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Abstract

This paper discusses the determination of returns to scale (RTS) in data envelopment analysis (DEA). Three basic
RTS methods and their modi®cations are reviewed and the equivalence between these di�erent RTS methods is

presented. The e�ect of multiple optimal DEA solutions on the RTS estimation is studied. It is shown that possible
alternate optimal solutions only a�ect the estimation of RTS on DMUs which should be classi®ed as constant
returns to scale (CRS). Modi®cations to the original RTS methods are developed to avoid the e�ects of multiple
optimal DEA solutions on the RTS estimation. The advantages and disadvantages of these alternative RTS

methods are presented so that a proper RTS method can be selected within the context of di�erent applications.
# 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has long been recognized that data envelopment

analysis (DEA) by its use of mathematical program-

ming is particularly adept at estimating multiple input

and multiple output production correspondences. Since

the ®rst DEA model, the CCR model [1], a number of

di�erent DEA models have appeared in the

literature [2]. During this period of model development,

the economic notion of returns-to-scale (RTS) was

widely studied within the framework of DEA. This, in

turn, further extended the applicability of DEA. For

example, Banker et al. [3] studied the 114 North

Carolina hospitals' production functions and e�ciencies

and uncovered the possibilities of RTS on individual

hospitals while the previous (regression-based) study

had reached the conclusion that no RTS were present.

As a result of this research thrust, there are at least

three di�erent basic methods of testing a decision mak-

ing unit (DMU)'s RTS nature which have appeared in

the DEA literature. Banker [4] shows that the CCR

model can be employed to test for DMUs' RTS using

the concept of most productive scale size (MPSS), i.e.

the sum of the CCR optimal lambda values can deter-

mine the RTS classi®cation. We call this method the

CCR RTS method. Banker et al. (BCC) [5] report that

a new free BCC dual variable (uo) estimates RTS by

allowing variable returns to scale (VRS) for the CCR

model, i.e. the sign of uo determines the RTS. We call

this method the BCC RTS method. Finally, FaÈ re et

al. [6] provide the scale e�ciency index method for the

determination of RTS using DEA. These three RTS

methods, in fact, are equivalent but di�erent presenta-

tions (see, for example, Refs. [7±9]).

The three basic RTS methods have been widely

employed in real world situations (see, for example,

Refs. [10±12]). However, it has been noted that the

CCR and BCC RTS methods may fail when DEA

models have alternate optima, i.e. the original CCR
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and BCC RTS methods assume unique optimal sol-
utions to the DEA formulations. In contrast to the

CCR and BCC RTS methods, the scale e�ciency
index method does not require information on the pri-
mal and dual variables and, in particular, is robust

even when there exist multiple optima. Since it may be
impossible or at least unreasonable to generate all
possible multiple optima in many real world appli-

cations, a number of modi®cations or extensions of the
original CCR and BCC methods have been developed
to deal with multiple optima.

Banker and Thrall [13] generalize the BCC RTS
method by exploring all alternate optima in the BCC
dual model, i.e. RTS in their extended technique is
measured by intervals for uo. Banker et al. [14] further

modi®ed the technique to avoid the need for examining
all alternate optima. Using the same technique, Banker
et al. [7] introduce a modi®cation to the CCR RTS

method by determining the maximum and minimum
values of Sn

j�1lj in the CCR model in order to reach a
decision. On the other hand, by the scale e�ciency

index method, Zhu and Shen [15] suggest a remedy for
the CCR RTS method under possible multiple optima.
In addition to reviewing the existing RTS methods,

the current paper provides some computationally
simple methods to characterize RTS and to circumvent
the need for exploring all alternate optimal solutions
to the CCR primal model and to the BCC dual model.

It can be seen that on the basis of these newly modi-
®ed CCR and BCC RTS methods, one avoids the
possible e�ect of multiple optimal DEA solutions on

the determination of RTS. One also avoids the need
for solving the DEA formulations for determining the
maximum and minimum values of Sn

j�1lj as described

in Ref. [7] and of uo as described in Ref. [13].
The paper is organized as follows. Section 2 provides

the DEA models that are employed in the three basic
RTS methods. Then in Section 3 we discuss the de®-

nitions of RTS in DEA. This is followed by a review
of the three basic RTS methods and their equivalence.
We address the issue of multiple optima in the CCR

primal and BCC dual formulations. It is shown that
possible alternate optimal solutions only a�ect the esti-
mation of RTS on DMUs which should be classi®ed

as constant returns to scale (CRS). Finally, we present
and develop the modi®cations to the original CCR and
BCC RTS methods. We also discuss the implemen-

tation of di�erent modi®cations. Conclusions and
possible further research are given in Section 6.

