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Abstract. We present a review of methods for increasing discrimination between efficient DMUs in Data
Envelopment Analysis. These methods were classified into two groups: those that incorporate a priori
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Introduction

Since the appearance of Data Envelopment Analysis [5], this methodology has been
applied in real life studies, revealing some drawbacks, amongst which we can highlight:

(a) lack of discrimination among efficient DMUs that occurs when the number of DMUs
is small in comparison with the total number of variables in the analysis;

(b) unfitness of the weighting scheme, which frequently can be unreal, giving a big
weight to variables with less importance or giving a small (or zero) weight to impor-
tant variables;

(c) multiple optimal solutions for the weighting scheme of extreme efficient DMUs.

This review was made with emphasis on the first problem (a) bearing in mind that it is
closely related to problems (b) and (c). Some of the methodologies reviewed are not
designed specifically for the purpose of increasing discrimination, this being rather a
side-effect.

We classified the methodologies into two groups: the first group comprises those
methods that incorporate a priori information provided by a decision-maker or expert
into the model, while the second group of methods does not require such a priori infor-
mation.

Within the first group we considered three streams: weight restrictions, prefer-
ence structure and Value Efficiency Analysis. Within the second group we present three
methodologies: super efficiency, cross-evaluation, and a multiple objective linear pro-
gramming approach.
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The work is organized as follows: in section 1, we introduce the methods with a pri-
ori information: weight restrictions, preference structure and Value Efficiency Analysis.
In section 2, we view the three methodologies that do not require a priori information:
super efficiency, cross-evaluation and a multiple objective model. The last section, con-
sists of a summary and future directions.

1. Methods with a priori information

We consider that the suitability of DEA results often depends on decision-maker prefer-
ences. The information provided by a decision-maker or an expert about the importance
of the variables can be introduced into the DEA model. We review three methods de-
voted to incorporating a priori information or value judgements in DEA: weight restric-
tions, preference structure and Value Efficiency Analysis.

1.1. Weight restrictions

The weight flexibility has been considered one of the main advantages of DEA. Total
weights flexibility, allowed by classical DEA models, is also important to identify the
inefficient DMUs that have low performance, even when choosing their best conceivable
weights.

However, there is a drawback: important factors could be ignored in the analysis,
which happens when giving a zero weight to the corresponding variable or when the
weight found is in contradiction with a priori knowledge, according to Allen et al. [1].
This deficiency in DEA has been overcome by weight restriction as a kind of value
judgement procedure. The main objective of the weight restrictions methods is to es-
tablish bounds within which the weights can vary, preserving some flexibility or some
uncertainty about the real value of the weights. Given that these restrictions are intro-
duced in the original problem, the efficiency scores obtained with the new formulation
will be less than or equal to the scores obtained with the original formulation. The
number of efficient DMUs is reduced, improving discrimination. This by-product of
weight restrictions is emphasized here, considering that the objective of this work is to
identify how several methods can contribute to improving discrimination among DMUs.
Pedraja-Chaparro et al. [22] and Allen et al. [1], present a review with several methods
to do this, which we shall reproduce in a concise form.

1.1.1. Direct weight restrictions
This approach was initially developed by Dyson and Thanassoulis [11], used by
Beasley [4] and generalized by Roll, Cook and Golany [23]. In this approach the re-
strictions are of the type:

αi � vi � βi for input i,

αr � ur � βr for output r.
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As we can see, the restrictions impose numerical limits on the weights. The purpose
of these limits is to ensure that some or all variable inputs and outputs would not be
overestimated or ignored in the analysis. The values of the bounds depend on the context
and on the information provided by an expert. Such bounds could be established only
after analyses of the resulting weights of the original DEA problem, i.e., the problem
was performed without restrictions. It is important to note that these models produce
different efficiency scores depending on the orientation (input or output) of the model,
even when using constant returns to scale.

To apply this type of weight restrictions, we must run the DEA classic model to
determine the weight dimensions for each variable (because it depends on the magnitude
of the variable). Only after the analysis of the weights for all variables and all DMUs,
are the restrictions introduced. If the model results are unfeasible, we can relax the
restrictions until the unfeasibility disappears.

