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Abstract Ions confined using a Paul trap require a stable,

high voltage and low noise radio frequency (RF) potential.

We present a guide for the design and construction of a he-

lical coil resonator for a desired frequency that maximises

the quality factor for a set of experimental constraints. We

provide an in-depth analysis of the system formed from a

shielded helical coil and an ion trap by treating the system

as a lumped element model. This allows us to predict the

resonant frequency and quality factor in terms of the physi-

cal parameters of the resonator and the properties of the ion

trap. We also compare theoretical predictions with experi-

mental data for different resonators, and predict the voltage

applied to the ion trap as a function of the Q factor, input

power and the properties of the resonant circuit.

1 Introduction

Trapped ions are a powerful tool which have many appli-

cations such as mass spectrometry [1] and frequency stan-

dards [2, 3], whilst also being recognised as a leading con-

tender for the practical implementation of quantum informa-

tion processing [4–6] and quantum simulations [7–10]. To

trap ions within a Paul trap, a high radio frequency voltage

is applied to electrodes in order to provide the required elec-

tric potential. A helical resonator allows impedance match-

ing between a radio frequency source and an ion trap, en-

abling high voltages while reducing the noise injected into

the system. These properties make the resonator an impor-

tant device not only in ion trapping but also in a wide range
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of physical sciences including ultra high frequency (UHF)

mobile communication systems [11], spin resonance spec-

troscopy [12] and measuring the dielectric properties of ma-

terials [13].

An empirical study of shielded helical coil resonators

was performed by Macalpine and Schildknecht [14] who

considered isolated operation at a self-resonant frequency

due to the coil inductance and shield capacitance. In con-

trast, we consider a shielded helical coil connected to an

ion trap where the resonant frequency will be determined by

the whole system. Macalpine and Schildknecht [14] showed

that, when tuning a resonator with an external capacitance,

the Q factor would vary with the tuned resonant frequency,

however, they did not predict this resonant frequency or the

effect of a lossy (resistive) capacitance on the Q factor. Due

to these limitations, when connecting an ion trap to a helical

resonator the predications of Macalpine and Schildknecht

[14] for the resonant frequency and Q factor can deviate by

orders of magnitude from those observed. In this paper, we

will provide reliable predictions for the resonant frequency

and Q factor for a shielded helical coil connected to an ion

trap impedance. We also provide a design guide which al-

lows a helical resonator to be constructed with the highest

possible Q factor for the constraints of a particular exper-

iment. We also discuss the process of impedance matching

with a helical resonator and predict the voltage applied to

the ion trap as a function of the Q factor, input power and

the properties of the resonant circuit.

2 Trapping charged particles

Paul traps [1], which are a prime candidate for quantum

information processing [4–6], trap ions using a radio fre-

quency (RF) voltage applied to some of the trap electrodes
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Fig. 1 (a) Diagram showing a
quadrupole Paul trap. The
ponderomotive potential due to
the RF and ground electrodes
provide confinement in all three
dimensions. All electrodes are
hyperbolically shaped.
(b) A two-layer linear Paul trap
with two rod RF electrodes and
two segmented RF ground
electrodes providing transverse
confinement with static voltages
present to provide confinement
in the axial dimension.
(c) Diagram showing a five-wire
surface Paul trap. Here the ion is
confined in a potential created
by the surface electrodes at the
mid-point between the two RF
strips. Control static voltage
electrodes are present to enable
confinement along the axial
direction of the trap. This
enables ions to be transported
along the length of the trap [17]

in order to obtain a suitable ponderomotive pseudopoten-

tial. Figure 1 shows examples of different types of Paul trap

designs. The potential used to trap an ion of mass, m, and

charge, e, is given by [15, 16]

ψ =
e2V 2

0 η2

4mr4Ω2
rf

(

x2 + y2
)

, (1)

where Ωrf is 2π times the RF frequency in hertz (throughout

the text, when analysing the overall resonant circuit we will

refer to Ωrf as ω or ω0 when the circuit is on resonance),

r is the distance from the centre of the trap to the nearest

electrode and V0 is the amplitude of the RF voltage applied

to the trap. η is a geometric efficiency factor [16] which is

equal to one for a perfectly hyperbolic geometry (similar to

the trap shown in Fig. 1(a)) and less than one as the geometry

strays from this perfect form.