2. DEA models

In order to develop our discussion of RTS, we pre-
sent the related (input-oriented) DEA models that are
required for the three basic RTS methods (see Ref. [16]

for a detailed discussion of these DEA models).
Suppose we have n DMUs. Each DMUj, j = 1, 2, . . . ,

n produces s di�erent outputs, yrj (r= 1, 2, . . . , s),
using m di�erent inputs, xij (i = 1, 2, . . . , m). Then the
primal linear program for the (input-based) CCR

model can be written as

y* � min y

s:t:
Xn
j�1

ljx ijRyx io i � 1, 2, . . . , m;

Xn
j�1

ljyrjryro r � 1, 2, . . . , s;

ljr0 j � 1, 2, . . . , n:

�1�

where xio and yro are, respectively, the ith input and
rth output for DMUo under evaluation. Associated
with the m + s input and output constraints, some

non-zero slacks may be identi®ed by utilizing a two-
stage process where the e�ciency score is ®rst calcu-
lated and then the sum of slacks is maximized [17].
The dual linear program to Eq. (1) is

max
Xs
r�1

uryro

s:t:
Xs
r�1

uryrj ÿ
Xm
i�1

vix ijR0 j � 1, . . . , n;

Xm
i�1

vix io � 1

ur, vir0

�2�

A DMUo is said to be CCR e�cient if and only if

(a) y* = 1 and (b) all optimum slack values in Eq. (1)
are zero.
Associated with the CCR model, we have

Proposition 1. At least one DMU is CCR e�cient.

Another DEA model, which is usually referred to as
the BCC model, can be expressed as

b* � min b

s:t:
Xn
j�1

ljx ijRbx io i � 1, 2, . . . , m;

Xn
j�1

ljyrjryro r � 1, 2, . . . , s;

Xn
j�1

lj � 1

ljr0 j � 1, 2, . . . , n:

�3�
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The dual to the above linear program is

max
Xs
r�1

uryro � uo

s:t:
Xs
r�1

uryrj ÿ
Xm
i�1

vix ij � uoR0 j � 1, . . . , n;

Xm
i�1

vix io � 1

ur, vir0 and uo is free

�4�

A DMUo is said to be BCC e�cient if and only if
(a) b* = 1 and (b) all optimum slack values in Eq. (3)
are zero. In the case of ine�ciency, the following BCC
projection of Sn

j�1ljE1 is BCC e�cient:

x̂io � b*x io ÿ sÿi , ŷro � yro � s�r �5�

Proposition 2. If a DMU is CCR e�cient then it is
BCC e�cient.

It can be seen that the only di�erence between the
CCR and the BCC models is the convex restriction of
aj=1
n lj=1 in the primal model (uo in the dual model).

If we impose aj=1
n ljE1 in the CCR model, then we

obtain the following DEA model

f* � min f

s:t:
Xn
j�1

ljx ijRfx io i � 1, . . . , m;

Xn
j�1

ljyrjryro r � 1, . . . , s;

Xn
j�1

ljR1

ljr0 j � 1, . . . , n:

�6�

Obviously y*R f*Rb*. The dual linear program-
ming problem is

max
Xs
r�1

uryro ÿ uo

s:t:
Xs
r�1

uryrj ÿ
Xm
i�1

vix ij ÿ uoR0 j � 1, . . . , n;

Xm
i�1

vix io � 1

ur, vi, uor0

�7�

3. Returns to scale

Returns-to-scale (RTS) have typically been de®ned
only for single output situations. Therefore, we gener-

alize the notion of RTS to the multiple output case.
Let T be a production possibility set which is con-

structed by the inputs and outputs of the n DMUs.
FaÈ re et al. [18] provide the following de®nition related
to the RTS (see Ref. [13] for an equivalent de®nition)

The technology exhibits constant returns to scale
(CRS) if mT = T, m>0; it exhibits non-increasing
returns to scale (NIRS) if lTUT, 0 < lR1; it

exhibits non-decreasing returns to scale (NDRS) if
aTUT, ar1 (or equivalently if TUbT,
0 < bR1).

On the basis of the above RTS de®nition, we say
that a DMU exhibits decreasing returns to scale
(DRS) if it exhibits NIRS but not CRS and increasing

returns to scale (IRS) if it exhibits neither CRS nor
DRS. Furthermore we have the following prop-
ositions:

Proposition 3. The e�cient frontier obtained from the
CCR model (Eq. (1)) exhibits CRS.

Proposition 4. The e�cient frontier obtained from the

BCC model (Eq. (3)) exhibits variable returns to scale
(VRS), i.e. IRS, CRS and DRS are all allowed in the
BCC model.

Proposition 5. The e�cient frontier obtained from the
model in Eq. (6) exhibits NIRS.

On the basis of propositions 1 and 3, we have

Proposition 6. At least one DMU exhibits CRS.

We now illustrate these DEA frontiers by a two-
dimensional ®gure with one-input and one-output.

Suppose we have six DMUs, A, B, C, D, H and M as
shown in Fig. 1. Ray OBC is the CCR e�cient frontier
exhibiting CRS. AB, BC and CD constitute the BCC

e�cient frontier and exhibit IRS, CRS and DRS re-
spectively. The e�cient frontier obtained from the
model in Eq. (6) is constructed by OBC and CD.

