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Abstract

The measurement of productive efficiency is an issue of great interest. Since Farrell (Farrell, M.J., 1957. Journal of
Royal Statistical Society, Series A 120, 253) implemented the first measure of technical efficiency, many researchers have
developed new measures or have extended the already existing ones. The beginning of Data Envelopment Analysis
(DEA) meant a new way of empirically measuring productive efficiency. Under some specific technologies, Farrell’s
measure was implemented giving rise to the first DEA models, CCR (Charnes, A., Cooper, W.W., Rhodes, E., 1978.
European Journal of Operational Research 2, 429) and BCC (Banker, R.D., Charnes, A., Cooper, W.W., 1984.
Management Science, 1078). The fact that these measures only account for radial inefficiency has motivated the de-
velopment of the so-called Global Efficiency Measures (GEMs) (Cooper, W.W., Pastor, J.T., 1995. Working Paper,
Departamento de Estadistica e Investigacion Operativa, Universidad de Alicante, Alicante, Spain). In this paper we
propose a new GEM inspired by the Russell Graph Measure of Technical Efficiency which avoids the computational
and interpretative difficulties with this latter measure. Additionally, the new measure satisfies some other desirable
properties. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The measurement of technical efficiency started
with the works of Debreu (1951) and Koopmans
(1951). Following them, Farrell (1957) imple-
mented the first measure of technical efficiency.
Later, Fare and Lovell (1978) pointed out some
difficulties with this measure which motivated the
development of new measures of technical effi-
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ciency. In their work of 1978, these authors axi-
omatically approached this issue by suggesting
some desirable properties that an ideal technical
efficiency measure should satisfy, and then pro-
posed a measure which satisfied them (it was later,
in Fare et al. (1983), when it was noted that this
measure does not satisfy homogeneity of degree
—1 in inputs). This measure was called the Russell
Input Measure of Technical Efficiency and was
extended to the multiple output case by Fare et al.
(1983). An output version, the Russell Output
Measure of Technical Efficiency, was similarly
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defined by Fire et al. (1985). They also defined the
Russell Graph Measure of Technical Efficiency
which extends the two previous ones in the sense
that it simultaneously accounts for the inefficiency
in both inputs and outputs. There are also some
graph versions of the Farrell measure. Fére et al.
(1985) defined two of them: the hyperbolic and the
generalized hyperbolic graph efficiency measures.
Recently, Briec (1997) has also proposed a new
graph-type extension of the Farrell measure. The
main difference between Farrell and Russell mea-
sures is that Farrell measures are radial, whereas
Russell ones are not, so they do not necessarily
agree in classifying the same subset of units as
efficient (in the particular case of DEA, they dis-
agree when a DMU on the frontier has nonzero
slacks). A comparative study of the performance
of these measures which also includes two other
measures can be found in Ferrier et al. (1994) and
De Borger and Kerstens (1996).

The development of measures of efficiency has
also been approached from the particular per-
spective of DEA. Initially, Farrell’s measure was
implemented in the LP problems which gave rise
to the first DEA models, the CCR (Charnes,
Cooper and Rhodes, 1978) and the BCC (Banker,
Charnes and Cooper, 1984). Due to their radial
nature, the efficiency scores obtained from these
models overstate efficiency when nonzero slacks
are present because they do not account for the
nonradial inefficiency of the slacks. In contrast to
these radial models, the additive model (Charnes et
al., 1985) accounts for all sources of inefficiency,
i.e., radial and nonradial inefficiency, both in in-
puts and in outputs. However, it does not directly
provide an efficiency measure. To sort out these
problems, several measures which consider all
types of inefficiency detected by a given DEA
model have been designed in the last few years,
and it is still an issue of great interest. In Cooper
and Pastor (1995) a complete revision with new
proposal of these measures, which they -call
“Global Efficiency Measures” (GEM), can be
found. Besides this, the authors list four basic
properties that such a measure should satisfy.

