).

The design of the trial should make it as easy as possible for participants to adhere
to the intervention and complete all follow-up visits and measurements. Long and
stressful visits can deter some participants from attending. Participants are more likely
to return for visits that involve noninvasive tests, such as electron beam computed
tomography, than for invasive tests such as coronary angiography. Collecting follow-
up information by phone or electronic means may improve adherence for participants
who find visits difficult. On the other hand, participants may lose interest in a trial
if there are not some social or interpersonal rewards for participation. Participants
may tire of study visits that are scheduled monthly, and they may lose interest if
visits only occur annually. Follow-up is improved by making the trial experience
positive and enjoyable for study participants: designing trial measurements and
procedures to be painless and interesting; performing tests that would not otherwise
be available; providing results of tests to participants (if the result will not influence
outcomes); sending newsletters, e-mail notes of appreciation, holiday, and birthday
cards; giving inexpensive gifts; and developing strong interpersonal relationships with
an enthusiastic and friendly study staff.

Two design aspects that are specific to trials may improve adherence and follow-
up: screening visits before randomization and a run-in period. Asking participants to
attend one or two screening visits before randomization may exclude participants
who find that they cannot complete such visits. The trick here is to set the hurdles
for entry into the trial high enough to exclude those who will later be nonadherent,
but not high enough to exclude participants who will turn out to have satisfactory
adherence.

A run-in period may be useful for increasing the proportion of study participants
who adhere to the intervention and follow-up procedures (Fig. 11.4). During the
baseline period, all participants are placed on placebo. A specified time later (usually
a few weeks), only those who have complied with the intervention (e.g., taken at
least 80% of the assigned study medication) are randomized. Excluding nonadherent
participants before randomization in this fashion may increase the power of the
study and permit a better estimate of the full effects of intervention. However, a
run-in period delays entry into the trial, the proportion of participants excluded
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FIGURE 11.4. In a randomized trial preceded by a run-in period to test compliance, the investigator
(a) selects a sample from the population, (b) measures baseline variables, (¢) conducts the run-in
(d) randomizes adherent participants (R), (e) applies interventions, (f) measures outcome variables

during follow-up.

is generally small, and participants randomized to the active drug may notice a
change in their medication following randomization, contributing to unblinding.
It is also not clear that a placebo run-in is more effective in increasing adherence
than the requirement that participants complete one or more screening visits before
randomization. In the absence of a specific reason to suspect that adherence in the
study will be poor, it is probably not necessary to include a run-in period in the trial
design.

A variant of the placebo run-in design is the use of the active drug rather
than the placebo for the run-in period. In addition to increasing adherence among
those who enroll, an active drug run-in is designed to select participants who
tolerate and respond to the intervention. The effect of treatment on an intermediary
variable (i.e., a biomarker associated with the outcome) is used as the criterion for
randomization. In a trial of the effect of an antiarrhythmic drug on mortality, for
example, the investigators randomized only those participants whose arrhythmias
were satisfactorily suppressed without undue side effects (11). This design maximized
power by increasing the proportion of the intervention group that is responsive
to the intervention. It also improved generalizability by mimicking the clinician’s
tendency to continue using a drug only when he sees evidence that it is working.
However, the findings of trials using this strategy may not be generalizable to those
excluded.

Using an active run-in may also result in underestimation of the rate of adverse
effects. A trial of the effect of carvedilol on mortality in patients with congestive heart
failure used a 2-week active run-in period. During the run-in, 17 people had worsening
congestive heart failure and 7 died (12). These people were not randomized in the
trial, and these adverse effects of drug treatment were not included as outcomes.

Adjudicating Outcomes

Most self-reported outcomes, such as history of stroke or a participant report of
quitting smoking, are not 100% accurate. Self-reported outcomes that are important
to the trial should be confirmed if possible. Occurrence of disease, such as a stroke,
is generally adjudicated by (a) creating clear criteria for the outcome (e.g., a new,
persistent neurologic deficit with corresponding lesion on computed tomography or
magnetic resonance imaging scan), (b) collecting the clinical documents needed to
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make the assessment (e.g., discharge summaries and radiology reports), and (c) having
experts review each potential case and judge whether the criteria for the diagnosis
have been met. The adjudication is often done by two experts working independently,
then resolving discordant cases by discussion between the two or with a third expert.
Those who collect the information and adjudicate the cases must be blinded to the
treatment assignment.

Monitoring Clinical Trials

Investigators must assure that participants not be exposed to a harmful intervention,
denied a beneficial intervention, or continued in a trial if the research question is
unlikely to be answered.

The most pressing reason to monitor clinical trials is to make sure that the
intervention does not turn out unexpectedly to be harmful. If harm is judged to be
clearly present and to outweigh any benefits, the trial should be stopped. Second, if
an intervention is more effective than was estimated when the trial was designed, then
benefit can be observed early in the trial. When clear benefit has been proved, it may
be unethical to continue the trial and delay offering the intervention to participants
on placebo and to others who could benefit. Third, if there is a very low probability
of answering the research question, it may be unethical to continue participants in a
trial that requires time and effort and that may cause some discomfort or risk. If a
clinical trial is scheduled to continue for 5 years, for example, but after 4 years there is
little difference in the rate of outcome events in the intervention and control groups,
then the “‘conditional power” (the likelihood of answering the research question
given the results thus far) becomes very small and consideration should be given to
stopping the trial. Sometimes trials are stopped early on, if investigators are unable
to recruit or retain enough participants to provide adequate power to answer the
research question, or adherence to the intervention is very poor.

The research question might be answered by other trials before a given trial is
finished. It is desirable to have more than one trial that provides evidence concerning
a given research question, but if definitive evidence becomes available during a trial,
the investigator should consider stopping.

Most clinical trials should include an interim monitoring plan. Trials funded by
the National Institutes of Health (NIH) generally require interim monitoring, even
if the intervention is considered safe (such as a behavioral intervention for weight
loss). How interim monitoring will occur should be considered in the planning of any
clinical trial. In small trials with interventions likely to be safe, the trial investigators
might monitor safety or appoint a single independent data and safety monitor. In large
trials and trials in which adverse effects of the intervention are unknown or potentially
dangerous, interim monitoring is generally performed by a committee (usually known
as the Data and Safety Monitoring Board [DSMB] or Data Monitoring Committee)
consisting of experts in the disease or condition under study, biostatisticians, clinical
trialists, ethicists and occasionally a representative of the patient group being studied.
These experts are not involved in the trial, and should have no personal or financial
interest in its continuation. DSMB guidelines and procedures should be detailed
in writing before the trial begins. Guidance for developing DSMB procedures is
provided by the FDA and the NIH. Items to include in these guidelines are outlined
in Table 11.3.
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TABLE 11.3  Monitoring a Clinical Trial

Elements to monitor
Recruitment
Randomization
Adherence to intervention, and blinding
Follow-up completeness
Important variables
Outcomes
Adverse effects
Potential co-interventions

Who will monitor
Trial investigator or a single monitor if small trial with minor hazards
Independent DSMB otherwise

Methods for interim monitoring
Specify statistical approach and frequency of monitoring in advance
Importance of judgment and context in addition to statistical stopping rules

Changes in the protocol that can result from monitoring

Terminate the trial

Modify the trial
Stop one arm of the trial
Add new measurements necessary for safety monitoring
Discontinue high-risk participants

Extend the trial in time

Enlarge the trial sample

Stopping a trial should always be a careful decision that balances ethical respon-
sibility to the participants and the advancement of scientific knowledge. Whenever
a trial is stopped early, the chance to provide more conclusive results will be lost.
The decision is often complex, and potential risks to participants must be weighed
against possible benefits. Statistical tests of significance provide important but not
conclusive information for stopping a trial. Trends over time and effects on re-
lated outcomes should be evaluated for consistency, and the impact of stopping
the study early on the credibility of the findings should be carefully considered
(Example 11.1).

There are many statistical methods for monitoring the interim results of a trial.
Analyzing the results of a trial repeatedly is a form of multiple hypothesis testing
and thereby increases the probability of a type I error. For example, if « = 0.05
is used for each interim test and the results of a trial are analyzed four times
during the trial and again at the end, the probability of making a type I error is
increased from 5% to about 14% (13). To address this problem, statistical methods
for interim monitoring generally decrease the o for each test so that the overall
« is close to 0.05. There are multiple approaches to deciding how to “‘spend o
(Appendix 11.1).
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Example 11.1 Trials That Have Been Stopped Early

Canadian Atrial Fibrillation Anticoagulation Study (CAFA) (14): Atrial
fibrillation is a visk factor for stroke and embolic events. The CAFA study was a
blinded, randomized, placebo-controlled trial to evaluate the efficacy of warfarin in
decreasing the rate of stroke, systemic embolism, or intracervebral or fatal bleeding in
patients with nonvbeumatic atvial fibvillation. The trial was designed to envoll 660
subjects and follow them on thevapy for 3.5 years. During the trial (after 383 patients
had been randomized and followed for o mean of 1.2 years), the results of two other
randomized trials weve veported showing a significant decrease in stroke visk and a
low rate of major bleeding in those treated with warfarvin. The Steering Committee
decided that the evidence of benefit with warfavin was sufficiently compelling to stop
the trial.

Cardiac Arrhythmia Suppression Trial (CAST) (11): The occurrence of
ventricular prematuve depolarizations in survivors of myocavdial infarction (MI)
is a visk fuctor for sudden death. The CAST evaluated the effect of antiarrhythmic
therapy (encainide, flecainide, or movicizine) in patients with asymptomatic or
mildly symptomatic ventricular avvbythmin after MI on visk for sudden death.
During an average of 10 months of follow-up, the participants treated with active
drug had a higher total mortality (7.7% vs. 3.0%) and a higher rate of death from
arvhythmin (4.5% vs. 1.5%) than those assigned to placebo. The trial was planned to
continue for 5 years but this lavge and highly statistically significant diffevence led
to the trial being stopped after 18 months.

Coronary Drug Project (CDP) (15,16): The CDP was a randomized, blinded
trial to determine if five diffevent cholesterol-lowering interventions (conjugated
estrogen 5.0 my/day; estrogen 2.5 my/day; clofibrate 1.8 g/day; dextrothyroxine
0.0 my/day; niacin 3.0 g/day) veduced the 5-year mortality vate. The CDP envolled
8,341 men with MI who were followed for at least 5 years. With an average of
18 months of follow-up, the high-dose estrogen arm was stopped due to an excess
of monfaral MI (6.2% comparved with 3.2%) and venous thromboembolic events
(3.5% compared with 1.5%), as well as testicular atrophy, gynecomastin, breast
tenderness, and decveased libido. At the same time, dextrothyroxine was stopped in
the subgroup of men who had frequent prematurve ventricular beats on their baseline
electrocardiogram because the death rate in this subgroup was 38.5% compared with
11.5% in the same subgroup veceiving placebo. Dextrothyroxine therapy was stopped
in all subjects shovtly theveafier due to an excess mortality rate in the overall treated
group. Two years before the planned end of the study, the 2.5-myg-dose estrogen
arm was also stopped because theve was no evidence of any beneficial effect and an
increased visk of venous thromboembolic events.

Physicians Health Study (17): The Physicians Health Study was a randomized
trial of the effect of aspivin (325 myg every other day) on carvdiovascular mortality.
The trial was stopped after 4.8 years of the planned 8-year follow-up. There was a
statistically significant reduction in visk of MI in the treated group (velative risk
for nonfatal MI = 0.56), but the number of cardiovascular disease deaths in each
group was equal. The rate of cardiovascular disease deaths observed in the study was
Sfar lower than expected (88 after 4.8 years of follow-up vs. 733 expected), and the
trinl was stopped because of the beneficial effect of aspivin on visk for nonfatal MI
coupled with the very low conditional power to detect a favorable impact of aspivin
therapy on cardiovascular mortality.




Chapter 11 m Alternative Trial Designs and Implementation Issues 177

Adaptive Design

Clinical trials are generally conducted according to a protocol that does not change
during the conduct of the study. However, for some types of treatments and
conditions, it is possible to monitor results from the trial as it progresses and change
the design of the trial based on interim analyses of the results (18). For example,
consider a trial of several doses of a new treatment for menopausal hot flashes. The
initial design may plan to enroll 40 women to a placebo group and 40 to each of three
doses for 12 weeks of treatment over an enrollment period lasting 1 year. Review of
the results after the first 10 women in each group have completed the first 4 weeks
of treatment might reveal that there is a trend toward an effect only in the highest
dose. It may be more efficient to stop assigning participants to the two lower doses
and continue randomizing only to the highest dose. In this case, the design of the
trial can be adapted to the interim results by changing the design in midstream to use
only one dose versus the placebo. Other facets of a trial that could be changed based
on interim results include increasing or decreasing the sample size or duration of the
trial if interim results indicate that the effect size or rate of outcomes differ from the
original assumptions.