Obviously IRS are not allowed in the frontier obtained
from the model in Eq. (6).
If a DMU is on or projected onto a CCR e�cient

frontier by the BCC projection (Eq. (5)), then by prop-

osition 3, this DMU exhibits CRS. For instance, the
point M in Fig. 1.
Note that some DMUs, say B and C, are located at

the intersections of di�erent RTS frontiers. In this situ-
ation, CRS have the ®rst priority. That is, B and C
should exhibit CRS rather than IRS and DRS, respect-

ively. Thus, on the line segment AB, IRS prevail to the
left of B, and on the line segment CD, DRS prevail to
the right of C.
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Note also that the concept of RTS may be ambigu-

ous unless a DMU is on the BCC e�cient frontier. As

mentioned earlier, we classify the RTS for ine�cient

DMUs by their BCC projections. For instance, by

applying the BCC projection (Eq. (5)) to point H, we

have a frontier point H 0 on the line segment AB and

thus H exhibits IRS. However a di�erent RTS classi®-

cation may be obtained if a di�erent projection (or

BCC model) is utilized. This is due to the fact that the

input-based and the output-based BCC models yield

di�erent projection points on the VRS frontier. For

example, the point H is moved onto the line segment

CD by the output-based BCC model and thus DRS

prevail on the point H0. However some IRS, CRS and

DRS regions are uniquely determined no matter which

BCC model is employed (see Fig. 1).

To illustrate the discussion to follow we will employ

the following sample data set consisting of six DMUs

each consuming two inputs to produce a single output

(see Table 1). Table 2 provides the e�ciency scores

obtained from the models in Eqs. (1), (3) and (6). (No

non-zero slack values were present.)

Recall that all DMUs can be identi®ed with points

E (extreme e�cient), E 0 (e�cient but not an extreme
point), F (frontier but not e�cient) and N
(nonfrontier) [19]. Recall also that the e�cient facets

are determined by the DMUs in set E. Thus DMUs 1,
2, 3, 5 and 6 belong to set E in the BCC model. The
CCR e�cient frontier is x1+2x2=6y which is con-

structed by DMUs 1, 2 and 3. By proposition 3, CRS
prevail on DMUs 1, 2 and 3. Since DMU4 is projected
onto the CRS e�cient frontier (i.e. the CCR e�cient
frontier) by Eq. (5), therefore DMU4 exhibits CRS.

DMU5 and DMU6 are, respectively, located on the
IRS and DRS e�cient frontiers of the BCC model.
The RTS classi®cation of each DMU is shown in the

last column of Table 2.

4. Theory and methodology of the estimation of RTS

In this section, we ®rst present the three basic (or
original) RTS methods and show how these methods
work. Next, we indicate the equivalence of these three

Fig. 1. Frontiers and RTS.

Table 1

Sample DMUs

DMU Input 1 (x1) Input 2 (x2) Output ( y)

1 2 5 2

2 2 2 1

3 4 1 1

4 3 2 1

5 2 1 1/2

6 6 5 5/2

Table 2

E�ciency scores and RTS classi®cations

DMU CCR (y*) BCC (b*) Model in Eq. (6) ( f*) RTS

1 1 (E) 1 (E) 1 (E) CRS

2 1 (E 0) 1 (E 0) 1 (E 0) CRS

3 1 (E 0) 1 (E) 1 (E) CRS

4 6/7 6/7 6/7 CRS

5 3/4 1 (E) 3/4 IRS

6 15/16 1 (E) 1 (E) DRS
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RTS methods. Finally, we discuss the e�ect of multiple
optima on each of these RTS methods.

4.1. Basic RTS methods

Here we will review the three basic RTS methods in

DEA. First consider the scale e�ciency index method
in which the ratio y*/b* is called scale e�ciency
index [20].

Theorem 1. (i) y* = b* if and only if DMUo exhibits
CRS; otherwise if y* < b* or equivalently y*$b*, then
(ii) b*>f* if and only if DMUo exhibits IRS; (iii)

b* = f* if and only if DMUo exhibits DRS.

The core of the scale e�ciency index method lies in

the comparison of di�erent RTS e�cient frontiers, re-
spectively, obtained from the models in Eqs. (1), (3)
and (6). y* = b* implies that DMUo is on or projected

onto the CRS frontier, e.g. BC in Fig. 1, which is the
intersection of the CCR and BCC e�cient frontiers;
b*>f* (or alternatively y* = f*) implies that DMUo is
on or projected onto the IRS frontier (e.g. AB in

Fig. 1) which does not belong to the intersection of
e�cient frontiers obtained from the models in Eqs. (1)
and (6); b* = f* implies that DMUo is on or projected

onto the DRS frontier (e.g. CD in Fig. 1) which is the
intersection of the e�cient frontiers obtained from the
BCC model and the model in Eq. (6) but not the

model in Eq. (1).
This RTS method can easily be examined by the e�-

ciency scores shown in Table 2. As stated in Ref. [8], this

method exploits the natural nesting of the three RTS
frontiers and the corresponding ordering of the associ-

ated e�ciency measures of Eqs. (1), (3) and (6). Note

that this method requires solving three DEA models.