GEMs can be defined both for radial and for
nonradial DEA models. In this paper, we focus on
the latter possibility. Next, we refer to two GEMs

of this kind existing in the literature: the ‘“Measure
of Efficiency Proportions” (MEP) developed by
Banker and Cooper (1994) and the “Range Ad-
justed Measure” (RAM) of Cooper et al. (1998)
(see Appendix A for the expression of these mea-
sures). These two measures, together with the TDT
measure (Thompson and Thrall, 1994) which is
not a GEM, are the new approaches to inefficiency
measurement in DEA explained in Cooper and
Tone (1997).

MEP should be used after an optimal solution
of the additive or the invariant additive model is
obtained. Therefore, we may have different values
of this measure for the different alternate optima
(if any). This also happens to all GEMs not in-
cluded in the DEA model from which they are
computed. A way of avoiding this problem is to
include these GEMs as the objective of the models
used for their computation. The difficulty with this
including is that it usually gives rise to nonlinear
programming problems which are complicated to
solve, as in the case of MEP.

With these considerations in mind, we set two
main goals for the GEM we are going to develop: (1)
that it is well defined and (2) easy to compute. Ad-
ditionally, we want our measure to satisfy some de-
sirable properties, like the four basic ones listed by
Cooper and Pastor (1995) and, in addition, that it is
readily understood. RAM is an example of a measure
meeting all these requirements, so we will take it as a
reference to evaluate the behavior of our measure.

Aside from the mentioned approaches, the effi-
ciency measurement with DEA models has been
extended and enhanced in other directions. Some of
these developments involve incorporating judge-
ment or prior knowledge by restricting the range for
the multipliers: see, for instance, Charnes et al.
(1990) for the cone ratio model, Thompson et al.
(1990) for the assurance region approach and Dyson
and Thanassoulis (1988) which impose bounds on
individual multipliers. In other extensions stochastic
elements are introduced into the DEA models: see,
for example, Sengupta (1987) for efficiency mea-
surement in the stochastic case, Banker (1993) for
maximum likelihood estimation of inefficiency and
hypothesis testing and Land et al. (1993), Olesen
and Petersen (1995) and Cooper et al. (1996) for the
chance-constrained DEA approach.
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The paper unfolds as follows. In Section 2 we
define the new measure and show the way to
compute it by means of an LP problem. Section 3
contains a set of desirable properties that the new
measure satisfies. In Section 4 we include an ex-
ample to illustrate the performance of the measure.
Section 5 concludes.

2. A new DEA global efficiency measure

In this section we develop a new DEA efficiency
measure which is closely related to the Russell
measures. Assume that we have a set of n DMUs
with m inputs and s outputs,

{()(17 Y}) (xlja ey Xmjy Yijy e a)’kj)aj = 17 e 71/1},
where all inputs and outputs are positive. Let us
also assume that the production possibility set
T = {(X,Y)/Y can be produced from X} satisfies the
usual postulates of convexity, free disposability,
constant returns to scale and minimum extrapola-
tion (see Banker et al., 1984), as in the CCR model.

The Russell Graph Measure of Technical Effi-
ciency was defined as a combination of the Input
and Output Russell Measures of Technical Effi-
ciency (see Fire et al. (1985), pp. 160, 161), for the
corresponding formulations). For a given DMUj,
(Xp, Yo), the value of this measure can be obtained
from the following DEA formulation:

-

n
s.t. E )ij,-j < Hl'.xi(), i= 1, ey my

min R, (Xo, o) =

" (1)
Z;“jyrj = d 0, T=1,...,s,

=1

O<6i<17 ¢,>1 Vi,r,

A;=20, j=1,...n

In the formulation above the constraints 0 < 0; < 1
and ¢, > 1 are the requirements for dominance. In
addition, the convexity constraint 7, Z; =1
would be included if T were not assumed to satisfy
constant returns to scale.