These adaptive designs are feasible only for treatments that produce outcomes
that are measured and analyzed early enough in the course of the trial that changes
can be made in the design. To prevent bias in the ascertainment of outcomes,
the interim analyses and consideration of change in design must be done by an
independent group such as a DSMB that reviews unblinded data. Furthermore,
multiple interim analyses will increase the probability of finding a result that is due
to chance variations in the early results from the trial; the increased chance of a
“Type 1’ error must be considered in the design and analysis of the results. Adaptive
designs are also more complex to conduct and analyze, informed consent must
include the range of possible changes in the study design or be repeated, and it is
difficult to estimate the cost of an adaptive trial and the specific resources necessary
to complete it.

With these precautions and limitations, adaptive designs are efficient and may
be valuable, especially during the development of a new treatment, allowing earlier
identification of the best dose and duration and ensuring that a high proportion of
participants receive the optimal treatment.

Analyzing the Results

Statistical analysis of the primary hypothesis of a clinical trial is generally straight-
forward. If the outcome is dichotomous, the simplest approach is to compare the
proportions in the study groups using a chi-squared test. When the outcome is
continuous, a # test may be used, or a nonparametric alternative if the outcome is
not normally distributed. In most clinical trials, the duration of follow-up is different
for each participant, necessitating the use of survival time methods. More sophis-
ticated statistical models such as Cox proportional hazards analysis can accomplish
this and at the same time adjust for chance maldistributions of baseline confounding
variables. The technical details of when and how to use these methods are described
elsewhere (19).

Two important issues that should be considered in the analysis of clinical trial
results are the primacy of the intention-to-treat analytic approach and the ancillary role
for subgroup analyses. The investigator must decide what to do with nonadherence
or ‘“cross-overs,” participants assigned to the active treatment group who do not
get treatment or discontinue it and those assigned to the control group who end up
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getting active treatment. An analysis done by intention-to-treat compares outcomes
between the study groups with every participant analyzed according to his randomized
group assignment, regardless of whether he adhered to the assigned intervention.
Intention-to-treat analyses may underestimate the full effect of the treatment, but
they guard against the more important problem of biased results.

An alternative to the intention-to-treat approach is to analyze only those who
comply with the intervention. It is common, for example, to perform ‘‘per protocol”
analyses that include only participants who were fully adherent to the protocol. This is
defined in various ways, but often includes only participants in both groups who were
adherent to the assigned study medication, completed a certain proportion of visits
or measurements and had no other protocol violations. A subset of the per protocol
analysis is an ““as-treated’ analysis in which only participants who were adherent to
the intervention are included. These analyses seem reasonable because participants can
only be affected by an intervention they actually receive. The problem arises, however,
that participants who adhere to the study treatment and protocol may be different from
those who drop out in ways that are related to the outcome. In the Postmenopausal
Estrogen-Progestin Interventions Trial (PEPI), 875 postmenopausal women were
randomly assigned to four different estrogen or estrogen plus progestin regimens
and placebo (20). Among women assigned to the unopposed estrogen arm, 30% had
discontinued treatment after 3 years because of endometrial hyperplasia, which is a
precursor of endometrial cancer. If these women are eliminated in a per protocol
analysis, the association of estrogen therapy and endometrial cancer will be missed.

The major disadvantage of the intention-to-treat approach is that participants
who choose not to take the assigned intervention will, nevertheless, be included in the
estimate of the effects of that intervention. Therefore, substantial discontinuation or
crossover between treatments will cause intention-to-treat analyses to underestimate
the magnitude of the effect of treatment. For this reason, results of trials are often
evaluated with both intention-to-treat and per protocol analyses. For example, in the
Women’s Health Initiative randomized trial of the effect of estrogen plus progestin
treatment on breast cancer risk, the hazard ratio was 1.24 (P = 0.003) from the
intention-to-treat analysis and 1.49 in the as-treated analysis (P < 0.001) (21). If the
results of intention-to-treat and per protocol analyses differ, the intention-to-treat
results generally predominate for estimates of efficacy because they preserve the value
of randomization and, unlike per protocol analyses, can only bias the estimated effect
in the conservative direction (favoring the null hypothesis). However, for estimates of
harm (e.g., the breast cancer findings noted above), as-treated or per protocol analyses
provide the most conservative estimates, as interventions can only be expected to cause
harm in exposed persons. Results can only be analyzed both by intention-to-treat and
per protocol if follow-up measures are completed regardless of whether participants
adhere to treatment, which should always be a goal.

Subgroup analyses are defined as comparisons between randomized groups in
a subset of the trial cohort. These analyses have a mixed reputation because they
are casy to misuse and can lead to wrong conclusions. With proper care, however,
they can provide useful ancillary information and expand the inferences that can be
drawn from a clinical trial. To preserve the value of randomization, subgroups should
be defined by measurements that were made before randomization. For example, a
trial of alendronate to prevent osteoporotic fractures found that the drug decreased
risk of fracture by 14% among women with low bone density. Preplanned analyses
by subgroups of bone density measured at baseline revealed that the treatment was
effective (36% reduction in fracture risk; P < 0.01) among women whose bone
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density was more than 2.5 standard deviations below normal. In contrast, treatment
was ineffective in women with higher bone density at baseline (P = 0.02 for the
interaction) (22). It is important to note that the value of randomization is preserved:
the fracture rate among women randomized to alendronate is compared with the rate
among women randomized to placebo in each subgroup.

Subgroup analyses are prone, however, to producing misleading results for several
reasons. Subgroups are, by definition, smaller than the entire trial population, and
there may not be sufficient power to find important differences; investigators should
avoid claiming that a drug ““was ineffective” in a subgroup when the finding might
reflect insufficient power to find an effect. Investigators often examine results in a
large number of subgroups, increasing the likelihood of finding a different effect
of the intervention in one subgroup by chance. For example, if 20 subgroups are
examined, differences in one subgroup at P < 0.05 would be expected by chance.
Optimally, planned subgroup analyses should be defined before the trial begins and
the number of subgroups analyzed should be reported with the results of the study. A
conservative approach is to require that claims about different responses in subgroups
be supported by statistical evidence that there is an interaction between the effect of
treatment and the subgroup characteristic, as in the alendronate trial noted above; if
several subgroups are examined, a significance level of 0.01 should be used.

Subgroup analyses based on postrandomization factors do not preserve the value
of randomization and often produce misleading results. Per protocol analyses limited
to subjects who adhere to the randomized treatment are examples of this type of
postrandomization subgroup analysis.

B sumMmARY

1. There are several variations on the randomized trial design that can substantially

increase efficiency under the right circumstances:

a. The factorial design allows two independent trials to be carried out for the
price of one.

b. Cluster randomization permits efficient studies of naturally occurring groups.

c. Equivalence trials compare a new intervention to an existing “‘standard of
care;” this design may be the most ethical and clinically meaningful, but often
requires a larger sample size than placebo-controlled trials.

d. Time-series designs have a single (nonrandomized) group with outcomes
compared within each subject during periods on and off the intervention.

e. Crossover designs combine randomized and time-series designs to enhance
control over confounding and minimize the required sample size if carryover
effects are not a problem.

2. If a substantial number of study participants do not adhere to the study interven-
tion or are lost to follow-up, the results of the trial are likely to be underpowered,
biased, or uninterpretable.

3. An important difference between clinical trials and observational studies is that in
a clinical trial, something is being done to the pavticipants. During a trial, interim
monitoring by an independent DSMB, is needed to assure that participants
are not exposed to a harmful intervention, denied a beneficial intervention, or
continued in a trial if the research question is unlikely to be answered.
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4. Intention-to-treat analysis takes advantage of the control of confounding provided
by randomization and should be the primary analysis approach. Per protocol
analyses, a secondary approach that provides an estimate of the effect size in
adherent subjects, should be interpreted with caution.

5. With proper care, subgroup analyses can expand the inferences that can be
drawn from a clinical trial. To preserve the value of randomization, analyses
should compare outcomes between subsets of randomly assigned study groups
classified by prerandomization variables. To minimize misinterpretations, the
investigator should specify the subgroups in advance, test interactions for statistical
significance, and report the number of subgroups examined.

B APPENDIX 11.1

Interim Monitoring of Trial Outcomes

Interim monitoring of trial results is a form of multiple testing, and thereby increases
the probability of a type I error. To address this problem, « for each test («;) is
generally decreased so that the overall o approximately = 0.05. There are multiple
statistical methods for decreasing «;.

One of the easiest to understand is the Bonferroni method, where «; = ¢/ N
if N is the total number of tests performed. For example, if the overall o is 0.05
and five tests will be performed, «; for each test is 0.01. This method has several
disadvantages, however. It requires using an equal threshold for stopping the trial at
any interim analysis and results in a very low « for the final analysis. Most investigators
would rather use a lower threshold for stopping a trial earlier rather than later in the
trial and use an « close to 0.05 for the final analysis. In addition, this approach is too
conservative because it assumes that each test is independent. Interim analyses are not
independent, because each successive analysis is based on cumulative data, some of
which were included in prior analyses. For these reasons, Bonferroni is not generally
used.

A commonly used method suggested by O’Brien and Fleming (23) uses a very
small initial «;, then gradually increases it such that «; for the final test is close to
the overall . O’Brien—Fleming provide methods for calculating «; if the investigator
chooses the number of tests to be done and the overall a. At each test, Z; = Z*(N;)'/2,
where Z; = Z value for the sth test; Z* is determined so as to achieve the overall
significance level; N is the total number of tests planned and ¢ is the sth test. For
example, for five tests and overall « = 0.05, Z* = 2.04; the initial « = 0.00001 and
the final o5 = 0.046. This method is unlikely to lead to stopping a trial very early
unless there is a striking difference in outcome between randomized groups. In
addition, this method avoids the awkward situation of getting to the end of a trial
and accepting the null hypothesis although the P value is substantially less than 0.05.

A major drawback to the preceding methods is that the number of tests and the
proportion of data to be tested must be decided before the trial starts. In some trials,
additional interim tests become necessary when important trends occur. DeMets and
Lan (24) developed a method using a specified «-spending function that provides
continuous stopping boundaries. The «; at a particular time (or after a certain pro-
portion of outcomes) is determined by the function and by the number of previous
“looks.”” Using this method, neither the number of ““looks’ nor the proportion of
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data to be analyzed at each “‘look” must be specified before the trial. Of course, for
each additional unplanned interim analysis conducted, the final overall « is a little
smaller.

A different set of statistical methods based on curtailed sampling techniques
suggests termination of a trial if future data are unlikely to change the conclusion.
The multiple testing problem is irrelevant because the decision is based only on
estimation of what the data will show at the end of the trial. A common approach
is to compute the conditional probability of rejecting the null hypothesis at the end
of the trial, based on the accumulated data. A range of conditional power is typically
calculated, first assuming that H, is true (i.e., that any future outcomes in the treated
and control groups will be equally distributed) and second assuming that H, is true
(i.e., that outcomes will be distributed unequally in the treatment and control groups
as specified by H,). Other estimates can also be used to provide a full range of
reasonable effect sizes. If the conditional power to reject the null hypothesis across
the range of assumptions is low, the null hypothesis is not likely to be rejected and
the trial might be stopped.
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Medical tests, such as those performed to screen for a risk factor, diagnose a disease,
or estimate a patient’s prognosis, are an important topic for clinical research. The
study designs discussed in this chapter can be used when studying whether, and in
whom, a particular test should be done.

Although clinical trials of medical tests are occasionally feasible and sometimes
necessary, most designs for studies of medical tests are descriptive and resemble the
observational designs in Chapters 7 and 8. There are, however, some important
differences. The goal of most observational studies is to identify causal relationships
(e.g., whether estrogen wuse causes breast cancer). Causality is generally irrelevant
in studies of diagnostic tests. In addition, knowing that a test result is more closely
associated with a condition or outcome than would be expected by chance alone is not
nearly enough to determine its clinical usefulness. Instead, parameters that describe the
performance of a medical test, such as sensitivity, specificity, and likelihood ratios
are commonly estimated, with their associated confidence intervals. In this chapter we
review studies of medical tests focusing not just on studies of test performance, but
also on determining whether or under what circumstances a test is clinically useful.