On the basis of optimal solutions lj* to Eq. (1), we

have the CCR RTS method [4].

Theorem 2. (i) If aj = 1
n lj* = 1 in any alternate optima

then CRS prevail on DMUo. (ii) If aj = 1
n lj* < 1 for

all alternate optima then IRS prevail on DMUo. (iii)

If aj = 1
n lj*>1 for all alternate optima then DRS pre-

vail on DMUo.

The above RTS method is relative to the concept of

most productive scale size (MPSS) (see Ref. [21] for a

detailed discussion). Table 3 provides the CCR results

with optimal lambda values.

From Table 3, we see that some DMUs, say DMUs

2 and 4, have alternate optimal lambda values.

Nevertheless there exists an optimal solution such that
aj=1

n lj* = 1 indicating CRS. DMU5 exhibits IRS

because aj=1
n lj* < 1 in all optima and DMU6 exhibits

DRS because aj=1
n lj*>1 in all optima.

Let uo* represent the optimal value of uo in the BCC

dual model in Eq. (4), then we have the BCC RTS

method [5].

Theorem 3. (i) If uo* = 0 in any alternate optima then
CRS prevail on DMUo. (ii) If uo*>0 in all alternate

optima then IRS prevail on DMUo. (iii) If uo* < 0 in

all alternate optima then DRS prevail on DMUo.

Geometrically, for the case of single output, uo* rep-

resents the y-intercept on the output axis. One can

determine RTS classi®cation within BCC RTS method

from the optimal uo values reported in the last column

Table 3

Optimal lj and uo values for the six sample DMUs

DMU Optimal lambda values in CCR (Eq. (1)) Optimal in BCC (Eq. (4))

1 l1* = 1; aj=1
6 lj* = 1 [ÿ7, 1]

2 solution 1: l2* = 1; aj=1
6 lj* = 1 [0, 1]

solution 2: l1*=1
3, l3*=

1
3; aj=1

6 lj*=2
3

3 l3* = 1; aj=1
6 lj* = 1 [ÿ5/3, 1]

4 solution 1: l1*=5
21, l3*=

11
21; aj=1

6 lj*=16
21 [0, 2/7]

solution 2: l2*=5
7, l3*=

2
7; aj=1

6 lj* = 1

solution 3: l1*= 2
133, l2*=

89
133, l3*=

40
133; aj=1

6 lj*=131
133

5 0Rl1*R1
12, l2*=

1
4ÿ3l1*, l3*=1

4+l1*; 5
12Raj=1

6 lj*R1
2 [1/2, 1]

6 l1*R35
48ÿl2*/3, 0Rl2R35

16, l3*=
25
24ÿl2*/3; 85

48Raj=1
6 lj*R15

6 (ÿ1, ÿ3/37]
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of Table 3. uo* can take all the optimal uo values in
the intervals [uo

ÿ, uo
+]. uo* = 0 is found in DMUs 1, 2,

3 and 4, therefore the four DMUs exhibit CRS. All
uo* are, respectively, bigger and less than zero in
DMU5 and DMU6, therefore IRS and DRS, respect-

ively, prevail on DMU5 and DMU6.
Finally, note that the above three basic RTS

methods implicitly identify the RTS classi®cations for

BCC ine�cient DMUs by their BCC projection
(Eq. (5)) (radial component only), i.e. the methods
automatically project the BCC ine�cient DMUs.

Thus, in applications, we need not apply Eq. (5) separ-
ately. Note also that some DMUs do have uo* with a
range of both negative and positive values, but they
are identi®ed as having CRS, which is consistent with

the discussion in the previous section that those
DMUs are located on the intersections of CRS and
IRS (or DRS) frontiers.

4.2. The relations of the three basic RTS methods

Zhu and Shen [9] showed that the CCR RTS
method and the scale e�ciency index method are
equivalent (see Ref. [7] also). In fact, all the three basic

RTS methods are equivalent.

Theorem 4. (i) y* = b* if and only if there exists an

optimal solution of the CCR primal model (Eq. (1))
with aj = 1

n lj* = 1; (ii) y*$b* and b*>f* if and only
if aj = 1

n lj* < 1 in all optimal solutions of the CCR

primal model (Eq. (1)); (iii) y*$b* and b* = f* if
and only if aj = 1

n lj*>1 in all optimal solutions of the
CCR primal model (Eq. (1)).

Proof. The proof of (i) is obvious from the convex
restriction aj=1

n lj=1 in the BCC model and hence is
omitted.

If aj=1
n lj* < 1 in all optimal solutions of the CCR

model, then obviously y*$b* (or y* < b*).
Furthermore we have y* = f*, thus b*>f*. This com-

pletes the if part of (ii).
Note that y*$b* implies that aj=1

n lj=1 cannot
hold for all optimal solutions to the CCR model. If

b* = f* then there does not exist any CCR solution
such that aj=1

n lj<1. (Otherwise we have y* = f*
which con¯icts with y*$b*.) Therefore aj=1

n lj must
be greater than one in all CCR optimal solutions. This

completes the only if part of (iii).
Note that if aj=1

n lj*>1 in all optimal solutions of
the CCR model, then y* must not be equal to b*.