The secular frequency of an ion trapped inside the pon-

deromotive pseudopotential, given in (1), is then given by

[15, 16]

ωs =
eV0η√

2mr2Ωrf

. (2)

Linear ion traps (as seen in Fig. 1(b) and (c)) possess

a linear node in the produced ponderomotive potential. To

provide ion confinement along this node, additional static

voltages are applied to certain electrodes. The equations

of motion for an ion inside this potential are given by the

Mathieu equations [1], which feature stability parameters.

Stable motion of an ion in the trapping field will only oc-

cur over certain ranges of these parameters and is depen-

dent on the initial position and momentum of the ion. It

can be seen from (1) and (2) that a high voltage will lead

to a deep trapping potential and a high secular frequency.

A deep potential provides long ion lifetimes and large sec-

ular frequencies typically allow for faster ion transportation

[17], more efficient ground state cooling and shorter quan-

tum gate times.

The application of high voltages must, however, be lim-

ited to avoid both electrical breakdown or experimentally

intrusive temperatures due to the power dissipated in the ion

trap. It is important to know the voltage being applied to

the ion trap for a given input power. A combined ion trap–

resonator system can be represented as a series LCR circuit

with resonant frequency ω0 = 1√
LC

and Q = 1
R

√

L
C . The

voltage over the ion trap will be approximately equal to the

voltage over the capacitor when the capacitance of the ion

trap dominates the overall capacitance of the circuit. At res-

onance the peak voltage over the capacitor is equal to the

peak voltage over the inductor. The instantaneous voltage of

the inductor is

V (t) = L
dIpeak sin(ω0t)

dt
= Lω0Ipeak cos(ω0t), (3)

where Ipeak is the peak current and L is the coil induc-

tance. The peak voltage over the inductor occurs when

cos(ω0t) = 1, hence the peak voltage over the ion trap can

be approximated as
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Fig. 2 A resonator end cap
showing the antenna coil
together with a diagram
showing its location in a fully
constructed helical resonator

Vpeak ≈ LIpeakω0. (4)

Power is only dissipated in the system through the resis-

tance R, thus the power dissipated is

Pd = RI 2
rms =

1

2
RI 2

peak, (5)

where Irms = 1√
2
Ipeak is the root-mean-square current. Us-

ing these equations and Q = 1
R

√

L
C , we find that

Vpeak ≈ κ
√

2PQ, (6)

where

κ =
(

L

C

)
1
4

(7)

and

Vrms =
Vpeak√

2
≈ κ

√

PQ.

This shows that the output voltage of a resonating system

can be predicted given the input power, P , the capacitance,

C, inductance, L, and quality factor Q of the system. Ap-

plying RF voltages via a high Q factor resonator reduces

the power in unwanted frequencies being applied, reducing

their contribution to motional heating of ions [18], and also

provides higher voltages per input power, resulting in deeper

trapping potentials and higher secular frequencies.

The impedance of the ion trap and connections are typ-

ically large enough to contribute to the response of an

LCR resonator, and thus must be considered when design-

ing a resonator to operate at a given frequency. Consider-

ing ω0 = 1√
LC

and Q = 1
R

√

L
C , in order to maximise the Q

factor for a fixed frequency ω0 we must minimise C while

maximising L. The use of a helical coil allows for an induc-

tor to be made with a low self-capacitance and resistance,

enabling the resistance and capacitance of the ion trap and

connections to dominate the R and C of the LCR resonator

and thus maximising the Q factor.

3 Circuit model

3.1 Impedance matching via inductive coupling

RF voltages can be applied by direct connection from the

ion trap to an RF amplifier; however, this can cause multi-

ple issues. A mismatch of impedance between the amplifier

and the ion trap will cause the RF signal to be reflected from

the ion trap, resulting in power dissipated over the output

impedance of the amplifier. This will require an RF ampli-

fier with a much greater power handling than for a matched

system. The amplifier will also inject noise into the ion trap

which can cause heating of the ion [18]. Passing the out-

put of the amplifier through a resonator will filter this noise,

reducing the contribution to ion heating. In order to max-

imise the filtering of this noise, the resonator must have a

high Q factor, and hence a narrow bandwidth. Direct con-

nection of a resonator to the amplifier will reduce the res-

onator’s Q factor due to the damping effect of the finite out-

put impedance of the amplifier. The RF amplifier can, how-

ever, be connected to the resonator through a capacitive or

inductive coupling, which decouples the resonator from the

resistive output impedance of the amplifier, allowing for a

resonator with a high Q factor. This technique also allows

impedance matching of the ion trap and RF amplifier by al-

tering the coupling, thus reducing the reflected power, and

hence the required power for a given voltage.