. DETERMINING WHETHER A TEST IS USEFUL

For a test to be useful it must pass muster on a series of increasingly difficult
questions that address its reproducibility, accuracy, feasibility, and effects on
clinical decisions and outcomes (Table 12.1). Favorable answers to each of these
questions are necessary but insufficient criteria for a test to be worth doing. For
example, if a test does not give consistent results when performed by different
people or in different places, it can hardly be useful. If the test seldom supplies new
information and hence seldom affects clinical decisions, it may not be worth doing.
Even if it affects decisions, if these decisions do not improve the clinical outcome of
patients who were tested, the test still may not be useful.
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TABLE 12.1

Questions to Determine Usefulness of a Medical Test, Possible

Designs to Answer Them, and Statistics for Reporting Results

Question

Possible Designs

Statistics for Results*

How reproducible is the
test?

How accurate is the test?

How often do test results
affect clinical decisions?

What are the costs, risks,
and acceptability of the test?

Does doing the test improve
clinical outcome or have
adverse effects?

Studies of intra- and
interobserver and laboratory
variability

Cross-sectional, case-control,
or cohort-type designs in which
a test result is compared with a
gold standard

Diagnostic yield studies, studies
of pre- and posttest clinical
decision making

Prospective or retrospective
studies

Randomized trials, cohort or
case-control studies in which
the predictor variable is
receiving the test and the
outcome includes morbidity,
mortality, or costs related either
to the disease or to its treatment

* Most statistics in this table should be presented with confidence intervals.

Proportion agreement, kappa,
coefficient of variation, mean

and distribution of differences
(avoid correlation coefficient)

Sensitivity, specificity, positive
and negative predictive value,
receiver operating characteristic
curves, and likelihood ratios

Proportion abnormal, proportion
with discordant results,
proportion of tests leading to
changes in clinical decisions;
cost per abnormal result or per
decision change

Mean costs, proportions
experiencing adverse effects,
proportions willing to undergo
the test

Risk ratios, odds ratios, hazard
ratios, number needed to treat,
rates and ratios of desirable and
undesirable outcomes

Of course, if using a test improves outcome, favorable answers to the other

questions can be inferred. However, demonstrating that doing a test improves
outcome is impractical for most diagnostic tests. Instead, the potential effects of
a test on clinical outcomes are usually assessed indirectly, by demonstrating that
the test increases the likelihood of making the correct diagnosis or is safer or less
costly than existing tests. When developing a new diagnostic or prognostic test, it
may be worthwhile to consider what aspects of current practice are most in need
of improvement. Are current tests unreliable, expensive, dangerous, or difficult to
perform?

General Issues for Studies of Medical Tests

o Gold standard for diagnosis. Some diseases have a gold standard, such as the results
of a tissue biopsy, that is generally accepted to indicate the presence (or absence)
of that disease. Other diseases have “‘definitional” gold standards, such as defining
coronary artery disease as a 50% obstruction of at least one major coronary artery
as seen with coronary angiography. Still others, such as rheumatologic diseases,
require that a patient have a minimum number of signs, symptoms, or specific
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laboratory abnormalities to meet the criteria for having the disease. Of course the
accuracy of any signs, symptoms, or laboratory tests used to diagnose a disease
cannot be studied if those same signs and symptoms are used as part of the gold
standard for the diagnosis. Furthermore, if the gold standard is imperfect it can
make a test either look worse than it really is (if in reality the test outperforms
the gold standard), or better than it really is (if the gold standard is an imperfect
measure of the condition of interest and the test has the same deficiencies).
Spectrum of disease sevevity and of test vesults. Because the goal of most studies
of medical tests is to draw inferences about populations by making measurements
on samples, the way the sample is selected has a major effect on the validity of the
inferences. Spectrum bias occurs when the spectrum of disease (or nondisease)
in the sample differs from that in the population to which the investigator wishes
to generalize. This can occur if the sample of subjects with disease is sicker, or
the subjects without the disease are healthier, than those to whom the test will be
applied in practice. Almost any test will perform well if the task is to distinguish
between the very sick and the healthy, such as those with symptomatic pancreatic
cancer and healthy controls. It is more difficult to distinguish between one disease
and another that can cause similar symptoms, or between the healthy and those
with early, presymptomatic disease. The subjects in a study of a diagnostic test
should have spectra of disease and nondisease that resemble those of the population
in which the test will be used. For example, a diagnostic test for pancreatic cancer
might be studied in patients with abdominal pain and weight loss.

Spectrum bias can occur from an inappropriate spectrum of test results as well as
an inappropriate spectrum of disease. For example, consider a study of interobserver
agreement among radiologists reading mammograms. If they are asked to classify
the films as normal or abnormal, their agreement will be much higher if the
“positive”” films they examine are a set selected because they are clearly abnormal,
and the “negative” films are a set selected as free of suspicious abnormalities.
Sources of vaviation, genevalizability, and the sampling scheme. For some research
questions the main source of variation in test results is between patients. For
example, some infants with bacteremia will have an elevated white blood cell count,
whereas others will not. The proportion of bacteremic infants with high white
blood cell counts is not expected to vary much according to who draws the blood
or what laboratory measures it.

On the other hand, for many tests the results may depend on the person doing
or interpreting them, or the setting in which they are done. For example, sensitivity,
specificity, and interrater reliability for interpreting mammograms depend on the
readers’ skill and experience as well as the quality of the equipment. Sampling
those who perform and interpret the test can enhance the generalizability of studies
of tests that require technical or interpretive skill. When accuracy may vary from
institution to institution, the investigators will need to sample several different
institutions to be able to assess the generalizability of the results.

Importance of blinding. Many studies of diagnostic tests involve judgments, such
as whether to consider a test result positive, or whether a person has a particular
disease. Whenever possible, investigators should blind those interpreting test results
from information about the patient being tested that is related to the gold standard.
In a study of the contribution of ultrasonography to the diagnosis of appendicitis,
for example, those reading the sonograms should not know the results of the history
and physical examination. Similarly, the pathologists making the final determination
of who does and does not have appendicitis (the gold standard to which sonogram



186

Study Designs

results will be compared) should not know the results of the ultrasound examination.
Blinding prevents biases, preconceptions, and information from sources other than
the test from affecting these judgments.

o Costs vevsus charges. Investigators wishing to focus on test expense may be tempted
to report charges rather than costs because charges are more readily available and
are generally much higher than costs. However, test charges vary greatly among
institutions and may have little relation to what is actually paid for the test or to its
actual costs. In many cases, test charges resemble the rack rate on the inside door
of'a hotel room—a charge much higher than most customers actually pay. On the
other hand, estimating how much an institution or society must spend per test is
difficult, because many of the expenses, such as laboratory space and equipment, are
fixed. One approach is to use the average amount actually paid for the test; another
is to multiply charges by the institution’s average cost-to-charge ratio.

. STUDIES OF TEST REPRODUCIBILITY

Sometimes the results of tests vary according to when or where they were done or
who did them. Intraobserver variability describes the lack of reproducibility in
results when the same observer or laboratory performs the test at different times.
For example, if a radiologist is shown the same chest radiograph on two occasions,
what proportion of the time will he agree with himself on the interpretation?
Interobserver variability describes the lack of reproducibility among two or more
observers: if another radiologist is shown the same film, how likely is he to agree with
the first radiologist?

Studies of reproducibility may be done when the level of reproducibility (or lack
thereof) is the main research question. In addition, reproducibility is often studied
with a goal of quality improvement, either for those making measurements as part of a
research study of a different question, or as a part of clinical care. When reproducibility
is poor—because either intra- or interobserver variability is large—a measurement is
unlikely to be useful, and it may need to be either improved or abandoned.

Studies of reproducibility do not require a gold standard, so they can be done
for tests or diseases where none exists. Of course, both (or all) observers can agree
with one another and still be wrong: intra- and interobserver reproducibility address
precision, not accuracy (Chapter 4).

Designs

The basic design to assess test reproducibility involves comparing tests done to results
from more than one observer or on more than one occasion from a sample of patients
or specimens. For tests that involve several steps in many locations, differences in
any one of which might affect reproducibility, the investigator will need to decide
on the breadth of the study’s focus. For example, measuring interobserver agreement
of pathologists about the interpretation of a set of cervical cytology slides in a
single hospital may overestimate the overall reproducibility of Pap smears because the
variability in how the sample was obtained and how the slide was prepared would not
be assessed.

The extent to which an investigator needs to isolate the steps that might lead
to interobserver disagreement depends partly on the goals of his study. Most studies
should estimate the reproducibility of the entire testing process, because this is what
determines whether the test is worth using. On the other hand, an investigator who
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is developing or improving a test may want to focus on the specific steps at which
variability occurs, to improve the process. In either case, the investigator should lay
out the exact process for obtaining the test result in the operations manual (Chapters 4
and 17) and then describe it in the methods section when reporting the study results.

Analysis

o Categorvical variables. The simplest measure of interobserver agreement is the
proportion of observations on which the observers agree exactly, sometimes called
the concordance rate. However, when there are more than two categories or
the observations are not evenly distributed among the categories (e.g., when the
proportion ‘‘abnormal” on a dichotomous test is much different from 50%), the
concordance rate can be hard to interpret, because it does not account for agreement
that could result simply from both observers having some knowledge about the
prevalence of abnormality. For example, it 95% of subjects are normal, two observers
who randomly choose which 5% of tests to call “abnormal” will agree that results
are ‘“‘normal’ about 90% of the time. A better measure of interobserver agreement,
called kappa (Appendix 12A), measures the extent of agreement beyond what
would be expected by chance alone. Kappa ranges from —1 (perfect disagreement)
to 1 (perfect agreement). A kappa of 0 indicates that the amount of agreement was
exactly that expected by chance. Kappa values above 0.8 are generally considered
very good; levels of 0.6 to 0.8 are good.

o Continuous variables. Measures of interobserver variability for continuous vari-
ables depend on the design of the study. Some studies measure the agreement
between just two machines or methods (e.g., temperatures obtained from two
different thermometers). The best way to describe the data from such a study is to
report the mean difference between the paired measurements and the distribution
of the differences, perhaps indicating the proportion of time that the difference is
clinically important. For example, if a clinically important difference in temperature
is thought to be 0.3°C, a study comparing temperatures from tympanic and rectal
thermometers could estimate the mean difference between the two and how often
the two measurements differed by more than 0.3°C.!

Other studies examine interobserver or interinstrument variability of a large
group of different technicians, laboratories, or machines. These results are com-
monly summarized using the coefficient of variation, which is the standard
deviation of the results on a single specimen divided by their mean, expressed as a
percentage. If the results are normally distributed (i.e., if a histogram with results
on the same specimen would be bell shaped), then about 95% of the results on
different machines will be within two standard deviations of the mean. For example,
given a coeflicient of variation of a serum cholesterol measurement of 2% (2), the
standard deviation of multiple measurements with a mean of 200 mg/dL would be
about 4 mg/dL and about 95% of laboratories would be expected to report a value
between 192 and 208 mg/dL.

! Although commonly used, the correlation coefficient is best avoided in studies of the reliability of laboratory tests
because it is highly influenced by outlying values and does not allow readers to determine how frequently differences
between the two measurements are clinically important. Confidence intervals for the mean difference should also be
avoided because their dependence on sample size makes them potentially misleading. A narrow confidence interval
for the mean difference between the two measurements does not imply that they generally closely agree—only that
the mean difference between them is being measured precisely. For more extensive reading on this issue, see Bland
and Altman (1).
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. STUDIES OF THE ACCURACY OF TESTS

Studies in this section address the question, ‘““To what extent does the test give the
right answer?” To be able to answer this question, a gold standard must be available
in order to tell what the right answer is.

Designs

o Sampling. Studies of diagnostic tests can have designs analogous to case—control or
cross-sectional studies, whereas studies of prognostic tests usually resemble cohort
studies. In the case—control design, those with and without the disease are sampled
separately and the test results in the two groups are compared. Unfortunately, it is
often hard to reproduce a clinically realistic spectrum of the disease and absence of
the disease in the two samples. Those with the disease should not have progressed
to severe stages that are relatively easy to diagnose. Those without the target
disease should be patients who had symptoms consistent with a particular disease
and who turned out not to have it. Studies of tests that sample those with and
without the target disease separately are also subject to a bias in the measurement
of the test result if that measurement is made knowing whether the sample came
from a case or control. Finally, studies with this sampling scheme cannot be used
(without other information) to estimate predictive value or posterior probability
(discussed below). Therefore, “‘case—control”” sampling for diagnostic tests should
be reserved for rare diseases for which no other sampling scheme is feasible.