Thus the if part of (iii) follows immediately from the
theorems 1 and 2. The only if part of (ii) now is
obvious. q

Theorem 5. (i) y* = b* if and only if there exists an
optimal solution of the BCC dual model (Eq. (4)) with

uo* = 0; (ii) y*$b* and b*>f* if and only if uo*>0
in all optimal solutions of the BCC dual model

(Eq. (4)); (iii) y*$b* and b* = f* if and only if
uo* < 0 in all optimal solutions of the BCC dual
model (Eq. (4)).

Proof. The proof of this theorem is similar to the
proof of theorem 4, but based on the dual formu-

lations in Eqs. (2), (4) and (7). q

On the basis of theorems 4 and 5, we have

Corollary 1. (i) There exists an optimal solution to
Eq. (1) with aj = 1

n lj* = 1 if and only if there exists an
optimal solution to Eq. (4) with uo* = 0; (ii)

aj = 1
n lj* < 1 in all optimal solutions of Eq. (1) if and

only if uo*>0 in all optimal solutions of Eq. (4); (iii)
aj = 1
n lj*>1 in all optimal solutions of Eq. (1) if and

only if uo* < 0 in all optimal solutions of Eq. (4).

From the above discussion, we observe that the

three basic RTS methods are equivalent but provide
di�erent ways to estimate RTS for each DMU. The
conditions in theorems 2 and 3 (i.e. the CCR and BCC

RTS methods) are necessary and su�cient.

4.3. Multiple optima in the primal and dual solutions

It is well known that multiple optimal solutions are
likely to occur in the dual formulations of DEA

models, e.g. Eq. (4). In addition, the DEA primal
model, e.g. the model in Eq. (1), may have alternate
optima. As a result, it is probable that the presence of

multiple optima in DEA models will a�ect the RTS
estimation. Note that the scale e�ciency index method
employs the optimal values of three di�erent DEA
models, therefore the possible alternate optima should

have no e�ect on this method, i.e. this method is
robust even when there are multiple optimal solutions.
However, we stress the need to check for possible

alternate optima when either one of the other two
RTS methods is employed. Unfortunately, in real
world applications, the examination of alternative

optima is a laborious task and one may attempt to use
a single set of resulting optimal solutions in the appli-
cation of the RTS methods. In the case of the CCR or
BCC RTS methods, this may yield erroneous results.

For instance, if we obtain l1*=1
3, l3*=1

3 or uo* = 1
for DMU2, then DMU2 may erroneously be classi®ed
as having IRS because alj* < 1 or uo*>0 in one par-

ticular alternate solution.
In Ref. [22], the presence of multiple optima is

attributed to the (piecewise) linear production function

in DEA. However Zhu and Shen [15] showed that the
conclusion in Ref. [22] is erroneous and revealed that
linear dependency in a set of CCR e�cient DMUs is
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one cause of multiple optimal lambda values in the

CCR model (Eq. (1)), i.e. the DMUs in set E 0 will lead
to alternate lambda values. Also, DMUs in set F may

cause multiple optimal lambda solutions [23, 24].

Relative to the six DMUs in Table 1, we have

DMU2=
1
3DMU1+

1
3DMU3 in which DMU1 and

DMU3 belong to set E. Thus DMU2 belongs to set

E 0. Therefore, multiple optimal lambda values are

detected in DMUs 2, 4, 5 and 6. However, in DMU5,

alj* is always less than one and, in DMU6, alj* is

always greater than one, even if lambda variables have

alternate solutions in Eq. (1).

In fact, on the basis of Theorems 1 and 4, we have

the following important result

Corollary 2. (i) If DMUo exhibits IRS then

aj = 1
n lj* < 1 for all alternate optima in Eq. (1); (ii) if

DMUo exhibits DRS then aj = 1
n lj*>1 for all alternate

optima in Eq. (1).

The signi®cance of this corollary lies in the fact that

the possible alternate optimal lambda values obtained

from Eq. (1) only a�ect the estimation of RTS for

those DMUs that truly exhibit CRS, and have nothing

to do with the RTS estimation on those DMUs that

truly exhibit IRS or DRS. That is, if a DMU exhibits

IRS (or DRS), then alj* must be less (or greater) than

one, no matter whether there exist alternate optima of

lj.
Turning to the BCC RTS method, note that for

DMU5, uo* is always bigger than zero and for DMU6,

uo* is always less than zero. From theorems 1 and 5,

we have

Corollary 3. (i) If DMUo exhibits IRS then uo*>0 for

all alternate optima in Eq. (4); (ii) if DMUo exhibits

DRS then uo* < 0 for all alternate optima in Eq. (4).