1.1.2. The Cone Ratio model
The Cone Ratio Model was developed by Charnes et al. [6,7] and used by Kornbluth [20]
among others. If the weights selected by the original formulation are not consistent with
the objectives of some DMUs, then DEA could have overestimated the efficiency score
of these DMUs. Applying restrictions of the Cone Ratio kind, one can better determine
these weights, and obtain much more consistency with the objectives. This method arose
from the observation of the space of the weights v and u.

Let V = ATα, where AT = (a1, . . . , ak) ∈ �m×k and let αT = (α1, . . . , αk) be the
polyhedral cone, where aj are the direction vectors (j = 1, . . . , k). In the same way, we
can define the polyhedral cone for u as: U = BTβ, where BT = (b1, . . . , bn) ∈ �m×n
and βT = (β1, . . . , βn).

With this information we can transform the data in the CCR model to include the
Cone Ratio restrictions. Let the CCR model be:

max uTy0

subject to vTx0 = 1,

−vTX + uTY � 0,

v ∈ V,
u ∈ U,

where V = �m+ and U = �s+ are the positive orthants in the m and s space, respectively.
Then, using the definition of the V and U cones, we can write the model in terms of
variables α and β,

max βT(By0)

subject to αT(Ax0) = 1,

−αT(AX)+ βT(BY ) � 0,

α � 0,

β � 0.
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And the dual model can be expressed as:

min θ
subject to θ(Ax0)− (AX)λ � 0,

(By0)− (BY )λ � 0,
λ � 0.

In this way, the Cone Ratio model can be treated as a CCR model that evaluates the same
DMUs with transformed data [8]. This allows us to use softwares that do not have the
option to incorporate weight restrictions. We can also choose a DMU as a standard and
use its weights to limit the weights range of other DMUs. Implementing Cone Ratio
models always results in at least one efficient DMU.

One disadvantage of this data transformation is that the results must be transformed
back into the original form in order to interpret the results.

1.1.3. Assurance Region
Thompson et al. [29] developed the concept of Assurance Regions – AR, introducing ho-
mogeneous linear restrictions. The AR approach allows successive incrementation of an
assurance region until a refinement is reached in the efficiency levels that is satisfactory
to the decision-maker or expert. The AR restrictions are of the form:

αru1 � ur � βru1,

αivi � vi � βiv1,

where the value for α and β must be provided by the expert. This AR is called the
Assurance Region I, or simply ARI.

Clearly, as in the previous cases, the bound values for AR are dependent on the
levels of the inputs and outputs, i.e., they are sensitive to the scale measurement. We
also notice that ARI is a special case of Cone Ratio. Thus, this will always result in at
least one efficient DMU.

The Assurance Region II – ARII was also proposed, which imposes restrictions
on the ratio between input and output weights. It was shown that ARII could make
the problem unfeasible. In this case there is no certainty that there will be at least one
efficient DMU.

1.1.4. Virtual input and output restrictions
The previous approaches imposed weight restrictions irrespective of the input or output
levels used by the DMU. Weights were dependent on these levels, rendering the task
of establishing a relationship among the several weights (with different scale of mea-
surement) difficult. We shall now consider the contribution of a variable to the total
efficiency as determined by its level (of input or output) times the weight. Thus, we can
also consider a restriction on the virtual variable (weight times variable level) instead of
directly on the weight.
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Wong and Beasley [4] explore the use of such restrictions. Instead of restricting
the weights directly, we can restrict the proportion of output r to the total virtual output
of DMU j . So, for an output r we have:

αr � uryrj∑s
r=1 uryrj

� βr,

where
∑s

r=1 uryrj represents the total virtual output of the DMU j . Analogous restric-
tions can be obtained for the virtual inputs.

Since the implementation of this kind of restriction is not direct, Wong and Beasley
suggested many modifications:

• To add this restriction only to the DMU being evaluated. Thus, each DMU is analyzed
with two additional restrictions.