Although R, is well defined in the sense we ex-
plained in Section 1 and it also satisfies the four

basic properties listed by Cooper and Pastor, there
are some difficulties with this measure. First, it
must be computed from a nonlinear programming
problem whose solution is not easily obtained.
And, secondly, it is not readily understood because,
as Cooper et al. (1998) note, R, is a weighted av-
erage of arithmetic and harmonic means. More-
over, this measure fails to satisfy other properties
we study in Section 3. Therefore, we propose an
alternative to this measure which, although closely
related, avoids the mentioned difficulties.

2.1. Definition of the new measure

Instead of combining the input and output
Russell measures in an additive way, as in Eq. (1),
we define our measure as the ratio between them.
That is, we separately average the input and the
output efficiency and then combine these two effi-
ciency components in a ratio form. The result is
the following model:

1 m
>0

. m 4
min  R.(Xp, ¥p) = i

5 2%

Z)/xl/ 0x107 i:17...,m, (2)
Z)"Jy’/ = ¢)'yi'0a r = 1,-..,S7

j=1

ngla d) 1 \V/Z r,

4;=20, j=1,.

On the analogy of Russell measures, we will call
R. the Enhanced Russell Graph Efficiency Mea-
sure. It can be interpreted as the ratio between the
average efficiency of inputs and the average effi-
ciency of outputs, which is a more straightforward
interpretation than that of R,. Moreover, R, may
be decomposed into an input component of aver-
age efficiency and an output one to better explain
the efficiency of the DMU being evaluated. If
(0),...,0,67,...,¢) is an optimal solution of
Eq (2), these components of efficiency are, re-
spectively, the numerator (1/m)3y " 0; and the
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denominator (1/s) >’ _, ¢ of R., which represent,
respectively, the proportion with respect to DMUj,
of used inputs and produced outputs (on average)
of a DMU (or virtual) on the efficient frontier.
There may be alternate optima of Eq. (2) which
would give rise to different decompositions of R.
into the input and output components. Obviously,
they all have the same associated R, value.

On the other hand, by means of the following
change of variables:

Xio — S5 S .
Q[:u:1,ﬂ7 i=1,...,m,
Xio Xi0
3)
o+ 5 o (
d) _y0+ 2 = 1+L0a r:17 S,
Yro Yro

it is easy to reexpress formulation (2) of R. in
terms of total slacks. The result is this new prob-
lem which provides an alternative expression of
the Enhanced Russell Measure connecting R, with
the usual GEMs:

1 _l m @
m 5= Xio
min R, (X, Yo) s
14ly s
s r=1 Yo
s.t Z)ij,-j =X0—S, i=1,...,m, (4)
=1
Z)‘jyrj = Jro +S:E)7 r= 17" S
=1
S0, 85 =0 Vi, r,

2,20, j=1,...,n

In a similar fashion, by means of Eq. (3) formu-
lation (1) can also be reexpressed as a problem
having the MEP as objective and the same set of
constraints as in Eq. (4)

Again, the convexity constraint would appear
in Egs. (2) and (4) if T were not assumed to satisfy
constant returns to scale.

Concerning the first main goal we set for our
measure in Section 1, we can say that R, is clearly
well defined in the sense we explained there, be-
cause it is the optimal value of the used DEA
model. Besides, it can be readily understood.

We remark that the objective in Eq. (4) was
proposed as a new global efficiency measure in

Cooper and Pastor (1995), although it was not in-
cluded as the objective of any model there. Besides,
the model used by Lovell et al. (1995) for their
macroeconomic evaluation of the OECD countries
coincides with Eq. (4) in the case of having a un-
ique constant input, as happened in that analysis.

2.2. Computational aspects

One of the most important advantages of R.
over R, is that the value of R, can be computed
more easily than that of R,. As explained before,
the implementation of both measures for the usual
DEA technologies gives rise to Eq. (1) for R, and
Eq. (2) or Eq. (4) for R.. Although these three
problems are nonlinear, Eq. (1) is more compli-
cated to solve than Eq. (2) or Eq. (4) because the
two latter are ordinary linear fractional program-
ming problems whose solution can be found
through a linear programming problem.