This corollary also indicates that the alternate opti-

mal uo values obtained from Eq. (4) only a�ect the de-

termination of RTS on those DMUs that truly exhibit

CRS. For example,ÿ5
3Ruo*R1 for DMU3, i.e. uo* can

either be greater than or less than or equal to zero. If

we obtain uo* =ÿ 5/3 in an optimal solution, then

DMU3 may erroneously be termed as having DRS; if

we obtain uo* = 1, then DMU3 may erroneously be

termed as having IRS, while in fact CRS prevail for

DMU3.

The above two corollaries are very important in

empirical applications because one may erroneously

declare a CRS DMU as having IRS or DRS if one

does not check all possible optima in the models in

Eq. (1) or Eq. (4).

5. The application and usage of the RTS methods

As noted, the possible multiple optimal solutions of
lambda or uo may a�ect the CCR and BCC RTS
methods. However, one is unable to know in advance

whether there exist alternate optima in real world ap-
plications. Variations or extensions of the two basic
RTS methods have been proposed for dealing with

multiple optima. Some treat multiple optima directly
and some indirectly.

5.1. Treatment of uo

Banker and Thrall [13] provide two auxiliary linear
programming models to deal with the multiple optimal

solutions of the free variable, uo, in the BCC dual
model (Eq. (4)), i.e.

max uo

s:t:
Xs
r�1

uryro � uo � 1

Xs
r�1

uryrj ÿ
Xs
i�1

vix ij � uoR0 j � 1, . . . , n;

Xm
i�1

vix io � 1

ur, vir0 and uo is free

�8�

The optimal value of uo is uo
+. Now the objective of

Eq. (8) is changed from maximization to minimization.
The minimized score of uo is uo

ÿ. Obviously we have
uo
ÿRuo*Ruo

+ in which uo is an optimal solution to

Eq. (4). Next uo* is transformed into another score ro*

by ro* = 1/(1ÿ uo*), i.e.

rÿo � 1�1ÿ uÿo �Rro* � 1�1ÿ uo*�Rr�o � 1�1ÿ u�o �

Theorem 6. On the basis of ro*, RTS can be identi®ed
as CRS if and only if ro* = 1, IRS if and only if

ro*>1 and DRS if and only if ro* < 1.

Proof. See Ref. [13]. q

The Eq. (8)-like formulations are provided for the
calculation of upper and lower boundaries of optimal
uo. It can be seen that the RTS now is determined by

intervals. The above method is developed to ®nd out
all possible multiple optimal solutions of uo (see the
intervals of uo* in the last column of Table 3).

ro* = 1, ro*>1 and ro* < 1, respectively, correspond
to uo* = 0 (in any optima), uo*>0 and uo* < 0 (in all
optima). Therefore this method, in fact, is an extension

of the BCC RTS method.
Note that Eq. (8) is only valid for the BCC frontier

DMUs (i.e. b*=1). Banker et al. [14] show how to
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identify RTS on each DMU by the BCC projection
(Eq. (5)) and how to estimate RTS possibilities from

the optimal values for in Eq. (4) without having to
examine all alternate optima. Nevertheless the follow-
ing modi®cation makes it possible to characterize the

RTS on each DMU without having to use BCC pro-
jection given the existence of an optimal solution with
uo*>0 in Eq. (4), i.e.

min ûo

s:t:
Xs
r�1

uryro � ûo � b*

Xs
r�1

uryrj ÿ
Xm
i�1

vix ij � ûoR0 j � 1, . . . , n;

Xm
i�1

vix io � 1

ur, vi, ûor0

�9�

In the case of the solution of the unrestricted vari-
able in Eq. (4) yielding uo* < 0, we replace uÃor0 in
Eq. (9) by uÃoR0 and change the objective of Eq. (9)

from minimization to maximization. Note that if
b* = 1, i.e. DMUo is on the BCC frontier, then Eq. (9)
is similar to Eq. (8).

Theorem 7. (i) Given the existence of an optimal sol-
ution with uo*>0 in Eq. (4), the RTS at DMUo are

CRS if and only if the optimal value which Eq. (9)
achieves is zero, i.e. uÃo* = 0, and IRS if and only if
uÃo*>0; (ii) given the existence of an optimal solution
with uo* < 0 in Eq. (4), the RTS at DMUo are CRS if

and only if the optimal value which Eq. (9) achieves is
zero, i.e. uÃo* = 0, and DRS if and only if uÃo* < 0.