For inductive coupling an antenna coil is attached to an

end cap and placed directly and centrally above the main he-

lical coil as shown in Fig. 2. By altering the physical proper-

ties of this coil, impedance matching between the resonator

and the radio frequency source can be achieved.

To understand how altering the physical properties of

the antenna coil allows impedance matching, the resonator

is represented by two electrically isolated circuit loops as

shown in Fig. 3. Here the inductor, L1, represents the an-

tenna coil and the inductor, L2, represents the main coil. The

voltage source Vs and impedance Z0 represent the output of

an RF amplifier. The two coils are placed in close proxim-
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Fig. 3 (a) Circuit of a resonator with attached load (inside dashed box)
and signal generator (outside dashed box) represented as two physi-
cally separate circuit loops coupled together by the antenna coil induc-
tor, L1, and the main coil inductor, L2. The impedance of the ion trap
is shown as a load impedance, ZL. The source voltage and impedance
(outside dashed box) are shown as Vs and Z0, respectively. (b) The
circuit from (a) is represented as the Thévenin equivalent impedance,
Zin, along with the source voltage and impedance

ity to each other creating a coupling between the two circuit

loops due to the mutual inductance.

The voltage in each circuit loop is given by

V1/2 = iωL1/2I1/2 + iωMI2/1, (8)

where M = k
√

L1L2 is the mutual inductance of the two

coils and k is the coupling. The equivalent circuit is given

in Fig. 3(b) where the impedance Zin describes the over-

all impedance of the resonator (and ion trap), which can be

adjusted by altering the physical parameters of the antenna

coil enabling an impedance match to the RF amplifier (Vs

and Z0). The overall impedance, Zin, of the two circuits, as

shown in Fig. 3, is then

Zin = V1/I1 = iωL1 + iωM
I2

I1
. (9)

Using

V2 = −ZLI2 (10)

and (8), we obtain

(ZL + iωL2)I2 + iωMI1 = 0. (11)

Rearranging (11) for I2/I1 gives

I2

I1
=

−iωM

ZL + iωL2
. (12)

Inserting (12) into (9), we can describe the overall

impedance as

Zin = iωL1 +
ω2M2

iωL2 + ZL
. (13)

Fig. 4 The ratio of number of antenna turns N to winding pitch τ , re-
quired to impedance match the load to a 50 ohm source is plotted as a
function of the antenna coil diameter. This is shown for the case when
the combined resonator–ion trap load is high (solid black line, a resis-
tance of 15 ohm and a capacitance of 100 pF), and for the case when
the load is small (dashed black line, a resistance of 0.2 ohm and a ca-
pacitance of 1 pF). In both cases, a resonant frequency of ω = 2π × 20
MHz is used

We can approximate the antenna coil’s inductance as

L1 = µ0NA
τ , where τ , N and A are the winding pitch, num-

ber of turns and cross-sectional area of the coil, respectively,

and µ0 is the permittivity of vacuum, giving

Zin =
µ0NA

τ

(

iω +
k2L2ω

2

iωL2 + ZL

)

. (14)

This shows that the input impedance of the resonator can

be altered by simply adjusting the physical parameters of

the antenna coil and, thus, match it to that of the voltage

source. To illustrate how the physical parameters have to be

altered to achieve a matching, (14) has been plotted for two

common cases. The first case (solid black line) is when the

combined resonator–ion trap load is high (a resistance of

15 ohm and a capacitance of 100 pF) and the second (dashed

black line) when the load is small (a resistance of 0.2 ohm

and a capacitance of 1 pF). In both cases, the traps are driven

at a frequency of ω = 2π ×20 MHz. Figure 4 shows the ratio

of number of antenna turns to winding pitch as a function of

the diameter of the coil required to impedance match the

load to a 50 ohm source. Figure 5 then illustrates how an

existing antenna coil can be physically stretched (increasing

the winding pitch of the coil) to impedance match to a source

load. In Fig. 5, the number of turns is kept constant at 3 and

the diameter is kept constant at 3 cm.