Following Charnes and Cooper (1962), let

-1
1 st

=[14+=) 22| |

ﬁ ( S;)’w)

to=Psg, i=1,....m, (5)

th=Psh, r=1...,s,

tu/:ﬁ/lﬁ jzla"'vn

Then, an optimal solution of the following
linear programming problem:

) 1 m =
min ff —— E £
m < = Xi0

st Bt Ztrﬂ 1,

r*l Yo

n
=1

o _
ty=0, r=1,...,s,

— By + Zﬂjyr/ -
=1

B =0,
107% 0, Vi,r,
w =0, j=1,...,n
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(which would include the constraint —f +
Zj:] w; = 0 associated to the convexity constraint
in Eq. (4) if VRS over the reference technology
were assumed) gives rise to an optimal solution of
Eq. (4). To be precise, we know that from any
optimal solution of Eq. (6) with >0 we can
obtain an optimal solution of Eq. (4) through the
change of variables (5). Moreover, the associated
optima are equal (see Charnes and Cooper, 1962).
Note, in addition, that no feasible solution of
Eq. (6) satisfies =0, so we can use Eq. (6) to
solve Eq. (4) and, in particular, to obtain the R,
values as the optimal values of Eq. (6). Thus, if we
are only interested in these efficiency scores and
not in the efficient projection of the DMUs being
evaluated, we do not even need to transform the
optimal solutions of Eq. (6) through Eq. (5).
Hence, we have a well-defined measure which,
as intended, improves the Russell Graph one with
respect to the computational and interpretative
difficulties. In the next section we study some de-
sirable properties which are satisfied by R..

3. Properties of R,

Fire and Lovell (1978) were the first ones who
proposed a set of desirable properties that an ideal
efficiency measure should satisfy, although these
were enunciated for the particular case of an input
oriented measure. Recently, Cooper and Pastor
(1995) listed similar requirements for the DEA
context and suggested some others. Next, we study
the properties which the proposed Enhanced
Russell Measure satisfies.

Theorem 1. The following is true for R.:
(i) 0 < R, < 1.
(ii) Re =1 <= DMU, being evaluated is
Koopmans-efficient.
(iii) R. is units invariant.
(iv) R, is strongly monotonic in inputs and in out-
puts.
(v) R satisfies the following relationships:
(v.1) If 8 > (<)1 then

1
Re(HX(h Y()) < ( = )éRe(Xm YO)

(v2) If ¢ < (>)1 then

Re(X07 ¢Y0) < ( = )d)Re(XO? YO)
(v.3) If 2> (<)1 then

| 1
Re(/LXO;IYO) <(= ))_2Re(X07 Y).
(vi) R. satisfies the following relationships with
respect to the radial efficiency measures 0 and ¢:
(vi.l) R. < 0.
(vi.2) R, < 1/¢.

Proof. See Appendix B.

Remark 1. Relations in parentheses in (v) are true
provided the resulting point belongs to the pro-
duction possibility set.

(i) to (iv) are the four basic properties listed by
Cooper and Pastor (1995). The first two mean that
the Enhanced Russell Measure is bounded by 0
and 1, reaching the top value of 1 if, and only if,
DMU;, is Koopmans-efficient. Property (iii) guar-
antees that the values of R, are independent of the
units of measurement of the considered inputs and
outputs. Property (iv) requires sensitivity of input
usage and output production in any single di-
mension: if we rate two units which have the same
values for all their inputs and outputs except one,
the more inefficient unit gets a smaller R. value.
That is, if the two units differ in one input, the one
with the smaller input value gets an R. value
greater than the one of the other unit. Analo-
gously, if they differ in one output, the unit having
a higher output value gets a greater value of R..
Note that (iv) is not a usual property since, as
Cooper and Pastor (1995) assert, it is very difficult
to achieve. This leads some authors to consider
instead some weaker property as weak-monoto-
nicity or decreasing in the relative values of the
slacks. Concerning other existing measures, we
remark that R, and RAM also satisfy these four
basic properties. In particular, (i) and (i) imply
that the three measures determine the same set of
efficient DMUSs, so they only differ in the assigned
value to the inefficient units. We should finally
clarify that both (ii)) and an input version of
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(iv) were previously proposed by Fire and Lovell
(1978) in a more general context.