• To add this restriction to all DMUs. Thus, each DMU is analyzed with 2N addi-
tional restrictions, where N is the total number of DMUs. This is computationally
expensive.

• To add this restriction to the proportion of the total virtual output that the “average”
DMU gives to output r. Each DMU is then analyzed with two additional restrictions:

φr �
ur

∑N
j=1 (yrj /N)∑s

r=1 ur(
∑N

j=1 (yrj /N))
� ψr,

where
∑N

j=1 (yrj /N) represents the level of the rth output of the “average” DMU.

We can note that, depending on the orientation of the model, the denominator could
be necessary or not. For instance, in the input orientation, since the weighted sum of the
inputs is equal to 1, the denominator is unnecessary.

This kind of weight restrictions model avoids the necessity of previously running
the DEA classic models.

In three kinds of weights restrictions analyzed, the resulting efficiency scores,
whether these restrictions are applied to the virtual inputs or to the virtual outputs, are
sensitive to the model orientation (input or output).

1.2. Preference structure model

Based on the Russell measure (Färe and Lovell (1979)) or the non-radial efficiency
measure, Zhu [33] presented some models to introduced a preference structure in DEA
models, using weights to do so. In this way, the target for inefficient DMUs is based
on this preference structure given by the decision-maker. The target obtained is more
meaningful than the usual target obtained for classic DEA models as a result of an
equi-proportional reduction/increment of inputs/outputs. This model also provides an
efficiency score. Zhu proposed three models, one with input orientation, the other with
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output orientation and the following model that combines both input and output orienta-
tion:

maximize
s∑
r=1

w+
r φr −

m∑
i=1

w−
i ϕi

subject to
n∑
j=1

λjyrj − s+r = φryrj0 , r = 1, . . . , s,

n∑
j=1

λjxij + s−i = ϕixij0 , i = 1, . . . , m,

ϕi, φr free ∀i, r, s−i , s
+
r � 0, ∀i, r, ε > 0,

where
s∑
r=1

w+
r −

m∑
i=1

w−
i = 1.

In this model, the reductions in inputs and increments in outputs are considered individ-
ual for each variable and a weight for every factor is given such that the sum of weights
of the outputs minus the sum of the weights of the inputs is equal to one. This set of
weights is called the expert’s preference structure. The resulting value of the objective
function is the efficiency score for the DMU being analyzed.

We emphasize that ϕi and φr are set free, which indicates that inputs can increase
and outputs can decrease. This can be preferable from a managerial point of view, for
instance when the target implies redundancy of workers and this cannot be done without
impairing the public image.

This model can be tested, interactively, trying different weight sets. Although this
problem was not addressed to specifically improve the discriminating power of DEA, the
inclusion of a preference structure has, as a consequence, a better differentiation among
efficient units, once ϕi and φr are set free.

The input orientation of this model is formulated by changing the objective func-
tion of the above model into the following one:

minimize
∑m

i=1w
−
i ϕi∑m

i=1w
−
i

subject to
n∑
j=1

λjyrj − s+r = yrj0, r = 1, . . . , s,

n∑
j=1

λjxij + s−i = ϕixij0 , i = 1, . . . , m,

ϕi free ∀i, r, s−i , s+r � 0, ∀i, r, ε > 0.

A DMU j0 is efficient if the optimal value of the objective function is equal to one
and all the s+∗

r are equal to zero. Given that the factor of reduction for each input is
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free, sometimes ϕi* can be greater than one, depending on the weights applied. Non-
discretionary variables can be treated in this model by setting their weight equal to zero.

Output orientation can be likewise formulated.
As stated by the author, the preference structure approach provides a way of pre-

venting DMUs from becoming efficient due to unrealistic weightings. Also, further
discrimination is obtained, based on the preference structure specified by the decision-
maker, as a result of a non-radial movement toward the efficient frontier.