A single cross-sectional sample of patients being evaluated for a particular
diagnosis generally will yield more valid and interpretable results. For example,
Tokuda et al. (3) found that the severity of chills was a strong predictor of
bacteremia in a series of 526 consecutive febrile adult emergency department
patients. Because the subjects were enrolled before it was known whether they
were bacteremic, the spectrum of patients in this study should be reasonably
representative of patients who present to emergency rooms with fever.

A variant of the cross-sectional sampling scheme that we call tandem testing
is sometimes used to compare two (presumably imperfect) tests with one another.
Both tests are done on a representative sample of patients who may or may not
have the disease and the gold standard is selectively applied to the patients with
positive results on either or both tests. Because subjects with negative results may
be false-negatives, the gold standard should also be applied to a random sample of
patients with concordant negative results. This design, which allows the investigator
to determine which test is more accurate without the expense of measuring a gold
standard in all the subjects with negative test results, has been used in studies
comparing different cervical cytology methods (4).

Prognostic test studies require either prospective or retrospective cohort de-
signs. In prospective cohort studies, the test is done at baseline, and the subjects
are then followed to see who develops the outcome of interest. A retrospective
cohort study may be possible if a new test becomes available, such as viral load in
HIV-positive patients, and a previously defined cohort with banked blood samples
is available. Then the viral load can be measured in the stored blood, to see whether
it predicts prognosis. The nested case—control design (Chapter 7) is particularly
attractive if the outcome of interest is rare and the test is expensive.

o Predictor vaviable: the test vesult. Although it is simplest to think of the results of
a diagnostic test as being either positive or negative, many tests have categorical,
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ordinal or continuous results. Whenever possible, investigators should use ordinal
or continuous results to take advantage of all available information in the test.
Most tests are more indicative of a disease if they are very abnormal than if they
are slightly abnormal, and most also have a borderline range in which they do not
provide much information.

o Outcome variable: the disease (ov its outcome). The outcome variable in a diagnostic
test study is often the presence or absence of the disease, best determined with a gold
standard. Wherever possible, the assessment of outcome should not be influenced by
the results of the diagnostic test being studied. This is best accomplished by blinding
those measuring the gold standard so that they do not know the results of the test.
Sometimes uniform application of the gold standard is not ethical or feasible for
studies of diagnostic tests, particularly screening tests. For example, Smith-Bindman
et al. studied the accuracy of mammography according to characteristics of the
interpreting radiologist (5). Women with positive mammograms were referred for
further tests, eventually with pathologic evaluation as the gold standard. However,
it is not reasonable to do biopsies in women whose mammograms are negative.
Therefore, to determine whether these women had falsely negative mammograms
the authors linked their mammography results with local tumor registries and used
whether or not breast cancer was diagnosed in the year following mammography
as the gold standard. This solution, although reasonable, assumes that all breast
cancers that exist at the time of mammography will be diagnosed within 1 year, and
that all cancers diagnosed within 1 year existed at the time of the mammogram.
Measuring the gold standard differently depending on the result of the test in this
fashion creates a potential for bias, discussed in more detail at the end of the chapter.
Prognostic tests are studied in patients who already have the disease. The outcome
is what happens to them, such as how long they live, what complications they
develop, or what additional treatments they require. Again, blinding is important,
especially if clinicians caring for the patients may make decisions based upon the
prognostic factors being studied. For example, Rocker et al. (6) found that the
attending physicians’ estimates of prognosis, but not those of bedside nurses, were
independently associated with intensive care unit mortality. This could be because
the attending physicians were more skilled at estimating severity of illness, but
it could also be because attending physician prognostic estimates had a greater
effect than those of the nurses on decisions to withdraw support. To distinguish
between these possibilities, it would be helpful to obtain estimates of prognosis
from attending physicians other than those involved in making or framing decisions
about withdrawal of support.

Analysis

o Sensitivity, specificity, and positive and negative predictive values. When results
of a dichotomous test are compared with a dichotomous gold standard, the results
can be summarized in a 2 x 2 table (Table 12.2). The sensitivity is defined as the
proportion of subjects with the disease in whom the test gives the right answer (i.e.,
is positive), whereas the specificity is the proportion of subjects without the disease
in whom the test gives the right answer (i.e., is negative). Positive and negative
predictive values are the proportions of subjects with positive and negative tests in
whom the test gives the right answer.

o Receiver opevating chavactevistic curves. Many diagnostic tests yield ordinal or
continuous results. With such tests, several values of sensitivity and specificity are
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TABLE 12.2 Summarizing Results of a Study of a Dichotomous Tests in a

2 x 2 Table
Gold Standard
Disease No Disease Total
a b it iofi *
Positive a+h Positive pred|ctt|)ve value
True-positive False-positive al(a+b)
Test g
C i it *
Negative . . ot d Negative predictive value
False-negative True-negative dic+d)
Total a+c b+d
Sensitivity Specificity
a/(a+c) d/(b+d)

* Positive and negative predictive values can be calculated from a 2x2 table like this only when the prevalence of
disease is (a + c)/(a + b + ¢ + d). This will not be the case if subjects with and without disease are sampled
separately (e.g., 100 of each).

possible, depending on the cutoft point chosen to define a positive test. This trade-
off between sensitivity and specificity can be displayed using a graphic technique
originally developed in electronics: receiver operating characteristic (ROC) curves.
The investigator selects several cutoff points and determines the sensitivity and
specificity at each point. He then graphs the sensitivity (or true-positive rate) on
the 7 -axis as a function of 1— specificity (the false-positive rate) on the X-axis. An
ideal test is one that reaches the upper left corner of the graph (100% true-positives
and no false-positives). A worthless test follows the diagonal from the lower left
to the upper right corners: at any cutoft the true-positive rate is the same as the
false-positive rate (Fig. 12.1). The area under the ROC curve, which thus ranges
from 0.5 for a useless test to 1.0 for a perfect test, is a useful summary of the overall
accuracy of a test and can be used to compare the accuracy of two or more tests.

~— Good test

Different cutoffs
for considering
the test positive

N\

Worthless
test

True positives (sensitivity)

False positivies (1-specificity)

FIGURE 12.1. Receiver operating
characteristic curves for good and
worthless tests.
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o Likelihood vatios. Although the information in a diagnostic test with continuous
or ordinal results can be summarized using sensitivity and specificity or ROC curves,
there is a better way. Likelihood ratios allow the investigator to take advantage of
all information in a test. For each test result, the likelihood ratio is the ratio of the
likelihood of that result in someone with the disease to the likelihood of that result
in someone without the disease.?

P(Result|Disease)

P(Result|No Disease)

The P is read as ‘“‘probability of” and the | is read as ‘“given.” Thus
P(Result|Disease) is the probability of result given disease, and P(Result|No Dis-
ease) is the probability of that result given no disease. The likelihood ratio is a ratio
of these two probabilities.

The higher the likelihood ratio, the better the test result for ruling in a
diagnosis; a likelihood ratio greater than 100 is very high (and very unusual among
tests). On the other hand, the lower a likelihood ratio (the closer it is to 0), the
better the test result is for ruling out the disease. A likelihood ratio of 1 means that
the test result provides no information at all about the likelihood of disease.

An example of how to calculate likelihood ratios is shown in Table 12.3,
which presents results from the Pediatric Research in Office Settings Febrile Infant
study (10) on how well the white blood cell count predicted bacteremia or bacterial
meningitis in young, febrile infants. A white blood cell count that is either less
than 5,000 cells/mm? or at least 15,000 cells/mm? was more common among
infants with bacteremia or meningitis than among other infants. The calculation
of likelihood ratios simply quantifies this: 8% of the infants with bacteremia or
bacterial meningitis had less than 5,000 cells/mm?, whereas only 4% of those
without bacteremia or meningitis did. Therefore the likelihood ratio is 8%/4% = 2.

o Relative visks and visk differences. The analysis of studies of prognostic tests or
risk factors for disease is similar to that of other cohort studies. If everyone in
a prognostic test study is followed for a set period of time (say 3 years) with
few losses to follow-up, then the results can be summarized with absolute risks,
relative risks and risk differences. Especially when follow-up is complete and of short
duration, results of prognostic tests are sometimes summarized like diagnostic tests,
using sensitivity, specificity, predictive value, likelihood ratios and ROC curves.
On the other hand, when the study subjects are followed for varying lengths of

Likelihood ratio =

2For dichotomous tests the likelihood ratio for a positive test is
sensitivity
(1 — specificity)
and the likelihood ratio for a negative test is
(1 — sensitivity)
specificity
Detailed discussions of how to use likelihood ratios and prior information (the prior probability of disease) to estimate
a patient’s probability of disease after knowing the test result (the posterior probability) are available in standard
clinical epidemiology texts (7-9). The formula is

Prior odds x Likelihood Ratio = Posterior odds,
where prior and posterior odds are related to their respective probabilities by

P
dds =
odds= _ ,,
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TABLE 12.3 Example of Calculation of Likelihood Ratios from a Study of
Predictors of Bacterial Meningitis or Bacteremia Among Young
Febrile Infants

White Blood e . .
Cell Count Meningitis or Bacteremia
(per mm?) Yes No Likelihood Ratio
<5,000 5 96
800 400 2.0
5,000-9,999 18 854
29% 39% 0.7
10,000-14,999 8 790
12% 36% 0.3
15,000-19,999 17 286
27% 13% 2.1
>20,000 15 151
24% 7% 3.4
Total 63 2,177
100% 100%

time, a survival-analysis technique that accounts for the length of follow-up time is
preferable (11).

. STUDIES OF THE EFFECT OF TEST RESULTS
ON CLINICAL DECISIONS

A test may be accurate, but if the disease is very rare, the test may be so seldom
positive that it is not worth doing in most situations. Another diagnostic test may
be positive more often but not affect clinical decisions because it does not provide
new information beyond what was already known from the medical history, physical
examination, or other tests. The study designs in this section address the yield of
diagnostic tests and their effects on clinical decisions.

Types of Studies

o Diagnostic yield studies. Diagnostic yield studies address such questions as the
following;:
o When a test is ordered for a particular indication, how often is it abnormal?
e Can a test result be predicted from other information available at the time of

testing?

o What happens to patients with abnormal results? Do they appear to benefit?
Diagnostic yield studies estimate the proportion of positive tests among patients
with a particular indication for the test. Of course, showing that a test is often
positive is not sufficient to indicate the test should be done. However, a diagnostic
yield study showing a test is almost always negative may be sufficient to question its
use for that indication,
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For example, Siegel et al. (12) studied the yield of stool cultures in hospitalized
patients with diarrhea. Although not all patients with diarrhea receive stool cultures,
it seems reasonable to assume that those who do are, if anything, more likely to
have a positive culture than those who do not. Overall, only 40 (2%) of 1,964
stool cultures were positive. Moreover, none of the positive results were in the 997
patients who had been in the hospital for more than 3 days. Because a negative stool
culture is unlikely to affect management in these patients with a low likelihood of
bacterial diarrhea, it is of little value in that setting. Therefore, the authors were able
to conclude that stool cultures are unlikely to be useful in patients with diarrhea
who have been in the hospital for more than 3 days.

o Before/afterv studies of clinical decision making. These designs directly address the

effect of a test result on clinical decisions. The design generally involves a comparison
between what clinicians do (or say they would do) before and after obtaining results
of a diagnostic test. For example, Carrico et al. (13) prospectively studied the value
of abdominal ultrasound in 94 children with acute lower abdominal pain. They
asked the clinicians requesting the sonograms to record their diagnostic impression
and what their treatment would be if a sonogram were not available. After doing
the sonograms and providing the clinicians with the results, they asked again. They
found that sonographic information changed the initial treatment plan in 46% of
patients.
Of course (as discussed later), altering a clinical decision does not guarantee that a
patient will benefit. Therefore, if'a study with this design shows effects on decisions,
it is most useful when the natural history of the disease and the efficacy of treatment
are clear. In the preceding example, there is very likely a benefit from changing
the decision from ‘‘discharge from hospital” to “laparotomy’” in children with
appendicitis, or from ‘laparotomy” to ‘“‘observe’ in children with nonspecific
abdominal pain.

. STUDIES OF FEASIBILITY, COSTS, AND RISKS OF TESTS

An important area for clinical research relates to the practicalities of diagnostic testing.
What proportion of patients will return a postcard with tuberculosis skin test results?
What proportion of colonoscopies are complicated by hypotension? What are the
medical and psychological effects of false-positive screening tests in newborns?