Fire and Lovell (1978) also suggested that a
good efficiency measure should satisfy homogene-
ity of degree —1 in inputs. The Russell input
measure failed to meet this requirement, but it
satisfied the weaker property of subhomogeneity
of degree —1 in inputs stated in (v.1) (see Fire et
al., 1983). In Fare et al. (1985), relations between
the scaling of an input vector and/or an output
vector and the resulting Russell graph efficiency
measure can be found. The three properties gath-
ered in (v) include similar, but more satisfying re-
lations, referring to R. measure. (v.1) means that
the scaling of the input vector by a factor larger
(smaller) than unity leads to an efficiency measure
smaller (larger) than or equal to the inverse scaling
of the efficiency measure by the same factor. (v.2)
studies the effect on R, of the scaling of an output
vector, whereas (v.3) considers the simultaneous
scaling of the input and output vectors by inverse
factors. Hence, this property in some way quanti-
fies the sensitivity of the Enhanced Russell Mea-
sure guaranteed by property (iv). We remark that,
concerning the scaling of an input or an output
vector, for R, and RAM it can only be asserted
that

Ry(0Xy, Yo) < Ry(Xo, Yo) and RAM(0X,, Y,)
< RAM(X,, Yo), if 0> 1,

and

Rg(X(), QSYE)) < Rg(X(), Yo) and RAM(X(), (i)Yb)
<RAM(X,, Yy), if ¢ < 1.

As for the simultaneous scaling of the two vectors
by inverse factors,

1 1
RAM(AX(),; Y()) < RAM(X(), Y()) and Rg(}LX(],I YE))

| —

< SRy(Xo, Vo), if A> 1.

~

However, all these relationships (except the last
one), in contrast to those in (v), are not sensitive to
the scaling factor magnitude hence they add no
information to the one provided by the monoto-
nicity property.

Finally, since, like any GEM, our global effi-
ciency measure R. accounts for radial and nonra-
dial inefficiency both in inputs and outputs,
property (vi) reflects the expected relationship be-
tween R, and the usual radial efficiency scores 0
and ¢. This property asserts that R, can never
score a given DMU as more efficient than 6 and ¢
do, which are oriented measures and only account
for radial inefficiency. The meaning of (vi.l) is
clear, but the difficulty with relating the output-
oriented radial efficiency score ¢ and R, leads us to
consider in (vi.2) the inverse of ¢ (which equals 0 if
CRS in the efficient frontier were considered).
Moreover, R, and 6 (¢) are closely related as
Eq. (2) extends the radial DEA models in the sense
that any feasible solution of the input oriented
(output oriented) model (41,4s,...,4,,0)(¢ in-
stead of 0 for the output oriented case), whose
objective function value equals 0 (¢) gives rise to a
feasible solution of Eq. (2) (Ar,...,4, 0,0,
LSS (A, 1,1, , 9., ¢)) whose cor-
responding objective function value also equals 0
(1/¢ for the output oriented case). In contrast to
R., neither R, or RAM satisfy either (vi.l) or
(vi.2). Relations in (vi) were also listed by Cooper
and Pastor (1995) as desirable properties, whereas
Fire et al. (1985) only related, in a more general
context, Russell and Farrell measures according to
their orientation (input, output or graph).

Finally, we refer to the “translation invariance”
property, an additional desirable property pro-
posed by Cooper and Pastor. This property allows
us to deal with inputs and outputs unrestricted in
sign and is satisfied by RAM, but not by R, and
R..