1.3. Value efficiency analysis

This method was developed by Halme et al. [14] as a way of incorporating the decision-
maker’s value judgements and preferences into the analysis, using two stages. The
first stage comprises an identification of the decision-maker’s Most Preferred Solution
(MPS), a solution that he/she prefers above all the others in the efficient frontier, through
a multiple objective model. The second stage consists of the frontier determination based
on the MPS chosen. The MPS can be defined as the point where the decision-maker’s
value function (unknown) assumes its maximum when the search ends.

The foundations of the method arise from the work of Joro et al. [15], where a
structural comparison was made between classical DEA models and the Reference Point
Approach in Multiple Objective Linear Programming. According to Halme et al. [14],
this MPS can be determined using the following multiple objective linear program:

max Uλ =
[
Y

−X
]
λ

subject to λ ∈ $ = {
λ | λ ∈ �n+e, Aλ � b

}
.

As we can see, there is an objective function that is the linear combination of the variable
(input and output) for all DMUS. And the restriction, in practice becomes &λ = 1, with
λ > 0 for the DMUs, i.e., a convex envelopment is formed, from which the MPS is
chosen.

This multiobjective model has no single solution, for it depends on an expert or
decision-maker to determine which solution is more appropriate. The purpose is to help
the expert to evaluate the value of each vector u = [y −x]T ∈ T , to identify the MPS,
that is a (virtual or existing) DMU in the efficient frontier with input/output levels that
he/she prefers. We assume that he/she has a pseudo concave, strictly increasing (i.e.,
strictly increasing in y and strictly decreasing in x) value function v(u), and attains a
(local) maximum at v(u∗), u∗ = [y∗ −x∗]T ∈ �m+p with his/her MPS. It is advisable to
use an interactive system to help in the selection process. The authors adopted the Pareto
Race interface [16], which is implemented in the VIG software, to accomplish this task.

The aim of the Value Efficiency Analysis is to evaluate each DMU with respect to
an indifference contour that passes through the MPS. Since we do not know the function,
we approximate this contour using all possible tangent hyperplanes passing through the
MPS. These hyperplanes define a new “efficient frontier”, and the resulting efficiency
scores of this new frontier are called “value efficient”.
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Once the MPS is chosen, the formulation to determine the value efficiencies for
each DMU is:

max σ + ε(1Ts+ + 1Ts−
)

subject to Yλ− σwy − s+ = gy,

Xλ+ σwx + s− = gx,

&λ = 1,

s+, s− � 0,

ε > 0 (non-Archimedian),

λj � 0, if λ∗
j = 0, j = 1, . . . , n,

where the MPS is: y∗ = Yλ∗, x∗ = Xλ∗. The variables associated with the MPS are
free.

The result we obtain is that only the λs associated to the DMUs, which compose
the MPS, are not equal to zero. Considering the BCC model, wx = gx = x0 and
wy = gy = y0.

This model can be modified changing the equivalences for wx , gx , wy and gy ,
and the restriction &λ = 1 to consider input, output and combined orientation for the
CCR model; input, output and combined orientation for the BCC model and a general
combined model [18].

Further developments of this approach incorporate weight restrictions [13] and sit-
uations where not one but several MPS are desirable to the decision-maker [17]. Also, an
application to academic research evaluation was made by Korhonen et al. [19]. Consid-
erations about practical aspects of Value Efficiency Analysis can be found in Korhonen
et al. [17].

As stated previously for the other methods that incorporate a priori information,
after the inclusion of preference information, a better discrimination among DMUs is
obtained, whether this was the main goal or not.

2. Methods that do not require a priori information

There are disadvantages in the methods that incorporate a priori information, concerning
subjectivity:

• The value judgements, or a priori information can be wrong or biased, or the ideas
may not be consistent with reality.

• There may be a lack of consensus among the experts or decision-makers, and this can
slow down or adversely affect the study.

Indeed, one may want to preserve the DEA spirit in the sense of not including a priori
information. The methods we shall now describe were developed to avoid or minimize
the intervention of the expert and, at the same time, to increase discrimination in DEA.
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2.1. Super efficiency

The main idea of this method, as introduced by Andersen and Petersen [2], is to compare
the DMU being evaluated with a linear combination of other DMUs of the sample while
excluding the observations of the DMU being evaluated. This only affects the efficiency
scores of the extreme efficient DMUs. In this case, these DMUs can obtain an efficiency
score greater than one. This approach provides a ranking of efficient DMUs similar to
the ranking of inefficient DMUs.