Design Issues

Studies of the feasibility, costs, and risks of tests are generally descriptive. The sampling
scheme is important because tests often vary among the people or institutions doing
them, as well as the patients receiving them.

Among studies that sample individual patients, several sampling schemes are
possible. A straightforward choice is to study everyone who receives the test, as in
a study of the return rate of postcards after tuberculosis skin testing. Alternatively,
for some questions, the subjects in the study may be only those with results that
were positive or falsely positive. For example, Bodegard et al. (14) studied families of
infants who had tested falsely positive on a newborn screening test for hypothyroidism
and found that fears about the baby’s health persisted for at least 6 months in almost
20% of the families.

Adverse effects can occur not just from false-positive results, but also from tests
in which the measurement may be correct but a patient’s reaction leads to a decrement



194

Study Designs

in quality of life. Rubin and Cummings (15), for example, studied women who had
undergone bone densitometry to test for osteoporosis. They found that women who
had been told that their bone density was abnormal were much more likely to limit
their activities because of fear of falling.

Analysis

Results of these studies can usually be summarized with simple descriptive statistics
like means and standard deviations, medians, ranges, and frequency distributions.
Dichotomous variables, such as the occurrence of adverse effects, can be summarized
with proportions and their 95% Cls. For example, Waye et al. (16) reported that 3
of 2,097 ambulatory colonoscopies (0.14%; 95% CI, 0.030% to 0.042%) resulted in
hypotension that required intravenous fluids.

There are generally no sharp lines that divide tests into those that are or are
not feasible, or those that have or do not have an unacceptably high risk of adverse
effects. For this reason it is helpful in the design stage of the study to specify criteria
for deciding that the test is acceptable. What rate of follow-up would be insufficient?
What rate of complications would be too high?

. STUDIES OF THE EFFECT OF TESTING ON OUTCOMES

The best way to determine the value of a medical test is to see whether patients who are
tested have a better outcome (e.g., live longer) than those who are not. Randomized
trials are the ideal design for making this determination, but trials of diagnostic
tests are often difficult to do. The value of tests is therefore usually estimated from
observational studies. The key difference between the designs described in this section
and the experimental and observational designs discussed elsewhere in this book is
that the predictor variable for this section is #esting, rather than a treatment, risk
factor, or test result.

Designs

Testing itself is unlikely to have any direct benefit on the patient’s health. It is only
when a test result leads directly to the use of effective preventive or therapeutic
interventions that the patient may benefit. Therefore, one important caveat about
outcome studies of testing is that the predictor variable actually being studied is not
just a test (e.g., a fecal occult blood test), but everything that follows (e.g., procedures
for following up abnormal results, colonoscopy, etc.).

The outcome variable of these studies must be a measure of morbidity or mortality,
not simply a diagnosis or stage of disease. For example, showing that men who are
screened for prostate cancer have a greater proportion of cancers diagnosed at an
carly stage does not by itself establish the value of screening. It is possible that some
of those cancers would not have caused any problem if they had not been detected or
that treatment of the detected cancers is ineffective.

The outcome should be broad enough to include plausible adverse effects of
testing and treatment, and may include psychological as well as medical effects
of testing. Therefore, a study of the value of prostate-specific antigen screening
for prostate cancer should include treatment-related morbidity (e.g., impotence or
incontinence, perioperative myocardial infarction) and mortality. When many more
people are tested than are expected to benefit (as is usually the case), less severe adverse
outcomes among those without the disease may be important, because they will occur
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much more frequently. While negative test results may be reassuring and relieving
to some patients, in others the psychological effects of labeling or false-positive
results, loss of insurance, and troublesome (but nonfatal) side effects of preventive
medications may outweigh infrequent benefits.

o Observational studies. Observational studies are generally quicker, easier, and less
costly than experimental studies. However, they have important disadvantages as
well, especially because patients who are tested tend to differ from those who are
not tested in important ways that may be related to the risk of a disease or its
prognosis. For example, those getting the test may be at Jower risk of an adverse
health outcome, because people who volunteer for medical tests and treatments
tend to be healthier than average, an example of volunteer bias. On the other
hand, those tested may be at higher risk, because patients are more likely to be
tested when they or their clinicians are concerned about a disease or its sequelae,
an example of confounding by indication for the test (Chapter 9).

An additional common problem with observational studies of testing is the
lack of standardization and documentation of any interventions or changes in
management that follow positive results. If a test does not improve outcome in
a particular setting, it could be because follow-up of abnormal results was poor,
because patients were not compliant with the planned intervention, or because the
particular intervention used in the study was not ideal.

Example 12.1 An Elegant Observational Study of a Screening Test

Selby et al. (17) did a nested case—control study in the Kaiser Permante Medical
Care Program to determine whether scveening sigmoidoscopy reduces the risk of death
from colon cancer. They compared the rates of previous sigmoidoscopy amonyg patients
who had died of colon cancer with controls who had not. They found an adjusted
odds ratio of 0.41 (95% CIL, 0.25 to 0.69), suggesting that sigmoidoscopy resulted in
a 60% decrease in the death rate from cancer of the rectum and distal colon.

A potential problem is that patients who undergo sigmoidoscopy may differ
in important ways from those who do not, and that those differences maght
be associated with a diffevence in the expected death rate from colon can-
cer. To address this possible confounding, Selby et al. examined the appar-
ent efficacy of sigmoidoscopy at preventing death from cancers of the proximal
colon, above the reach of the sigmoidoscope. If patients who underwent sig-
moidoscopy werve less likely to die of colon cancer for other reasoms, then sig-
moidoscopy wounld appear to be protective against these cancers as well. How-
ever, sigmoidoscopy had no effect on mortality from cancer of the proximal
colon (adjusted odds ratio = 0.96; 95% CI, 0.61 to 1.50), suggesting that con-
founding was not the reason for the apparvent benefit in distal colon cancer
mortality.

o Clinical trials. The most rigorous design for assessing the benefit of a diagnostic
test is a clinical trial, in which subjects are randomly assigned to receive or not
to receive the test. Presumably the result of the test is then used to guide clinical
management. A variety of outcomes can be measured and compared in the two
groups. Randomized trials minimize or eliminate confounding and selection bias



196  Study Designs

and allow measurement of all relevant outcomes such as mortality, morbidity, cost,
and satisfaction. Standardizing the testing and intervention process enables others
to reproduce the results.

Unfortunately, randomized trials of diagnostic tests are often not practical,
especially for diagnostic tests already in use in the care of sick patients. Randomized
trials are generally more feasible and important for tests that might be used in large
numbers of apparently healthy people, such as new screening tests.

Randomized trials, however, may bring up ethical issues about withholding
potentially valuable tests. Rather than randomly assigning subjects to undergo a test
or not, one approach to minimizing this ethical concern is to randomly assign some
subjects to receive an intervention that increases the use of the test, such as frequent
postcard reminders and assistance in scheduling. The primary analysis must still
follow the ““intention-to-treat” rule—that is, the entire group that was randomized
to receive the intervention must be compared with the entire comparison group.
However, this rule will tend to create a conservative bias; the observed efficacy of
the intervention will underestimate the actual efficacy of the test, because some
subjects in the control group will get the test and some subjects in the intervention
group will not. This problem can be addressed in secondary analyses that assume
all the difference between the two groups is due to different rates of testing. The
actual benefits of testing in the subjects as a result of the intervention can then be
estimated algebraically (18).

Analysis

Analysis of studies of the effect of testing on outcome are those appropriate to the
specific design used—odds ratios for case—control studies, and risk ratios or hazard
ratios for cohort studies or experiments. A convenient way to express the results is to
project the results of the testing procedure to a large cohort (e.g., 100,000), listing
the number of initial tests, follow-up tests, people treated, side effects of treatment,
costs, and lives saved.

. PITFALLS IN THE DESIGN OR ANALYSIS
OF DIAGNOSTIC TEST STUDIES

As with other types of clinical research, errors in the design or analysis of studies of
diagnostic tests are common. Some of the most common and serious of these, along
with steps to avoid them, are outlined below.

Verification Bias 1: Selective Application of a Single Gold Standard

A common sampling strategy for studies of medical tests is to study (either prospec-
tively or retrospectively) patients at risk for disease who receive the gold standard for
diagnosis. However, this causes a problem if the findings being studied are also used
to decide who gets the gold standard. For example, consider a study of predictors of
fracture in children presenting to the emergency department with ankle injuries, in
which only children who had x-rays for ankle injuries were included. If those without
a particular finding, for example, ankle swelling, were less likely to get an x-ray,
both false-negatives and true-negatives (¢ and d in the 2 x 2 table in Table 12.4)
would be reduced, thereby increasing sensitivity (a/(a + ¢)) and decreasing specificity
(d/(d + b)), as shown in Table 12.4. This bias, called verification bias, work-up
bias, or referral bias, is illustrated numerically in Appendix 12B.
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TABLE 12.4 How Verification Bias
Leads to Overestimation
of Sensitivity and
Underestimation of
Specificity, by
Decreasing the Number
of Subjects in the Study
with No Swelling, and
Hence Both Cells ¢

and d
Fracture No Fracture
Swelling a b
No swelling cl dJ

This type of verification bias can be avoided by using strict criteria for application
of the gold standard that do not include the test being studied. Another strategy is
to use a different gold standard for those in whom the usual gold standard is not
indicated. However, this can cause other problems as discussed below.

Verification Bias 2: Different Gold Standards for Those Testing Positive
and Negative

A different type of verification bias, which might be called double gold standard bias,
occurs when different gold standards are used for those with positive and negative
test results. An example is the previously mentioned study of mammography (5) in
which the gold standard for those with positive mammograms was a biopsy, whereas
for those with negative mammograms it was a period of follow-up to see if a cancer
became evident. Having two different gold standards for the disease is a problem if
the gold standards might not agree with one another.

Another example is a study of ultrasonography to diagnose intussusception in
young children (19). All children with a positive ultrasound scan for intussusception
received the gold standard, a contrast enema. In contrast, the majority of children
with a negative ultrasound were observed in the emergency room and intussusception
was ruled out clinically. For cases of intussusception that resolve spontancously, the
two gold standards would give different results: the contrast enema would be positive,
and clinical follow-up would be negative. If these cases have a negative ultrasound, the
double gold standard can turn what would appear to be a false-negative result (when
the ultrasound is negative and the contrast enema is positive) into a true negative
(when the ultrasound is negative and clinical follow-up reveals no intussusception).
This increases both sensitivity and specificity (Table 12.5). A numerical example of
this double gold standard type of verification bias is provided in Appendix 12.C.

Because sometimes using an invasive gold standard for everyone is not feasible,
investigators considering a study with two gold standards should make every effort to
use other data sources (e.g., autopsy studies examining the prevalence of asymptomatic
cancers among patients who died from other causes in a study of a cancer screening
test) to assess the degree to which double gold standard bias might threaten the
validity of the study.
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TABLE 12.5  How Using Clinical Follow-up as the Gold
Standard for Children with a Negative
Ultrasound Moves Self-resolving Cases of
Intussusception From Cell ¢ to Cell d and
Changes False-Negatives into
True-Negatives

Intussusception No Intussusception
Ultrasound + a b
Ultrasound — c » d

Inadequate Sample Size

A basic principle is that if there are plenty of instances of what the investigator is
trying to measure, the sample size is likely to be adequate. However, if the disease
or outcome being tested for is rare, this may require testing a very large number of
people. Many laboratory tests, for example, are not expensive, and a yield of 1% or
less might justify doing them, especially if they can diagnose a serious treatable illness.
Therefore, to conclude that a test is not useful, the upper confidence interval for the
yield should be low enough to exclude a clinically significant yield.

For example, Sheline and Kehr (20) retrospectively reviewed routine admission
laboratory tests, including the Venereal Disease Research Laboratory (VDRL) test for
syphilis among 252 psychiatric patients and found that the laboratory tests identified
1 patient with previously unsuspected syphilis. If this patient’s psychiatric symptoms
were indeed due to syphilis, it would be hard to argue that it was not worth the
$3,186 spent on VDRLs to make this diagnosis. But if the true rate of unsuspected
syphilis were close to the 0.4% seen in this study, a study of this sample size could
easily have found no cases. In that situation, the upper limit of the 95% CI would have
been 1.2%. This confidence limit would not be low enough to exclude a clinically
significant yield of the VDRL in such psychiatric patients.