Proof. Suppose that ur*, vi* and uo* is an optimal sol-
ution to Eq. (9) for DMUo, then ar=1

sur*yr-

o+uÃo* = b* and ai=1
mvi*xio=1. Furthermore

ar=1
sur*yro+uÃo* = b*ai=1

mvi*xio. Obviously ar=1
sur*-

yr=ai=1
mvi*(b*xi)ÿuÃo* is a supporting hyperplane at

(b*xio, i= 1, . . . , m; yro, r = 1, . . . , s). From Ref. [13],
we can easily obtain that the RTS at DMUo are CRS

if and only if uÃo* = 0, IRS if and only if uÃo*>0 and
DRS if and only if uÃo* < 0. q

5.2. Treatment of lj

In order to check alternate optima possibilities in

the CCR model, Banker et al. [7] provide the following
linear programming model (given aj=1

n lj* < 1
obtained from Eq. (1))

max
Xn
j�1

l̂j ÿ e
�Xm

i�1
ŝÿi �

Xs
r�1

ŝ�r

�

s:t:
Xn
j�1

l̂jx ij � ŝÿi � yo*x io i � 1, 2, . . . , m;

Xn
j�1

l̂jyrj ÿ ŝ�r � yro r � 1, 2, . . . , s;

Xn
j�1

l̂jR1

l̂j,ŝ
ÿ
i ,ŝ
�
r r0 �10�

in which yo* is the optimal y obtained from Eq. (1)
(yo*xio now are ®xed numbers not variables). The opti-
mal solution to Eq. (10) yields the maximum value of

aj=1
n l̂j*. If we obtain an optimal solution with

aj=1
n lj*>1, then we change the objective of Eq. (10) to

minimization and replace aj=1
n l̂jR1 with aj=1

n l̂jr1 and

denote the corresponding optimal value of aj=1
n l̂j by

aj=1
n l̂j**. We then have:

Theorem 8. (i) Given the existence of an optimal

solution with aj=1
n lj* < 1 in Eq. (1), the RTS at

DMUo are CRS if and only if aj=1
n l̂j*=1, and IRS if

and only if aj=1
n l̂j*<1; (ii) given the existence of an

optimal solution with aj=1
n lj*>1 in Eq. (1), the RTS at

DMUo are CRS if and only if aj=1
n l̂j**=1, and DRS

if and only if aj=1
n l̂j**>1.

Proof. See Ref. [7]. q

All possible optimal values or intervals of aj=1
n lj*

can be determined by a Eq. (10)-like formulation, if
the value of aj=1

n lj* is continuous. For instance, the
intervals for aj=1

n lj* for DMU5 and DMU6 are, re-

spectively, [5/12, 1/2] and [85/48, 15/6] (see Table 3). It
is obvious that theorems 6, 7 and 8 work on the same
principle.

5.3. Direct treatment

The above three modi®ed RTS methods (theorems
6, 7 and 8) deal with the multiple optimal solutions in
DEA formulations directly in the sense that they try to
determine all optimal solutions by intervals and use

the upper and lower bounds to estimate the RTS.
Next, we will provide some indirect modi®cations

which try to avoid the e�ect of multiple optimal DEA

solution on RTS estimation. On the basis of corollaries
2 and 3, we know that multiple optimal solutions have
nothing to do with the RTS estimation for IRS and

DRS DMUs. Therefore we focus on characterizing
RTS on the CRS DMUs when we make modi®cations
to the CCR and BCC RTS methods.
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By the help of the scale e�ciency index method, Zhu

and Shen [15] introduce a very simple approach to

eliminate the need for examining all alternate optima

when employing the CCR RTS method. That is,

Theorem 9. (i) y* = b* if and only if CRS prevail on

DMUo; otherwise, if y*$b* then (ii) aj = 1
n lj* < 1 if

and only if IRS prevail on DMUo; (iii) aj = 1
n lj*>1 if

and only if DRS prevail on DMUo.

Thus in empirical applications, we can explore RTS

in two steps. First, select all the DMUs that have the

same optimal values to Eqs. (1) and (3) regardless of

the value of alj*. These DMUs are in the CRS region.

Next, use the value of alj* (in any CCR outcome) to

determine the RTS for the remaining DMUs. We ob-

serve that in this process we can safely ignore possible

multiple optimal solutions of lj. For example, although

some alj* are less than one in DMU2 and DMU4, the

two DMUs have the same CCR and BCC e�ciency

scores. Therefore by theorem 9(i), CRS prevail.

Note that this new CCR RTS method requires the

solution of the BCC model. However, if y* = 1 in

Eq. (1), then by proposition 3, we immediately know

that CRS prevail. Thus, we only need to solve the

BCC model for those DMUs with y* < 1 and

aj=1
n lj*$1 in Eq. (1) and then use theorem 9(i). Note

also that it is not necessary to compute the optimal

values of aj=1
n l̂j* and aj=1

n l̂j** for Eq. (10).

Note that the multiple optimal lambda values are

caused by the presence of DMU2 which belongs to set

E 0. Nevertheless if we exclude DMU2 from the refer-

ence set, then DMU4 will be declared as having IRS

because the unique solution of l1*=5
21, l3*=11

21 and

aj=1
6 lj*=16

21. Therefore the CRS of DMU4 is related to

the existence of DMU2; removal of DMUs in set E 0

(e.g. DMU2) can alter the CRS region.

Similar to theorem 9, we can readily obtain the fol-

lowing results:

Theorem 10. (i) y* = b* if and only if CRS prevail on

DMUo; otherwise, if y*$b* then (ii) uo*>0 if and

only if IRS prevail on DMUo; (iii) uo* < 0 if and only
if DRS prevail on DMUo.