The proposed CRS input oriented model is:

minimize θ − ε(1Ts+ + 1Ts−
)

subject to θXj =
n∑
k=1
k =j

λkXk + s−,

Yj =
n∑
k=1
k =j

λkYk − s+,

λk, s
+, s− � 0,

whereXj is anm-dimensional input vector and Yj is an s-dimensional output vector. θ is
a scalar, which allows equi-proportional reductions of all inputs. ε is a non-infinitesimal
Archimedian and 1T is a T -dimensional vector of 1.

The scores of inefficient DMUs remain as they were in the classical CRS model,
since exclusion of each of these DMUs does not alter the efficient frontier. This solution
has the same interpretation that Farrell measured where the DMU being analyzed can
increase its input vector proportionally up to the factor θ and remain efficient, but will
be dominated by the combination of DMUs that compose the efficient frontier, if the
proportional increase of the input vector exceeds θ . All efficient DMUs are assigned
values in an analogous way. The model can be easily adapted for the output orientation
and to consider returns to scale.

This methodology has the advantage of allowing discrimination among efficient
DMUs with the existence of efficiency scores greater than one, and the establishment of
a ranking for the units. However, it does not solve the problem of unreal weights.

On the other hand, Thrall [30] and Zhu [34] observed unfeasibility in the super
efficiency model, Dulá and Hickman [10] pointed out that unfeasibility shows that the
DMU is efficient, though not lending itself to ranking, and it is useful in locating end-
point positions of the extreme efficient DMUs. Later, Seiford and Zhu [24] provided
necessary and sufficient conditions for unfeasibility of the super-efficiency DEA models
and also investigated the unfeasibility when returns to scale occurs.

It is worth noting that the super efficiency approach can be used in a sensitivity
analysis, a topic that was widely covered by Zhu [34].
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2.2. Cross-evaluation

Another method to increase discrimination among efficient DMUs is by using cross-
evaluation, initially developed by Sexton [25]. The main idea is to use DEA in a peer-
evaluation instead of a self-evaluation which is calculated by the classic DEA models.
A peer-evaluation means that each DMU is evaluated according to the optimal weight-
ing scheme of other DMUs. The mean of these efficiencies is the “cross-evaluation”.
Then the evaluation will be the mean of the efficiencies of a DMU calculated with the
weighting schemes, which we can call the “points of view” of other DMUs.

To accomplish this, we use the efficiency scores calculated according to the classic
DEA models and the optimal weighting scheme used to obtain such scores. In the DEA
models, multiple optimal solutions can exist, and can cause the cross-efficiencies to vary
(because one scheme can be favorable to one DMU and not favorable to another, or vice
versa). We therefore use a secondary objective function.

The idea is to obtain a weighting scheme that would be optimal in the initial model
(classic DEA model), but have, as a secondary objective, minimization of the cross-
efficiencies of the other DMUs. This formulation is called the “aggressive formulation”.
On the other hand, the weighting scheme chosen can be directed to maximizing the
cross-efficiencies of other DMUs. This formulation is called the “benevolent formula-
tion”.

To see how this is done, we define:

Eks =
∑

i ukiysi∑
j vkj xsj

, (1)

as the cross-efficiency of DMU s using the weighting scheme of DMU k. Thus, Ekk
would be the efficiency score for DMU k using its own weighting scheme, i.e., the
efficiency score calculated by the CCR model. This efficiency would be called “standard
efficiency”.

The aggressive formulation for the secondary objective function can have three
forms.

In the simplest approach, the choice of the weighting scheme that provides the
maximum efficiency obtained in the first step (classic model) for a DMU k, would at-
tempt to minimize the mean of the cross-efficiencies of others DMUs:

minimize (n− 1)Ak =
∑
s =k

Eks =
∑
s =k

∑
i ukiysi∑
j vkj xsj

.