Figure 5 shows that in order to impedance match a source

to a high impedance trap load (solid line) the antenna coil

must be stretched compared with that required to match a

low impedance trap load (dashed line).

3.2 Description of resonant frequency and Q factor using

an LCR circuit model

In order to calculate the Q factor and resonant frequency ω0,

the resonator is modelled as a lumped element circuit, shown
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Fig. 5 The resonator input impedance, Zin, is shown as a function of
the winding pitch, τ , of the antenna coil. This is shown for the case of
a high combined resonator–ion trap load (ZL given by a resistance of
15 ohm and a capacitance of 100 pF) shown by the solid black curve
and for the case of a small load (ZL given by a resistance of 0.2 ohm
and a capacitance of 1 pF) shown by the dashed black curve. In both
cases, a resonant frequency of ω = 2π × 20 MHz is used and the num-
ber of turns and coil diameter are kept constant at 3 and 3 cm, respec-
tively

in Fig. 6(a), which is simplified via Fig. 6(b) to Fig. 6(c) by

creating Thévenin equivalent impedances, where each com-

ponent is defined in the table in Fig. 6(d).

The coil impedance will depend on the mutual coupling,

ZM , which can be written as

ZM = iXLc +
ω2M2

iωLa + Z0
(15)

by using the same method employed to arrive at (13), where

XLc = Lcω is the reactance due to the inductance of the

main coil. However, with the typical values required by ion

trapping of RF drive frequency between ω ≈ 2π × 10 MHz

and 2π × 50 MHz, Lc ≈ La ≈ 1 mH and Z0 = 50 ohm, it

can be shown that |ZM | ≈ iXLc . Thus, we can express:

Zcoil =
(

1

(iXLc + Rc)
+

1

iXCc

)−1

. (16)

Summing the trap capacitance and resistance in parallel with

the wire capacitance and shield capacitance, we can write

the ZE impedance as

ZE =
(

1

(iXCt + Rt)
+

1

iXCw

+
1

iXCs

)−1

, (17)

where XCt = 1
Ctω

is the reactance of the trap capacitance

and XCw and XCs are the reactance due to Cw and Cs , re-

spectively.

The total impedance of the resonator, Ztot, can then be

expressed as

Ztot = Zcoil + ZE + Rs + Rj . (18)

We can express both Zcoil = Rcoil + iXcoil and ZE =
RE + iXE , where Rcoil and RE are the equivalent series re-

sistance of the coil and experimental system, respectively,

and Xcoil and XE are the equivalent series reactance for

Fig. 6 Diagram showing the electrical equivalent of the overall reso-
nant circuit. Part (a) shows the lumped element model electrical equiv-
alent. Part (b) shows the simplified circuit. Part (c) shows the set of
serial impedances the resonator can be represented as

the coil and experimental system, respectively. At resonance

Ztot will be purely resistive when

Xcoil + XE = 0. (19)

From the calculated Thévenin equivalent impedances from

Fig. 6 it can be shown that at resonance,

iω0LC

1 − LCCCω2
0

+
1

iω0(Cs + Ct + Cw)
= 0. (20)

This equation can be used to calculate the resonant fre-

quency:

ω0 =
1

√
(Cs + Ct + Cw + CC)LC

. (21)
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The Q factor is defined as Q ≡ ω0
Energy stored

Power dissipated . The en-

ergy stored in the resonator will oscillate between the in-

ductance of the coil and the combined capacitances in the

circuit. The total energy stored will be equal to the peak en-

ergy stored in the inductor ELc = I 2
peakLc/2 = I 2

rmsLc and

the power dissipated in the system is Pd = I 2
rmsRESR where

RESR is the equivalent series resistance of the circuit and is

given by the real part of (18). It can then be shown that the

Q factor of a resonator is given by the following:

Q =
XLc

RESR
. (22)

From (18), RESR can be derived as

RESR =
RcX

2
Cc

R2
c + (XCc + XLc)

2
+

RtX
2
R

R2
t + (XR + XT )2

+ Rs + Rj . (23)

For helical coils with a low self-capacitance (XLc ≪
XCc) and low resistance (Rc ≪ XCc), and for an ion trap

with low resistance such that Rt ≪ (XCt +XCw +XCs ), this

can be approximated as

RESR ≃ Rj + Rc + Rs + Rtα
2, (24)

where α = a
a+1 , a = XR

XT
= Ct

Cs+Cw
is the ratio of the trap ca-

pacitance to the combined capacitance due to the connect-

ing wires and coil shield. For a → 0 the capacitance of the

shield and wires shunt the RF current, and there is negligible

contribution from the resistance of the ion trap. For a → ∞
the trap capacitance dominates, giving a maximum contri-

bution of the ion traps resistance.