4. Example

In order to illustrate the performance of our
new GEM, we have used the data relative to the
agencies engaged in supplying water and related
services in the Kanto region of Japan analyzed in
Aida et al. (1998). These data contain 108 obser-
vations on five inputs (Number of Employees,
Operating Expenses before Depreciation, Net
Plant and Equipment, Population and Length of
Pipes) and two outputs (Operating Revenues and
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Water Billed). Variable returns to scale on the ef-
ficient frontier were assumed.

Applying Eq. (4) to the data reveals 49 efficient
units. Results for the 59 remaining DMUs are
shown in Table 1. The first column records the
value of R.. The second and third, respectively,
contain the average efficiency components of in-
puts and outputs. The remaining columns contain
the optimal slacks or inefficiencies for each of the
inputs and outputs.

For example, R, =0.84930 for DMUI1 indicates
that the ratio between the average efficiency of
inputs and of outputs for this DMU equals
0.84930. Decomposition of the Enhanced Russell
Measure into the input and output components
reveals the existence of an efficient DMU or a
linear combination of efficient DMUSs which uses,
on average, 84.93% of the inputs used by DMU 1
maintaining the same level of output production.
The most inefficient observation detected by the
Enhanced Russell Measure is DMU 86, with
R, =0.29861. In this case the decomposition of R,
indicates that there exists an efficient DMU or a
linear combination of efficient DM Us which pro-
duces, on average, 59.16% more outputs than
DMU 86 by using, on average, 47.53% of the in-
puts used by this DMU.

Next, we compare results obtained for R. to
those of RAM. Obviously, both measures agree in
the classification of the efficient DMUs. Table 2
records R, and RAM values for the inefficient
observations. We immediately notice the great
difference between the magnitude of R, values and
those of RAM, highlighting the large values taken
by the latter measure. Values of R. for the ineffi-
cient units go from 0.29861, for DMU 86, to
0.91974, for DMU 104. In contrast, the minimum
for RAM is 0.97759 and only four DMUs score
less than 0.99. This shows that the discriminating
capability of R, over a given set of DMUs is much
stronger than that of RAM measure. Such a large
magnitude of RAM values is due to the use of the
range inverse as weights of the slacks in the linear
combination which defines this measure (see Ap-
pendix A).

To illustrate the fulfilment of property (vi.1) by
R., Table 2 also includes a third column with the
radial input-oriented score 0. It can be seen that 0

is always greater than R.. As for RAM, it is never
lower than 6. Very recently, a new version of RAM
has been proposed so as to broaden the range of its
values.

5. Conclusions

This paper is concerned with the measurement
of efficiency from a DEA perspective. We have
defined a new nonradial nonoriented efficiency
measure. Because of the analogy to the Russell
measures, we have called it the Enhanced Russell
Measure. First of all, it represents a solution for
the problem of nonzero slacks when measuring
efficiency by means of DEA models. However,
other interesting goals have been achieved: the
measure is well defined and can be easily computed
by solving an LP problem. In addition, the inter-
pretation is straightforward in opposition to the
usual Russell Graph Measure. The new measure
represents the ratio between average efficiency in
inputs and in outputs. These two average efficiency
components are helpful to interpret the efficiency
of the DMU under evaluation.

To sum up, we have defined an efficiency
measure that is well behaved since, apart from the
above mentioned: (1) it is bounded by 0 and 1,
attaining the maximum value of unity if and only
if the units being rated are Koopmans-efficient; (2)
in computing the efficiency of an inefficient unit,
the DMU being evaluated is compared to efficient
units; (3) it is units invariant; (4) it monotonically
declines for any increase in input usage or any
reduction in output production and does it at least
equiproportionately for any proportionate in-
crease in inputs usage or any proportionate re-
duction in output production; (5) it does not
exceed the value of the radial efficiency scores,
and, finally, as said before, (6) it is well-defined
because it is the optimal value of a mathematical
programming problem and can be easily computed
and interpreted.

Finally, we would like to stress that in the fu-
ture it could be interesting to study the behavior of
our measure for other kind of technologies.