This objective function leads us to a fractional non-linear program, which cannot be
solved by the traditional methods of linear programming.

A substitution was proposed for the previous objective function, which attempts to
minimize the sum of the ratios of all other DMUs. This alternative uses the weighted
sum of the numerator of each fraction minus the weighted sum of the denominator of the
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previous objective, where the weighting scheme used to calculate these weighted sums
is the scheme of DMU k that we are attempting to find. This gives:

minimize Bk =
∑
s =k

( ∑
i

ukiysi −
∑
j

vkj xsj

)

=
∑
i

(
uki

∑
s =k

ysi

)
−

∑
j

(
vkj

∑
s =k

xsj

)
.

Doyle and Green [9] suggested another alternative for the objective function Ak similar
to the objective function Bk:

minimize Ck =
∑

i (uki
∑

s =k ysi)∑
j (ukj

∑
s =k xsj )

.

We attempt to minimize the weighted sum of the outputs of the composite DMU divided
by the weighted sum of the inputs of the composite DMU. This is also a fractional non-
linear program. However, using the standard transformation given in Cooper, Seiford
and Tone [8], we can restate this as the following linear program.

minimize Bk

subject to
∑
j

vkj xkj = 1, (2)

∑
i

ukiyki − Ekk
∑
j

vkj xkj = 0, (3)

Eks � 1, ∀s = k, (4)

uki, vkj � 0. (5)

Then, considering equation (1), the formulation with the objective function Bk is:

minimize Bk =
∑
i

(
uki

∑
s =k

ysi

)
−

∑
j

(
vkj

∑
s =k

xsj

)

subject to
∑
j

vkj xkj = 1,

∑
i

ukiyki − Ekk
∑
j

vkj xkj = 0,

∑
i

ukiysi −
∑
j

vkj xsj � 0, ∀s = k,

uki, vkj � 0,

where the decision variables are uki and vki .
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For the objective function Ck, then:

minimize Ck =
∑

i (uki
∑

s =k ysi)∑
j (vkj

∑
s =k xsj )

.

Ck must be linearized by setting the denominator equal to 1. So we have:

minimize
∑
i

(
uki

∑
s =k

ysi

)

subject to
∑
j

(
vkj

∑
s =k

xsj

)
= 1, (6)

∑
i

ukiyki − Ekk
∑
j

vkj xkj = 0, (7)

Eks � 1, ∀s = k, (8)

uki, vkj � 0. (9)

Then the final model for objective function Ck is:

minimize
∑
i

(
uki

∑
s =k

ysi

)

subject to
∑
j

(
vkj

∑
s =k

xsj

)
= 1,

∑
i

ukiyki − Ekk
∑
j

vkj xkj = 0,

∑
i

ukiysi −
∑
j

vkj xsj � 0, ∀s = k,

uki, vkj � 0.

Later works have found that the objective functions Bk and Ck give very similar results,
which is why only one of these objective functions is used, generally Ck.

Once the weighting scheme and the cross-efficiencies have been found, we con-
struct a matrix called the “cross-efficiencies matrix”, shown in table 1, where Ekk is the
efficiency score calculated by the classic DEA model, Eks is the efficiency score for the
DMU s calculated using the weighting scheme obtained for the DMU k, and ek is the
mean cross-efficiency of the DMU k. Sometimes this ek is calculated in the following
way:

1

n

∑
∀s
Esk = ek, (10)
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Table 1

1 2 3 4 5 . . . n

1 E11 E12 E13 E14 E15 . . . E1n
2 E21 E22 E23 E24 E25 . . . E2n
3 E31 E32 E33 E34 E35 . . . E3n
4 E41 E42 E43 E44 E45 . . . E4n
5 E51 E52 E53 E54 E55 . . . E5n

. . . . . . . . . . . . . . . . . . . . . . . .
n En1 En2 En3 En4 En5 . . . Enn

e1 e2 e3 e4 e5 . . . en

i.e., the mean of the efficiencies scores of column k of the cross-efficiencies matrix,
allowing self-evaluation of DMU k. Sometimes it is calculated without the diagonal of
the matrix:

1

n− 1

∑
s =k

Esk = e′k. (11)

Besides using this measure as a complement or alternative to the standard efficiency
in order to distinguish among efficient DMUs, we can also distinguish DMUs with the
greatest difference between the standard efficiency and mean cross-efficiency, which can
be done by:

Mk = (Ekk − ek)

ek
,

where ek is calculated according to (11).
DMUs with greater Mk are called “mavericks” by Doyle and Green. When an effi-

cient DMU in the classic DEA model has a highMk this is called a “false positive” [28],
and shows that this DMU obtains an efficiency score just by using inappropriate weights.

This method has the advantage of not requiring a priori information, but it is
very complex, because a second model must be solved to calculate the mean cross-
efficiencies. Besides, any alteration in the set of DMUs, which involves inclusion or
exclusion of a DMU, can alter the final cross-efficiency, since it is a mean. This is why
this method is only appropriate for cases where changes in the set of DMUs are unlikely.
On the other hand, it could happen that not all the possible combinations of weighting
schemes would be studied. This happens when most of the possible weighting schemes
just explore a few variables and do not consider the others. Depending on the quantity
of variables, this task could be very complicated. Anderson et al. [3] applied this ap-
proach in an study of efficiency measurement of alternate machine component grouping
solutions, in an attempt to increase discrimination among efficient DMUs. Also, Green
et al. [12] used cross-evaluation to rank the candidates in a preferential election.
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2.3. A multiple objective approach

The researchers Xiao-Bai Li and Gary R. Reeves [21] presented a multiple objective ap-
proach that they called Multiple Criteria Data Envelopment Analysis – MCDEA, which
focuses on solving two key problems presented in section 1: lack of discrimination and
inappropriate weighting schemes. As mentioned, the first problem happens when the
number of DMUs is smaller in comparison with the total number of inputs and outputs,
causing classic models to identify too many DMUs as efficient. The second problem
happens when an efficient DMU picks out a few large weights attached to some vari-
ables, and very small weights (nearly zero) to the remaining variables, thus giving rise
to unrealistic weighting schemes.

These two problems are related and frequently occur simultaneously. The exces-
sive number of variables in comparison to the total of DMUs, considering multipliers
DEA problem, allows each DMU to select a few variables to attach weights, and does
not consider all the others, in order to achieve efficiency.

Regarding the two problems mentioned, the authors included other relative effi-
ciency measures. Two other objective functions are included in the classical DEA model.
Thus, DMUs are evaluated in the Multiobjective Linear Programming context.

Let us begin by considering the classic DEA CCR model to evaluate the efficiency
of DMU0:

max h0 =
s∑
r=1

uryrj0

subject to
m∑
i=1

vixij0 = 1,

s∑
r=1

uryrj −
m∑
i=1

vixij � 0, j = 1, . . . , n,

ur, vi � 0, ∀r, i.
DMU0 is efficient if and only if h0 = 1. Defining the variable d0 = 1 − h0 as the
deviation variable for the DMU0, we can rewrite the objective function as: min d0, which
is equivalent to the objective function of the CCR model, dj being the deviation variable
for the j th DMU.

In this model, the DMU0 is efficient if and only if d0 = 0, which means h0 = 1. If
the DMU0 is not efficient its efficiency score would be h0 = 1 − d0. Thus, we can say
that the classic DEA model minimizes the inefficiency of a DMU, measured by d0, such
that the weighted sum of outputs is less than or equal to the weighted sum of the inputs
for each DMU. Taking advantage of other efficiency measures (mentioned in [25,27]),
Li and Reeves introduce two other objective functions. The second objective function
seeks minimization of the maximum deviation, for which the restriction included in the
new formulation, M − dj � 0 (j = 1, . . . , n), makes M the maximum deviation. The
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third objective function aims at the maximization of the deviation of all DMUs. All three
objective functions are based on the deviation variable. The resulting problem is:

min d0

(
or max h0 =

s∑
r=1

uryrj0

)

minM

min
n∑
j=1

dj

subject to
m∑
i=1

vixij0 = 1,

s∑
r=1

uryrj −
m∑
i=1

vixij + dj = 0, j = 1, . . . , n,

M − dj � 0, j = 1, . . . , n,

ur, vi � 0, ∀r, i, j.
Efficiency score for the DMU0 is 1 − d0, whatever objective function we focus on.