It should be noted that, as high Q factors are obtained

when maximising the coil inductance and minimising the

system capacitance, the effect of wire and feed-through in-

ductance will be negligible compared to a typical coil induc-

tance and, as such, has not been included in the model. This

is not true of stray capacitances which can be on the same

order of magnitude as the ion trap capacitance and can be

treated as part of the wire capacitance Cw .

3.3 Resonator capacitance, inductance and resistance

In order to construct a resonator to operate at a desired fre-

quency, the capacitance of the wires and ion trap CΣ =
Cw + Ct , which depend on the configuration of the ion trap

and experimental setup, can be measured at the vacuum sys-

tems feed-through with a capacitance meter. Once these are

known, we must construct a shielded coil, as shown in Fig. 7,

with the necessary capacitance Cc and Cs and inductance

LC . All equations in this section assume the use of SI units

unless otherwise stated. The self-capacitance of the coil in

units of farads, given empirically by Medhurst, is [19]

CC ≃ (Hd) × 10−12, (25)

Fig. 7 Outline design of a resonator, showing the shield diameter D,
shield height h, coil diameter d , coil height b, winding pitch τ and the
coil wire diameter d0

where d is the diameter of the coil and H is given empiri-

cally by, H = 11.26 b
d + 8 + 27√

b/d
F/m.

The capacitance present between the coil wire and the

outer shield in units of farads is given empirically by [14]

Cs ≈ bKCs (d,D), (26)

where

KCs (d,D) = 39.37
0.75

log(D
d )

× 10−12 F/m,

d is the diameter of the coil, D the inner shield diameter and

b is the height of the coil.

The inductance of a coil inside a shield in units of henrys,

for b/d ≥ 1, is given empirically by [14]

LC ≈ bKLc(d,D, τ ), (27)

where

KLc(d,D, τ ) = 39.37
0.025d2(1 − ( d

D )2)

τ 2
× 10−6 H/m

and τ is the winding pitch of the coil.

We can approximate the required height of a coil, b, for a

resonator to operate at frequency ω0, for chosen parameters

of d , D and τ and for a set of measured capacitances CΣ =
Cw + Ct . The coil’s self-capacitance, given by (25), signif-

icantly complicates the solution for coil height, b; however,

a simpler solution can be found by approximating the self-

capacitance as a linear equation. Examining (25), it can be

seen that the maximum of the nonlinear term 27√
b/d

occurs

when b/d < 1. As we require that b/d ≥ 1, a simple linear

approximation for the coil self-capacitance can be found by

setting the
√

b/d term to 1. This gives an overestimate of

the self-capacitance but allows for an approximate solution

for the coil height which will give a resonator with a reso-

nant frequency typically within 2% of the desired frequency.

The linear approximation to the coil self-capacitance is,

CC ≃ Kcbb + Kcd , where Kcb = 11.26 × 10−12 F/m and

Kcd = 35d × 10−12 F. Substituting this approximation with
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(27) and (26) into (21) and rearranging for b in units of me-

tres, we obtain:

b ≃
CΣ + Kcd

KCs + Kcb

×

(√

KCs + Kcb

(CΣ + Kcd)2KLcω
2
0

+
1

4
−

1

2

)

m. (28)

In order to estimate the resistance of the resonator, one

must consider the path along which the current flows and

how it flows along this path. The current will flow along

the surface on its path with a depth, δ, given by the skin

depth of the coil material (in this case, copper) at the reso-

nant frequency of the resonator. However, additionally, the

current in the shield must form a spiral which acts to form

an equal and opposite magnetic field as that produced by the

coil (Lenz’s law). The distance around the shield the current

will travel, ls , can be calculated by equating the magnetic

field, created by the coil at the shields surface:

Bfield =
µIlc

4π(D − d)2
, (29)

to that created by the shield Bshield:

Bshield =
µNsI

b
, (30)

where lc is the unwound length of the coil.