Inappropriate Exclusion

When calculating proportions, such as the proportion of subjects with a positive test
result in a diagnostic yield study, excluding subjects from the numerator without
excluding similar subjects from the denominator is a common error. The basic rule is
that if any subjects who test positive are excluded from the numerator, similar subjects
must also be excluded from the denominator. In a study of routine laboratory tests
in emergency department patients with new seizures (21), for example, 11 of 136
patients (8%) had a correctable laboratory abnormality (hypoglycemia, hypocalcemia,
etc.) as a sole or contributory cause for their seizure. In 9 of the 11 patients, however,
the abnormality was suspected on the basis of the history or physical examination.
The authors therefore reported that only 2 of 136 patients (1.5%) had abnormalities
not suspected on the basis of the history or physical examination. But if all patients
with suspected abnormalities are excluded from the numerator, then similar patients
must be excluded from the denominator as well. The correct denominator for this
proportion is therefore not all 136 patients tested, but only those who were not
suspected of having any laboratory abnormalities on the basis of their medical history
or physical examination.
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Institution-Specific Results
Generalizability is especially important for tests that require skill or training to do
or interpret. For example, just because pathologists in a particular institution cannot
agree on what constitutes an abnormal Pap smear does not mean that pathologists
elsewhere would have the same problem. In some cases, investigators are motivated
to study questions that seem particularly problematic in their own institution. The
results obtained may be internally valid but of little interest elsewhere.
Nongeneralizable findings can also occur in institutions that do exceptionally
well. For example, it is possible that the value of abdominal ultrasonography in
children with belly pain reported by Carrico et al. (13) is greater than would be found
elsewhere, because of the particular skill of their ultrasonographers.

Dropping Borderline or Uninterpretable Results

Sometimes a test may fail to give any answer at all, such as if the assay failed, the
test specimen deteriorated, or the test result fell into a gray zone of being neither
positive nor negative. It is not usually legitimate to ignore these problems, but how
to handle them depends on the specific research question and study design. In studies
dealing with the expense or inconvenience of tests, failed attempts to do the test are
clearly important results. On the other hand, for most other studies of diagnostic
tests, instances of failure of the test to provide a result should be divided into those
that likely are and are not related to characteristics of the patient. Thus patients whose
specimens were lost or in whom the assays failed for reasons unrelated to the patient
can generally be excluded without distorting results.

Patients with “‘nondiagnostic”’ imaging studies or a borderline result on a
test need to be counted as having had that specific result on the test. In effect,
this may change a dichotomous test to an ordinal one—positive, negative, and
indeterminate. ROC curves can then be drawn and likelihood ratios can be calculated
for the ““indeterminate’ as well as positive and negative results.

B sumMARY

1. The usefulness of medical tests can be assessed using designs that address a series
of increasingly stringent questions (Table 12.1). For the most part, standard
observational designs provide descriptive statistics of test characteristics with
confidence intervals.

2. The subjects for a study of a diagnostic test should be chosen from patients who
have a spectrum of disease and nondisease that reflects the anticipated use of the
test in clinical practice.

3. If possible, the investigator should blind those interpreting the test results from
other information about the patients being tested.

4. Measuring the reproducibility of a test, including the intra- and interobserver
variability, is often a good first step in evaluating a test.

5. Studies of the accuracy of tests require a gold standard for determining if a
patient has, or does not have, the disease or outcome being studied.
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6. The results of studies of the accuracy of diagnostic tests can be summarized using
sensitivity, specificity, predictive value, ROC curves, and likelihood ratios.
Studies of the value of prognostic tests can be summarized with risk ratios or
hazard ratios.

7. Because of the difficulty of demonstrating that doing a test improves outcome,
studies of the effects of tests on clinical decisions and the accuracy, feasibility,
costs, and risks of tests are often most useful when they suggest a test should not
be done.

8. The most rigorous way to study a diagnostic test is to do a clinical trial, in which
subjects are randomly assigned to receive or not to receive the test, and outcomes,
such as mortality, morbidity, cost, and satisfaction, are compared. However, there
may be practical and ethical impediments to such trials; with appropriate attention
to possible biases and confounding, observational studies of these questions can

be helpful.

Bl APPENDIX 12A

Calculation of Kappa to Measure Interobserver Agreement

When there are two observers or when the same observer repeats a measurement
on two occasions, the agreement can be summarized in a “c by ¢” table, where ¢
is the number of categories that the measurement can have. For example, consider
two observers listening for an $4 gallop on cardiac examination (Table 12A.1). They
record it as either present or absent. The simplest measure of interobserver agreement
is the concordance rate—that is, the proportion of observations on which the two
observers agree. The concordance rate can be obtained by summing the numbers
along the diagonal from the upper left to the lower right and dividing it by the total
number of observations. In this example, out of 100 patients there were 10 patients in
whom both observers heard a gallop, and 75 in whom neither did, for a concordance
rate of (10 +75)/100 = 85%.

When the observations are not evenly distributed among the categories (e.g.,
when the proportion ‘“‘abnormal” on a dichotomous test is substantially different
from 50%), the concordance rate can be misleading. For example, if the two observers
each hear a gallop on five patients but do not agree on which patients have the gallop,
their observed agreement will still be 90% (Table 12A.2). In fact, if two observers

TABLE 12A.1 Interobserver Agreement on Presence of an S4 Gallop
Gallop Heard No Gallop Heard

by Observer 1 by Observer 1 Total, Observer 2
Gallop heard by observer 2 10 5 15
No gallop heard by observer 2 10 75 85
Total, observer 1 20 80 100

Note: The concordance rate is the percentage of the time two observers agree with one another. In this example, both observers
either heard or did not hear the gallop in (10 + 75)/100 = 85% of cases.
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TABLE12A.2 High Agreement When Both Observers Know Gallops are

Uncommon
Gallop Heard No Gallop Heard
by Observer 1 by Observer 1 Total, Observer 2
Gallop heard by observer 2 0 5 5
No gallop heard by observer 2 5 90 95
Total, observer 1 5 95 100

Note: When both observers know that an abnormality is uncommon, they will have a high concordance rate, even if they do not
agree on which subjects are abnormal. In this case the observers agree 90% of the time, although they do not agree at all on
who has a gallop.

both know an abnormality is uncommon, they can have nearly perfect agreement just
by never or rarely saying that it is present.

To get around this problem, another measure of interobserver agreement, called
kappa (), is sometimes used. Kappa measures the extent of agreement beyond what
would be expected from knowing the “marginal values” (i.e., the row and column
totals). Kappa ranges from —1 (perfect disagreement) to 1 (perfect agreement). A
kappa of 0 indicates that the amount of agreement was exactly that expected by
chance. « is estimated as:

Observed agreement (%) — Expected agreement (%)

100% — Expected agreement (%)

The ““expected” proportion in each cell is simply the proportion in that cell’s row
(i.e., the row total divided by the sample size) times the proportion in that cell’s
column (i.e., the column total divided by the sample size). The expected agreement
is obtained by adding the expected proportions in the cells along the diagonal of the
table, in which the observers agreed.

For example, in Table 12A.1, the observers appear to have done quite well: they
have agreed 85% of the time. But how well did they do compared with agree-
ment by chance? By chance alone they will agree about 71% of the time: (20% X
15%) + (80% x 85%) = 71%. Because the observed agreement was 85%, kappa is
(85% — 71%)/(100% — 71%) = 0.48 —respectable, if somewhat less impressive than
85% agreement. But now consider Table 12A.2. Although the observed agreement was
90%, the expected agreement is (5% x 5%) 4+ (95% x 95%) = 90.5%. Therefore, kappa
is (90% — 90.5%)/(100% — 90.5%) = —0.05%—a tiny bit worse than chance alone.

When there are more than two categories of variables, it is important to distinguish
between ordinal variables, which are intrinsically ordered, and nominal variables, which
are not. For ordinal variables, kappa fails to capture all the information in the data,
because it does not give partial credit for coming close. For example, if a radiograph
can be classified as “‘normal,” “questionable,” and ““abnormal,” having one observer
call it normal and the other call it questionable is better agreement than if one says
it is normal and the other says it is abnormal. To give credit for partial agreement, a
weighted kappa?® should be used.

3The formula for weighted kappa is the same as that for regular kappa except that observed and expected agreement are
summed not just along the diagonal, but for the whole table, with each cell first multiplied by a weight for that cell. Any weighting
system can be used, but the most common are w; =1— 1|/ —/|/(c—=1) and w;j =1—[(/ —)/(c — 1)]% where wj is the
weight for the number in /" row and the /" column and c is the number of categories.
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) APPENDIX 12B

Numerical Example of Verification Bias: 1

Consider two studies examining ankle swelling as a predictor of fractures in children
with ankle injuries. The first study is a consecutive sample of 200 children. In this
study, all children with ankle injuries are x-rayed, regardless of swelling. The sensitivity
and specificity of ankle swelling are 80% and 75%, as shown in Table 12B.1:

TABLE 12B.1 Ankle Swelling as a Predictor
of Fracture Using a Consecutive

Sample
Fracture No Fracture
Swelling 32 40
No swelling 8 120
Total 40 160

Sensitivity = 32/40 =80%
Specificity = 120/160 =75%

The second study is a selected sample, in which only half the children without
ankle swelling are x-rayed. Therefore, the numbers in the “No swelling” row will
be reduced by half. This raises the apparent sensitivity from 32,/40 (80%) to 32 /36
(89%) and lowers the apparent specificity from 120,/160 (75%) to 60,/100 (60%), as
shown in Table 12B.2:

TABLE 12B.2| Verification Bias: Ankle Swelling as a Predictor
of Fracture Using a Selected Sample

Fracture No Fracture
Swelling 32 40
No swelling 4 60
Total 36 100

Sensitivity = 32/36 =89%
Specificity = 60/100 =60%

Note: If we knew that the children with no swelling who received an x-ray were otherwise
similar to those who did not receive an x-ray, we could estimate the verification bias and correct
for it algebraically. In practice, the children who receive an x-ray are probably more likely to
have a fracture than those who do not, so the effect of verification bias on sensitivity in the
example above is likely a worst-case scenario. (That is, if the clinicians were good at predicting
who did not have a fracture, all those not x-rayed would not have had any fractures, and the
sensitivity of the test would not have been biased upwards. Specificity, however, would still be
underestimated.)
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# APPENDIX 12C

Numerical Example of Verification Bias: 2
Results of the study by Eshed et al. (19) of ultrasonography to diagnose intussuscep-
tion are shown in Table 12C.1:

TABLE 12C.1 Results of a Study of Ultrasound Diagnosis
of Intussusception

Intussusception No Intussusception
Ultrasound + 37 7
Ultrasound — 3 104
Total 40 111

Sensitivity = 37/40 =93%
Specificity = 104/111 =94%

The 104 subjects with a negative ultrasound listed as having “No Intussus-
ception” actually included 86 who were followed clinically and did not receive a
contrast enema. If about 10% of these subjects (i.e., nine children) actually had an
intussusception that resolved spontaneously, but that would still have been identified
if they had a contrast enema, and all subjects had received a contrast enema, those

nine children would have changed from true-negatives to false-negatives, as shown in
Table 12C.2:

TABLE 12C.2 Effect on Sensitivity and Specificity if
Nine Children with Spontaneously
Resolving Intussusception had Received
the Contrast Enema Gold Standard
Instead of Clinical Follow-up

Intussusception No Intussusception
Ultrasound + 37 7
Ultrasound — 3+9=12 104 -9 =295
Total 49 102

Sensitivity = 37,/49 =76%
Specificity = 95/102 =93%

Now consider the 37 subjects with positive ultrasound scans, who had in-
tussusception based on their contrast enema. Suppose about 10% of those intus-
susceptions would have resolved spontaneously, if given the chance. Then about
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four children would change from true-positives to false-positives, is shown in
Table 12C.3:

TABLE 12C.3 Effect on Sensitivity and Specificity if Four
Children with Spontaneously Resolving
Intussusception had Received the Clinical
Follow-up Gold Standard Instead of the
Contrast Enema

Intussusception No Intussusception
Ultrasound + 37 —-4=233 7+4=11
Ultrasound — 3 104
Total 36 115

Sensitivity = 33/36 =920
Specificity = 104/115 =90%

Therefore, for spontaneously resolving cases of intussusception, the ultrasound
scan will appear to give the right answer whether it is positive or negative, increasing
both sensitivity and specificity.
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m Utilizing Existing
Databases

Deborah Grady and Norman Hearst

Many research questions can be answered quickly and efficiently using data that
have already been collected. There are three general approaches to using existing
data. Secondary data analysis is the use of existing data to investigate research
questions other than the main ones for which the data were originally gathered.
Ancillary studies add one or more measurements to a study, often in a subset of
the participants, to answer a separate research question. Systematic reviews combine
the results of multiple previous studies of a given research question, often including
calculation of'a summary estimate of effect that has greater precision than the individual
study estimates. Making creative use of existing data is a fast and effective way for new
investigators with limited resources to begin to answer important research questions.