Thus, with the assistance of the CCR e�ciency
score, possible alternate optimal solutions in Eq. (4)

no longer a�ect the determination of RTS for each
DMU. The entire RTS intervals for uo* need not be
computed, i.e. that y* = b* includes all instance (if

any) where uo* has alternate signs and the remaining
case (y*$b*) must have uo*'s of one sign.
We note that among the three basic RTS methods,

the only drawback to the scale e�ciency index method
seems to be the requirement of three computational
runs, i.e. solving three DEA models. However this
method does have the advantage of being una�ected

by alternate optima. Table 4 summarizes the additional
requirements of the modi®cations to the original CCR
and BCC RTS methods. This enables us to choose a

proper RTS method according to di�erent application
situations. For example, if both CCR and BCC models
are employed in an application, then we may choose

``CCR-2'' or ``BCC-3''. If only the CCR model is
employed, then ``CCR-1'' may be the better choice.
Finally, if we use BCC-like RTS methods, we should

note the fact that in real world situations, n (the num-
ber of DMUs) is much larger than m + s.
Consequently, the number of constraints in the DEA
dual models, in say, Eqs. (4), (8) and (9), becomes

much larger than that in the DEA primal models, in
say, Eqs. (1), (3) and (10). For an ordinary linear pro-
gramming algorithm, there can be a considerable

di�erence between DEA primal and dual models in
terms of algorithmic e�ort and computation time when
n becomes very large [24]. For an interesting counter-

argument the reader is referred to Ref. [25].

6. Concluding remarks

The current paper reviews the three basic RTS
method and their modi®cations. The purpose of this

development is to clarify the relations and nature of

Table 4

The comparison of modi®cations to the CCR and BCC RTS methods

Modi®cation Source Additional requirements

CCR-1 Theorem 8 (see also Ref. [7]) calculate two Eq. (10)-like linear programming problems

CCR-2 Theorem 9 (see also Ref. [15]) calculate BCC model (Eq. (3) or Eq. (4))

BCC-1 Theorem 6 (see also Ref. [13]) calculate two Eq. (8)-like linear programming problems

BCC-2 Theorem 7 calculate two Eq. (9)-like linear programming problems

BCC-3 Theorem 10 calculate CCR model (Eq. (1) or Eq. (2))
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di�erent existing RTS methods and further to enable

DEA users to select a proper RTS method.

It can be seen that, in fact, there exist three basic

RTS methods and all the other approaches are modi®-

cations developed for the purpose of dealing with mul-

tiple optimal solutions in DEA models. It can also be

seen that possible alternate optimal solutions only

a�ect the estimation of RTS on DMUs which should

be classi®ed as CRS. Also, in terms of computational

e�orts, the RTS method proposed by Zhu and

Shen [15] which is the combination of the CCR RTS

method and the scale e�ciency method is relatively

easy to apply.

On the other hand, the optimal tableau of the BCC

model (Eq. (3) or Eq. (4)) provides some information

on RTS. In fact, when solving the BCC model for a

DMUo, the reference set (i.e. basis), does not include

both IRS and DRS BCC e�cient DMUs. As

shown [26], there are ®ve categories for the reference

set (a facet of the BCC e�cient frontier): (a) IRS

DMUs; (b) a mixture of IRS and CRS DMUs; (c)

CRS DMUs; (d) a mixture of CRS and DRS DMUs

and (e) DRS DMUs. Thus, DMUo should exhibit IRS

if reference set belongs to category (a) or (b); CRS if

reference set belongs to category (c) and DRS if refer-

ence set belongs to category (d) or (e). The above

results are obvious in Fig. 1. Therefore it would appear

that one only needs to estimate the RTS for the

DMUs in set E and all the other DMUs' RTS can be

obtained from their reference sets.

Note that the core of the scale e�ciency index

method is the comparison of CRS, VRS and NIRS

frontiers. Thus we may impose aj=1
n ljr1 rather than

aj=1
n ljR1 in Eq. (1) and obtain an DEA model satisfy-

ing NDRS. As a result, we obtain another scale e�-

ciency index method by using Eqs. (1) and (3) and this

new NDRS DEA model [18].

In fact, the RTS of a DMU are strongly related to

the positions of the e�cient DMUs. For example, in

the sample data set, if we adjust DMU3 to (8, 2, 2)

while the CCR e�cient frontier does not change, IRS

will prevail at DMU4. Therefore the sensitivity of RTS

would be an interesting topic for further research. The

sensitivity issue seems to be related to changes in the

e�cient frontier (some e�cient DMUs become ine�-

cient) and changes of position of the e�cient DMUs

along the frontiers.

Finally we have discussed RTS estimation in terms

of input-based DEA models. Similar developments

hold for the output-based DEA models. Furthermore,

the RTS results for cone ratio DEA models can be

addressed in a similar way without much additional

e�ort (see Ref. [27] for the cone ratio DEA model).
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