For instance, some aspects of global efficiency
measurement in FDH (Deprins et al., 1984) are
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Table 2
Comparison of R., RAM and 0
DMU R. RAM 0
1 0.84930 0.99032 0.90355
2 0.83189 0.99228 0.89862
4 0.76750 0.99776 0.86967
5 0.85247 0.99728 0.98278
6 0.70358 0.99730 0.88164
10 0.55681 0.99571 0.76881
11 0.78772 0.99523 0.89129
13 0.72127 0.99713 0.89514
14 0.47117 0.99829 0.98691
16 0.33428 0.99093 0.56904
19 0.69759 0.99615 0.84046
21 0.68144 0.99535 0.86315
23 0.77267 0.99677 0.94924
24 0.79986 0.99632 0.97778
25 0.58087 0.99587 0.76737
26 0.65213 0.99683 0.86182
27 0.69755 0.99635 0.90223
28 0.65515 0.99235 0.88284
31 0.90776 0.99787 0.97943
32 0.87817 0.99567 0.96410
33 0.90682 0.99598 0.97944
34 0.86910 0.99908 0.97738
36 0.73202 0.99714 0.89499
39 0.82122 0.98865 0.94726
42 0.80514 0.99577 0.87221
44 0.83981 0.99332 0.91951
45 0.68765 0.99341 0.82711
46 0.79388 0.99729 0.90825
49 0.84417 0.99634 0.90088
50 0.86877 0.99670 0.95455
51 0.90223 0.99701 0.97128
53 0.87079 0.99771 0.90522
59 0.80107 0.99521 0.83600
65 0.83004 0.99732 0.91375
66 0.85531 0.99711 0.91124
67 0.82111 0.99721 0.88614
69 0.85406 0.99616 0.89374
70 0.75351 0.99796 0.90899
72 0.73984 0.99708 0.89360
74 0.83133 0.99635 0.96093
75 0.56641 0.99624 0.75070
77 0.61736 0.98081 0.84261
78 0.79566 0.99593 0.93431
79 0.51243 0.99610 0.82798
80 0.68466 0.99611 0.85388
81 0.76490 0.99173 0.86237
82 0.58739 0.99620 0.84663
83 0.80854 0.99576 0.88111
84 0.86220 0.99114 0.91666
86 0.29861 0.97759 0.48215
87 0.82001 0.99351 0.91635
88 0.79388 0.99342 0.86389
89 0.64894 0.99110 0.71821

Table 2 (Continued)

91 0.74960 0.98825 0.91180
92 0.52442 0.99145 0.79104
93 0.74913 0.99554 0.81298
94 0.74790 0.99415 0.94925
104 0.91974 0.99669 0.94034
105 0.78094 0.99730 0.86975

discussed in Pastor et al. (1998). On the other
hand, it is also interesting to study the dual for-
mulation of Eq. (6) (see Tone, 1997).
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Appendix A. Other global efficiency measures

In this appendix we include the expression of
some other global efficiency measures. The ex-
pression of the MEP is

1 LN T Y
l_ers ZSL)_FZS*O

+
T X0 S0t S

The expression of the RAM is

1 N
1_m+s ;1?_?+;R_§

R; and R} being the range for input / and output r,
respectively.

Appendix B. Proof of Theorem 1

Proofs can equivalently be done either for
Eq. (2) or Eq. (4). As (1)—(iv) have been introduced
as the four basic properties of a GEM, we resort to
expression (4) to prove them:

(1) and (ii) are immediate as a consequence of
the definition of R.. (iii) is also a consequence of
the definition of R., since the ratios considered in
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the objective function of Eq. (4) are dimensionless
and the constraints are lineal. (iv) First, we are
going to rate two units differing only in one input.
Consider an observation DMU, with vector of
inputs and outputs (xg, - - - ,Xu0, V10, - - -, Vs0), and
another observation, DMU,, with the same values
for all inputs and outputs but input k, which has
the value xi, = x40 +a, a > 0. We have to show
that the value of R, for the second observation,
R.(X,,Y,), is smaller than R.(Xo, ¥y), the value of
R, for the first unit. Throughout this proof let us
call problems (P,) and (P,) the fractional problems
(4) evaluating DMU, and DMU,, respectively,
and let R.(X,,Y,) and R.(Xp,Y;) be the corre-
sponding optima. Let (41, A20,-- -, 4a0,870, - - - »
8058705 - - - »555) be an optimal solution of problem
(Py). Then, it is easy to check that (1o, Ao, ..,
Dy Byl 8L 8h) where b =§g,i # k,
and h, = §;; + a, is a feasible solution of (P,), with
an associated value of the objective function
(which is greater than or equal to R.(X,, ¥,)) being
less than R.(X, ¥p). So, we can state R.(X,, Y,) <
Re(Xo, Yo).

Following the notation above, let us now con-
sider DMU, equal to DMU| except for the output
p, taking the value y,, = y,0 + a, a > 0, for DMU,.
Now, we have to prove R.(X,, ¥,) > R.(Xy, ¥5). Let
us start the proof by showing that any solution of
the problem (P,) gives a feasible solution of the
problem (Py) with a smaller value of the objective
function than the one associated with the first so-

. \ A o 4

luthl'l. Let .(/Llav /12(17 RS /“naaslw e asmmslaa R 7Ssa)

be a solution of (P,). Then, we can see that
) - - +

(Mas A2as - oy Anas STs o o3 S Blgs - - s ), where

hjy = s}, r #p, and hy =5, +a, is a feasible so-
lution for (Py) verifying the above requirement. In
particular, if the starting solution of (P,) is an
optimum, we find a solution of problem (Py) with
an associated value of the objective function less
than R.(X,,Y,), so we can conclude R.(X,,Y,) >
Re(Xo, Yo).

Property (v) is more naturally related formu-
lation (2) of R., because it deals with equip-
roportionate scalings of the observations.
Therefore, we use Eq. (2) to prove (v):

(v.D If 0> 1 and (07, ¢;, 4;) is an optimal so-
lution of Eq. (2) when DMU is being evaluated,
then (0;/0, ¢, ;) is a feasible solution of Eq. (2)

when (0X,,Yy) is under evaluation, because the
constraints for inputs and outputs are clearly sat-
isfied and 0; /0 < 0; < 1. Therefore,

1 m e;k
m 0
1<~ .
5 2%

r=1

1
= 2 Re(Xo, Yo).

R.(0Xy, Yp) < 0

Moreover, it is easy to find examples in which
both the given bound is reached and R.(6X), ) is
lower than (1/6)R.(Xo, ¥y). Therefore, a less gen-
eral relationship between both values of R, cannot
be stated.

(v.2) Identical to (v.1), but taking (0, ¢, 4})
as a feasible solution of Eq. (2) for (Xp, ¢ Yo).

(v.3) This is also similar to the two previous
proofs. Now, we only need to consider that for an
optimal solution of Eq. (2) when DMU is being
evaluated, (07,¢,,4;), vector (0;/Z,.¢;,2;) is a
feasible solution of Eq. (2) when (AXp, (1/1)%),
A > 1, is under evaluation. Therefore,

1 Z A
1 ma— i |
Re /IXO,ZYO glxi:)—zRe(Xo,YO).
fzﬂuqﬁf “
s r=1

The same remark about the given bound as in
(v.1) can be made here.

(vi.1) To get the desired relation R, <0, we
have only to check that the total inefficiencies in
the input-oriented radial model together with the
optimal values of the scalars 4;, give a feasible
solution of Eq. (4) with an associated value of
the fractional objective function less than or equal
to 0.

(vi.2) The proof of this property is similar to the
previous one, but replacing the input-oriented ra-
dial model by the output-oriented one, and
checking that the value of the fractional objective
function in the output radial model associated
with the feasible solution of Eq. (4) given by the
total inefficiencies and the optimal values of /; is
less than or equal to 1/¢.

Finally, it should be noted that if we include the
convexity constraint in the formulation of R, the
above proof remains valid. [
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