Bl ADVANTAGES AND DISADVANTAGES

The main advantages of using existing data are speed and economy. A research ques-
tion that might otherwise require much time and money to investigate can sometimes
be answered rapidly and inexpensively. For example, in the Multiple Risk Factor
Intervention Trial (MRFIT), a large heart disease prevention trial in men, information
about the smoking habits of the wives of the study subjects was recorded to examine
whether this influenced the men’s ability to quit smoking. After the study was over,
one of the investigators realized that the data provided an opportunity to investigate
the health effects of passive smoking—a new finding at the time. A twofold excess in
the incidence of heart disease was found in nonsmoking men married to smoking wives
when compared with similar nonsmoking men married to nonsmoking wives (1).
Existing data sets also have disadvantages. The selection of the population to
study, which data to collect, the quality of data gathered, and how variables were
measured and recorded are all predetermined. The existing data may have been
collected from a population that is not ideal (men only rather than men and women),
the measurement approach may not be what the investigator would prefer (/istory of
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hypertension, a dichotomous histovical variable, in place of actual blood pressure) and
the quality of the data may be poor (frequent missing or incovrect values). Important
confounders and outcomes may not have been measured or recorded. All these factors
contribute to the main disadvantage of using existing data: the investigator has little
or no control over what data have been collected, and how.

. SECONDARY DATA ANALYSIS

Secondary data sets may come from previous research studies, medical records,
health care billing files, death certificates, and many other sources. Previous research
studies, often conducted at the investigator’s institution, may provide a rich source
of secondary data. Many studies collect more data than the investigators analyze and
contain interesting findings that have gone unnoticed. Access to such data is controlled
by the study’s principal investigator; the new researcher should therefore seek out
information about the work of senior investigators at his institution. One of the most
important ways a good mentor can be helpful to a new investigator is by providing
knowledge of and access to relevant data both from his own and other institutions.
Most large NIH-funded studies are now required to make their data publicly
available after a certain period of time. These data sets are usually available through
the Internet and can provide extensive data addressing related research questions.

Other sources of secondary data are large regional and national data sets that are
publicly available and do not have a principal investigator. Computerized databases
of this sort are as varied as the reasons people have for collecting information. We will
give several examples that deserve special mention, and readers can locate others in
their own areas of interest.

Tumor registries are government-supported agencies that collect complete
statistics on cancer incidence, treatment, and outcome in defined geographic areas.
These registries currently include about one quarter of the US population, and the
area of coverage is expected to increase during the coming years. One of the purposes
of these registries is to provide data to outside investigators. Combined data for
all the registries are available from the Surveillance, Epidemiology, and End Results
(SEER) Program. For example, investigators used the SEER registry of breast cancer
diagnoses to determine the specificity of screening mammography in a large cohort
of women in the San Francisco Bay Area. Women with negative mammograms in
whom cancer was not diagnosed within 13 months were considered to have had true
negative mammography (2).

Death certificate registries can be used to follow the mortality of any cohort.
The National Death Index includes all deaths in the United States since 1978.
This can be used to ascertain the vital status of subjects of an earlier study or of
those who are part of another data set that includes important predictor variables.
An example is the follow-up of men with coronary disease who were treated with
high-dose nicotinic acid (or placebo) to lower serum cholesterol in the Coronary
Drug Project. Although there was no difference in death rates at the end of the 5
years of randomized treatment, a mortality follow-up 9 years later using the National
Death Index revealed a significant difference (3). Whether an individual is alive or
dead is public information, so follow-up was available even for men who had dropped
out of the study.

The National Death Index can be used when any two of three basic individual
identifiers (name, birth date, and social security number) are known. Ascertainment
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of the fact of death is 99% complete with this system, and additional information
from the death certificates (notably cause of death) can then be obtained from state
records. On the state and local level, many jurisdictions now have computerized vital
statistics systems, in which individual data (such as information from birth or death
certificates) are entered as they are received.

Secondary data can be especially useful for studies to evaluate patterns of uti-
lization and clinical outcomes of medical treatment. This approach can complement
the information available from randomized trials and examine questions that trials
cannot answer. These types of existing data include administrative and clinical
databases such as those developed by Medicare, the Department of Veterans Af-
fairs, Kaiser Permanente Medical Group, the Duke Cardiovascular Disease Databank,
and registries such as the San Francisco Mammography Registry and the National
Registry of Myocardial Infarction (NRMI). Information from these sources (many of
which can be found on the Web) can be very useful for studying rare adverse events
and for assessing real-world utilization and effectiveness of an intervention that has
been shown to work in a clinical trial setting. For example, the NRMI was used to
examine risk factors for intracranial hemorrhage after treatment with recombinant
tissue-type plasminogen activator (tPA) for acute myocardial infarction (MI). The
registry included 71,073 patients who received tPA; among these, 673 had intracranial
hemorrhage confirmed by computed tomography or magnetic resonance imaging. A
multivariate analysis showed that a tPA dose exceeding 1.5 mg/kg was significantly
associated with developing an intracranial hemorrhage when compared with lower
doses (4). Given that the overall risk of developing an intracranial hemorrhage was
less than 1%, a clinical trial collecting primary data to examine this outcome would
have been prohibitively large and expensive.

Another valuable contribution from this type of secondary data analysis is a better
understanding of the difference between efficacy and effectiveness. The randomized
clinical trial is the gold standard for determining the efficacy of a therapy under
highly controlled circumstances in selected clinical settings. In the “‘real world,”
however, patients and treatments are often different. The choice of drugs and dosage
by the treating physician and the adherence to medications by the patient are much
more variable. These factors often act to make the new therapy less effective than
demonstrated in trials. Assessing the effectiveness of treatments in actual practice
can sometimes be accomplished through studies using secondary data. For example,
primary angioplasty has been demonstrated to be superior to thrombolytic therapy in
clinical trials of treating patients with acute MI (5). But this may only be true when
success rates for angioplasty are as good as those achieved in the clinical trial setting.
Secondary analyses of community data sets have not found a benefit of primary
angioplasty over thrombolytic therapy (6,7).

Secondary data analysis is often the best approach for studying the utilization of
accepted therapies. Although clinical trials can demonstrate efficacy of a new ther-
apy, this benefit can only occur if the therapy is adopted by practicing physicians.
Understanding utilization rates, addressing regional variation and use in specific pop-
ulations (such as the elderly, ethnic minorities, the economically disadvantaged, and
women), can have major public health implications. For example, despite convincing
data that angiotensin converting enzyme inhibitors decrease mortality in patients with
MI, a secondary analysis of community data has shown that many patients with clear
indications for such therapy do not receive it (8).

Two data sets may also be linked to answer a research question. Investigators
who were interested in how military service effects health used the 1970 to 1972 draft
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lottery involving 5.2 million 20-year-old men who were assigned eligibility for military
service randomly by date of birth (the first data set) linked to later mortality based on
state death certificate registries (the second source of data). The predictor variable
(date of birth) was a randomly assigned proxy for military service during the Vietnam
era. Men who had been randomly assigned to be eligible for the draft had significantly
greater mortality from suicide and motor vehicle accidents in the ensuing 10 years (9).
The study was done for less than $2,000 (not including the investigators’ time), yet
it was a more unbiased approach to examining the effect of military service on specific
causes of subsequent death than other studies of this topic with much larger budgets.

When individual data are not available, aggregate data sets can sometimes be
useful. The term aggregate data means that information is available only for groups
of subjects (e.g., death rates from cervical cancer in each of the 50 states). With such
data, associations can only be measured among these groups by comparing group
information on a risk factor (such as tobacco sales) with the rate of an outcome. Studies
using aggregate data are called ecologic studies.

The advantage of aggregate data is its availability. Its major drawback is the
fact that associations are especially susceptible to confounding: groups tend to differ
from each other in many ways, not all of which are causally related. Furthermore,
associations observed in the aggregate do not necessarily hold for the individual. For
example, sales of cigarettes may be greater in states with high suicide rates, but the
individuals who commit suicide may not be the ones doing most of the smoking. This
situation is referred to as the ecologic fallacy. Aggregate data are most appropriately
used to test the plausibility of a new hypothesis or to generate new hypotheses.
Interesting results can then be pursued in another study that uses individual data.

Getting Started

After choosing a research topic and becoming familiar with the literature in that area
(including a thorough literature search and advice from a senior mentor), the next
step is to investigate whether the research question can be addressed with an existing
database. The help of a senior colleague can be invaluable in finding an appropriate
data set. An experienced researcher has defined areas of interest in which he stays
current and is aware of important data sets and the investigators who control these
data, both at his own institution and elsewhere. This person can help identify and
gain access to the appropriate database. Often, the research question needs to be
altered slightly (by modifying the definition of the predictor or outcome variables, for
example) to fit the available data.

The best solution may be close at hand, a database at the home institution. For
example, a University of California, San Francisco (UCSF) fellow who was interested
in the role of lipoproteins in coronary disease noticed that one of the few interventions
known to lower the level of lipoprotein(a) was estrogen. Knowing that the Heart and
Estrogen /Progestin Replacement Study (HERS), a major clinical trial of hormone
treatment to prevent coronary disease, was being managed at UCSEF, the fellow
approached the investigators with his interest. Because no one else had specifically
planned to examine the relationship between this lipoprotein, hormone treatment
and coronary heart disease events, the fellow designed an analysis and publication
plan. After receiving permission from the HERS study leadership, he worked with
coordinating center statisticians, epidemiologists, and programmers to carry out an
analysis that he subsequently published in a leading journal (10).

Sometimes a research question can be addressed that has little to do with the
original study. For example, another fellow from UCSF was interested in the value of
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repeated screening Pap tests in women over 65 years old. He realized that the mean
age of participants in the HERS trial was 67 years, that participants were required to
have a normal Pap test to enter and then received screening Pap tests annually during
follow-up. By following up on Pap test outcomes, he was able to document that 110
Pap tests were abnormal among over 2500 women screened over a 2-year period,
and only one woman was ultimately found to have abnormal follow-up histology.
Therefore, all but one of the abnormal Pap tests were falsely positive (11). This study
strongly influenced the US Preventive Services Task Force’s current recommendation
that Pap tests should not be performed in low-risk women over age 65 with previous
normal tests.

Sometimes it is necessary to venture further afield. Working from a list of
predictor and outcome variables whose relation might help to answer the research
question, an investigator can seek to locate databases that include these variables.
Phone calls or e-mail messages to the authors of previous studies or to government
officials might result in access to files containing useful data. It is essential to conquer
any anxiety that the investigator may feel about contacting strangers to ask for help.
Most people are surprisingly cooperative, either by providing data themselves or by
suggesting other places to try.

Once the data for answering the research question have been located, the
next challenge is to obtain permission to use them. It is a good practice to use
official letterhead on correspondence and to adopt any institutional titles that are
appropriate. Young investigators should determine if their mentors are acquainted
with the investigators who control the database, as an introduction may be more
effective than a cold contact. It is generally most effective to work with an investigator
who is interested in the research topic and involved in the study whose database you
would like to examine. This investigator can facilitate access to the data, assure that
you understand the study methods and how the variables were measured, and often
becomes a valued colleague and collaborator. Databases that result from multicenter
studies and clinical trials generally have clear mechanisms for obtaining access to the
data that include the requirement for a written analysis proposal and approval by an
analysis or publications committee.

The investigator should be very specific about what information is sought and
confirm the request in writing. It is a good idea to keep the size of the request
to a minimum and to offer to pay any cost of preparing the data. If the data set is
controlled by another group of researchers, the investigator can suggest a collaborative
relationship. In addition to providing an incentive to share the data, this can engage
a coinvestigator who is familiar with the database. It is wise to clearly define such a
relationship early on, including who will be first author of the planned publications.
Important arrangements of this sort often benefit from a face-to-face meeting.

B ANCILLARY STUDIES

Research with secondary data takes advantage of the fact that the data needed to
answer a research question are already available. In an ancillary study, the investigator
adds one or several measurements to an existing study to answer a different research
question. For example, in the HERS trial of the effect of hormone therapy on risk
for coronary events in 2,763 elderly women, an investigator added measurement of
the frequency and severity of urinary incontinence. Adding a one-page questionnaire
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created a large trial of the effect of hormone therapy on urinary incontinence, with
little additional time or expense (12).