Using this model, we can find a set of non-dominated# solutions (also called ef-
ficient solutions) in opposition to the linear programming models in which there is an
optimal solution, like in classic DEA CRS models. In this set of efficient solutions to
the above model, we can find solutions that optimize each individual objective. For in-
stance, observing the first objective function in the above model, we find that it results
in the same optimal solution as the classic DEA model. The second objective function
displays DMU0 as mini-max efficient, if the value of d0 corresponding to the solution
that minimizes this function is zero. This only happens if all DMUs lie on the same
efficient hyperplane, which is not a realistic situation. The same is true when we attempt
to get a mini-sum efficient DMU, requiring every DMU j to have a null dj . In practice,
attaching some importance to these latter two objective functions prevents DMU0 from
being efficient, choosing its best unrealistic mix of weights.

Therefore, the inclusion of the two additional objective functions does improve
discrimination in DEA. Applications made by the authors showed that, in fact, the uti-
lization of this multiple objective linear program presents advantages in improving dis-
crimination over cross-evaluation and weight restrictions.

Concerning the computational issues, despite the complexity of multiple objective
problems, this model presents advantages over the use of problems with a single ob-
jective. First, it avoids the problem of multiple optimal solutions, which appears when
solving the classic DEA models for extreme efficient DMUs.

The total number of non-dominated solutions associated to a DMU generally re-
flects the stability of the efficiency scores of the DMU relative to changes in the ef-
ficiency criteria, that is, the greater the quantity of solutions, the more sensitive the
efficiency scores of a DMU are to changes in the criteria.
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In the work performed by Li and Reeves, the software ADBASE by Steuer [26]
was used as a solution method, which provides the extreme points of the non-dominated
set of solutions. Also, an interactive approach can be used in which the user intervention
in the final choice of the solution can be of great help in the determination of the final
solution.

In conclusion, we need to mention that this method is considered within the group
that does not require a priori information but the selection of one solution among the set
can be seen as a way of including preferences. This is unlike the approach of Value Ef-
ficiency Analysis, where an MPS must first be chosen to determine the efficient frontier
and reach the final solution.

3. Conclusions

We presented a collection of methods that, as a purpose or a consequence, increase
discrimination in Data Envelopment Analysis. The methods were classified into two
groups, the first requiring a priori information to refine the analysis, the second not
requiring this information. In the development of this work we can verify that only the
methods from the second group were formulated specifically to improve discrimination
among DMUs.

They aimed to refine the analysis with the inclusion of value judgments, like the
weight restrictions and Value Efficiency Analysis, or to find alternative targets based on
the decision-maker’s preference structure like in the Zhu models, obtaining a non-radial
efficiency score.

Super efficiency was originally formulated to rank efficient DMUs to complement
the rank of inefficient DMUs. Cross-evaluation uses a peer evaluation to determine an
efficiency score, as an average of the efficiencies determined by all the other DMUs of
the analysis. This besides increasing discrimination, provides an interesting meaning,
considering a negotiation meeting among business partners in order to select criteria in
a decision-making process. Each agent makes a strictly rational assessment of the other
points of view, based on his own weights draw from a cross-evaluations DEA problem.
Comparing optimal mixes, one can anticipate agreements or heated arguments.

This, as well as the last approach, the multi-objective one, illustrates how distinc-
tively each of the methodologies presented regards the discrimination issue. Without
exhausting the plentiful diversity of DEA branches of research in existence nowadays,
which impact discrimination, we established discrimination as a framework for analyz-
ing the suitability of different methods.

As a matter of fact, future directions should explore the complementariness of
methods and appropriateness to the real cases as a way of overcoming DEA weaknesses.
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