Ancillary studies have many of the advantages of secondary data analysis with
fewer constraints. They are both inexpensive and efficient, and the investigator can
design a few key ancillary measurements specifically to answer the research question.
Ancillary studies can be added to any type of study, including cross-sectional and
case—control studies, but large prospective cohort studies and randomized trials are
particularly well suited to such studies.

Ancillary studies in randomized trials have the problem that the measurements
may be most informative when added before the trial begins, and it may be difficult
for an outsider to identify trials in the planning phase. Even when a variable was not
measured at baseline, however, a single measurement during or at the end of the trial
can produce useful information. By adding cognitive function measures at the end
of the HERS trial, the investigators were able to compare the cognitive function of
elderly women treated with hormone therapy for 4 years with the cognitive function
of those treated with placebo (13).

A good opportunity for ancillary studies is provided by the banks of stored
serum, DNA, images, and so on, that are found in most large clinical trials and
cohort studies. The opportunity to propose new measurements using these specimens
can be an extremely cost-effective approach to answering a novel research question,
especially if it is possible to make these measurements on a subset of specimens using
a nested case—control or case-cohort design (Chapter 7). In HERS, for example,
genetic analyses of fewer than 100 cases and controls showed that the excess number
of thromboembolic events in the hormone-treated group was not due to an interaction
with factor V Leiden (14).

Getting Started

Opportunities for ancillary studies should be actively pursued, especially by new
investigators with limited time and resources. A good place to start is to identify
studies with research questions that include either the predictor or the outcome
variable of interest. For example, an investigator interested in the effect of weight loss
on pain associated with osteoarthritis might start by identifying trials of interventions
(such as diet, exercise, behavior change, or drugs) for weight loss. Such studies can
be identified by searching lists of studies funded by the federal government, by
contacting pharmaceutical companies that manufacture drugs for weight loss, and
by talking with experts in weight loss who are familiar with ongoing studies. To
create an ancillary study, the investigator would simply add a measure of arthritis
symptoms among subjects enrolled in these studies. Alternatively, he might identify
studies that have joint pain as an outcome, and add change in weight as an ancillary
measure.

After identifying a study that provides a good opportunity for ancillary mea-
sures, the next step is to obtain the cooperation of the study investigators. Most
researchers will consider adding brief ancillary measures to an established study
if they address an important question and do not substantially interfere with
the conduct of the main study. Investigators will be reluctant to add measures
that require a lot of the participant’s time (cognitive function testing) or are
invasive and unpleasant (colonoscopy) or costly (positron emission tomography scan-
ning).

Generally, formal permission from the principal investigator or the appropriate
study committee is required to add an ancillary study. Most large, multicenter studies
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have established procedures requiring a written application. The proposed ancillary
study is generally reviewed by a committee that can approve, reject, or revise the
ancillary study. Many ancillary measures require funding, and the ancillary study
investigator must find a way to pay these costs. Of course, the cost of an ancillary
study is much less than the cost of conducting the same trial independently. Some
large studies may have their own mechanisms for funding ancillary studies, especially
if the research question is important and considered relevant by the funding agency.
The NIH has recently issued several requests for proposals to add ancillary studies to
large NIH-funded trials.

The disadvantages of ancillary studies are few. If the main study is already in
progress, new variables can be added, but variables already being measured cannot be
changed. In some cases there may be practical problems in obtaining permission from
the investigators or sponsor to perform the ancillary study, training those who will
make the measurements, or obtaining separate informed consent from participants.
Because the ancillary study investigator may not have designed or conducted the main
study, it may also be difficult to obtain access to the full database for analysis. These
issues, including a clear understanding of authorship of scientific papers that result
from the ancillary study and the rules governing their preparation and submission,
need to be clarified before starting the study.

. SYSTEMATIC REVIEWS

Systematic reviews identify completed studies that address a research question, and
evaluate the results of these studies to arrive at conclusions about a body of research.
In contrast to other approaches to reviewing the literature, systematic reviews use a
well-defined and uniform approach to identify all relevant studies, display the results
of eligible studies, and, when appropriate, calculate a summary estimate of the overall
results. The statistical aspects of a systematic review (calculating summary effect
estimates and variance, statistical tests of heterogeneity, and statistical estimates of
publication bias) are called meta-analysis.

A systematic review can be a good opportunity for a new investigator. Although
it takes a surprising amount of time and effort, a systematic review generally does not
require substantial financial or other resources. Completing a good systematic review
requires that the investigator become intimately familiar with the literature regarding
the research question. For new investigators, this detailed knowledge of published
studies is invaluable. Publication of a good systematic review can also establish a
new investigator as an “‘expert” on the research question. Moreover, the findings,
with power enhanced by the larger sample size available from the combined studies
and peculiarities of individual study findings revealed by comparison with the others,
often represent an important scientific contribution. Systematic review findings can
be particularly useful for developing practice guidelines.

The elements of a good systematic review are listed in Table 13.1. Just as for
other studies, the methods for completing each of these steps should be described in
a written protocol before the systematic review begins.

The Research Question

As with any research, a good systematic review has a well-formulated, clear research
question that meets the usual FINER criteria (Chapter 2). Feasibility depends
largely on the existence of a set of studies of the question. The research question
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TABLE 13.1 Elements of a Good Systematic Review

. Clear research question

. Comprehensive and unbiased identification of completed studies

. Definition of inclusion and exclusion criteria

. Uniform and unbiased abstraction of the characteristics and findings of each study

. Clear and uniform presentation of data from individual studies

. Calculation of a summary estimate of effect and confidence interval based on the
findings of all eligible studies when appropriate

. Assessment of the heterogeneity of the findings of the individual studies

. Assessment of potential publication bias

9. Subgroup and sensitivity analyses
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should describe the disease or condition of interest, the population and setting, the
intervention and comparison treatment (for trials), and the outcomes of interest. For
example, ‘Among persons admitted to an intensive care unit with unstable angina,
does treatment with aspivin plus intvavenous hepavin veduce the visk of myocardinl
infarction and death during the hospitalization morve than treatment with aspivin
alone (15)2”

Identifying Completed Studies

Systematic reviews are based on a comprehensive and unbiased search for completed
studies. The search should follow a well-defined strategy established before the results
of the individual studies are known. The process of identitying studies for potential
inclusion in the review and the sources for finding such articles should be explicitly
documented before the study. Searches should not be limited to MEDLINE, which
includes only about half of all published English-language clinical research studies
and often does not list non-English-language references. Depending on the research
question, other electronic databases such as AIDSLINE, CANCERLIT, and EMBASE
can be included, as well as manual review of the bibliography of relevant published
studies, previous reviews, evaluation of the Cochran Collaboration database, and
consultation with experts. The search strategy should be clearly described so that
other investigators can replicate the search.

Criteria for Including and Excluding Studies

The protocol for a systematic review should provide a good rationale for including
and excluding studies, and these criteria should be established & priori. Criteria for
including or excluding studies from meta-analyses typically designate the period during
which studies were published, the population that is acceptable for study, the disease
or condition of interest, the intervention to be studied, whether blinding is required,
acceptable control groups, required outcomes, maximal acceptable loss to follow-up,
and minimal acceptable length of follow-up. Once these criteria are established, each
potentially eligible study should be reviewed for eligibility independently by two or
more investigators, with disagreements resolved by another reviewer or by consensus.
When determining eligibility, it may be best to blind reviewers to the date, journal,
authors, and results of trials.

Published systematic reviews should list studies that were considered for
inclusion and the specific reason for excluding a study. For example, if 30 potentially
eligible trials are identified, these 30 trials should be fully referenced and a reason
should be given for each exclusion.
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Collecting Data from Eligible Studies

Data should be abstracted from each study in a uniform and unbiased fashion. Gen-
erally, this is done independently by two or more abstractors using predesigned
forms that include variables that define eligibility criteria, design features, the popula-
tion included in the study, the number of individuals in each group, the intervention
(for trials), the main outcome, secondary outcomes, and outcomes in subgroups. The
data abstraction forms should include any data that will subsequently appear in the
text, tables or figures describing the studies included in the systematic review, or in
tables or figures presenting the outcomes. When the two abstractors disagree, a third
abstractor may settle the difference, or a consensus process may be used. The process
for abstracting data from studies for the systematic review should be clearly described
in the manuscript.

The published reports of some studies that might be eligible for inclusion in a
systematic review may not include important information, such as design features, risk
estimates, and standard deviations. Often it is difficult to tell if design features such
as blinding were not implemented or were just not described in the publication. The
reviewer can sometimes calculate relative risks and confidence intervals from crude
data presented from randomized trials, but it is generally unacceptable to calculate
risk estimates and confidence intervals based on crude data from observational studies
because there is not sufficient information to adjust for potential confounders. Every
effort should be made to contact the authors to retrieve important information that
is not included in the published description of a study. If this necessary information
cannot be calculated or obtained, the study findings are generally excluded.

Presenting the Findings Clearly
Systematic reviews generally include three types of information. First, important
characteristics of each study included in the systematic review are presented in tables.
These often include the study sample size, number of outcomes, length of follow-up,
characteristics of the population studied, and methods used in the study. Second, the
review displays the results of the individual studies (risk estimates, confidence intervals
or Pvalues) in a table or figure. Finally, in the absence of significant heterogeneity (see
below), the meta-analysis presents summary estimates and confidence intervals based
on the findings of all the included studies as well as sensitivity and subgroup analyses.
The summary effect estimates represent a main outcome of the meta-analysis
but should be presented in the context of all the information abstracted from the
individual studies. The characteristics and findings of individual studies included in the
systematic review should be displayed clearly in tables and figures so that the reader
can form opinions that do not depend solely on the statistical summary estimates.

Meta-Analysis: Statistics for Systematic Reviews

o Summary effect estimate and confidence interval. Once all completed studies
have been identified, those that meet the inclusion and exclusion criteria have
been chosen, and data have been abstracted from each study, a summary estimate
(summary relative risk, summary odds ratio, etc.) and confidence interval may be
calculated. The summary effect is essentially an average effect weighted by the
inverse of the variance of the outcome of each study. Methods for calculating
the summary effect and confidence interval are discussed in Appendix 13.1. Those
not interested in the details of calculating mean weighted estimates from multiple
studies should at least be aware that different approaches can give different results.
For example, recent meta-analyses of the effectiveness of condoms for preventing
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heterosexual transmission of HIV have given summary estimates ranging from 80%
to 94% decrease in transmission rates, although they are based on the results of
almost identical sets of studies (16,17).

o Heterogeneity. Combining the results of several studies is not appropriate if the
studies differ in clinically important ways, such as the intervention, outcome,
controls, blinding, and so on. It is also inappropriate to combine the findings if
the results of the individual studies differ widely. Even if the methods used in the
studies appear to be similar, the fact that the results vary markedly suggests that
something important was different in the individual studies. This variability in the
findings of the individual studies is called heterogeneity (and the study findings are
said to be heterogeneous); if there is little variability, the study findings are said to
be homogeneous.

How can the investigator decide whether methods and findings are similar
enough to combine into summary estimates? First, he can review the individual
studies to determine if there are substantial differences in study design, study popu-
lations, intervention, or outcome. Then he can examine the results of the individual
studies. If some trials report a substantial beneficial effect of an intervention and
others report considerable harm, heterogeneity is clearly present. Sometimes, it is
difficult to decide if heterogeneity is present. For example, if one trial reports a
50% risk reduction for a specific intervention but another reports only a 30% risk
reduction, is heterogeneity present? Statistical approaches (tests of homogeneity)
have been developed to help answer this question (Appendix 13.1), but ultimately,
this requires judgment. Every reported systematic review should include some
discussion of heterogeneity and its effect on the summary estimates.

Assessment of Publication Bias

Publication bias occurs when published studies are not representative of all studies
that have been done, usually because positive results tend to be submitted and
published more often than negative results. There are two main ways to deal with
publication bias. Unpublished studies can be identified and the results included in
the summary estimate. Unpublished results may be identified by querying investigators
and reviewing abstracts, meeting presentations, and doctoral theses. The results of
unpublished studies can be included with those of the published trials in the overall
summary estimate, or sensitivity analyses can determine if adding these unpublished
results substantially changes the summary estimate determined from published results.
However, including unpublished results in a systematic review is problematic for
several reasons. It is often difficult to identify unpublished studies and even more
difficult to abstract the required data. Frequently, inadequate information is available
to determine if the study meets inclusion criteria for the systematic review o