This can then be solved to find the number of turns the

current undergoes in the shield, Ns :

Ns =
blc

4π(D − d)2
. (31)

The distance the current will travel from the bottom of

the shield to the top of the shield can then be calculated as

ls = Ns

√

(

π2D2
)

+
(

b

Ns

)2

. (32)

The resistance of the coil and the shield can now be cal-

culated using the relationship between resistance, R, and re-

sistivity, ρ:

R =
ρls

A
, (33)

where l is the length along which the current travels and

A the area through which the current travels. We can now

describe the resistance of the coil and shield as

Rc =
ρlc

d0πδ
, (34)

Rs =
(

Nsρls

bδ

)

, (35)

where d0 is the diameter of the coil wire.

We must also take into account additional resistances ac-

quired by attaching the coil to the shield. The coils in this

paper are attached to the shield by soldering them onto a

BNC bulkhead located at a distance D
4 from the top of the

shield as indicated in [14] and Figs. 7 and 12. The solder

joint created by this method will provide an additional re-

sistance. The resistance of the connection at an angular fre-

quency, ωn, is given by

Rn =
ρl

πdj δn
, (36)

where ρ is the resistivity of the material, l is the length

through which the current flows, δn is the skin depth at an

angular frequency ωn and dj is the diameter of the solder

joint. Due to the effects of skin depth at high frequencies, a

simple DC resistance measurement of the joint connecting

the coil to the shield is not useful. Instead, an AC resistance

measurement must be made of the joint. Equipment ex-

ists (for example, ISO-TECH: LCR819) which can perform

resistance measurements at frequencies of approximately

100 kHz and this measurement can then be used to infer the

resistance of the joint at a higher frequency, in this case the

resonant frequency of the resonator. The measurement fre-

quency needs to be chosen so that the skin depth is smaller

then the radius of the joint. By defining γ = (ρl)/(πdj ),

(36) can be rewritten as

Rn =
γ

δn
. (37)

By using the frequency independent parameter, γ , it is

possible to show for two different angular frequencies, ω1

and ω2,

R1δ1 = R2δ2, (38)

and rearranging using δn = 2
√

(ρ)/(ωnµ0) gives the resis-

tance at a resonant angular frequency ω0 in terms of the re-

sistance measured at an angular frequency ω1:

R0 = R1

√

ω0

ω1
. (39)

This derivation is only valid in a frequency regime where

the solder joint is larger than the skin depth and when the

resistivity, ρ, of the material is constant over the two fre-

quencies used. This is the case for the resonators made in

this paper as the skin depth is of the order of 10 µm and the

solder joint size is on the order of a few millimetres.

Equation (39) shows that by taking a resistance measure-

ment at one frequency it is possible to calculate the resis-

tance at another frequency. This method was used to calcu-

late the resistance of the connection made between the main

coil and the shield at the resonators resonant frequency.

4 Resonator design guide and analysis

4.1 Design guide

This section will provide a design guide which will enable a

helical resonator to be constructed with a Q factor close to
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that of the highest Q possible for a given set of parameters

consisting of the desired resonant frequency, ω0, ion trap ca-

pacitance, Ct , and resistance, Rt , wire capacitance, Cw , and

the size constraints for the resonator. The helical resonator

may require different construction techniques depending on

priorities set by these constraints; however, there are some

design issues universal to any resonator that must be consid-

ered.

When designing a resonator, it is important that certain

constraints are met for the resonant frequency and Q fac-

tor to be predicted by the theory. The resonant frequency

depends on the inductance, which is predicted by (27). For

this equation to be valid, the coil height should be greater

than the coil diameter, b ≥ d , and the coil diameter should

be greater than the wire diameter, d ≥ d0.

We can see from (27) that both the coil diameter and the

winding pitch have a strong (d2 and 1/τ 2) effect on the in-

ductance. It is important to ensure the coil is made with pre-

cision for the winding pitch and the diameter of the coil to

be constant along its length. This dependence also requires

that the coil is not susceptible to mechanical vibrations. The

strong effect the winding pitch, τ , has on the inductance

will result in vibrations of the coil causing the inductance

and hence resonant frequency of the resonator to become

time dependent. In order to minimise vibrational effects, the

coil should be constructed to be rigid and should be firmly

mounted inside the shield. Finally, the coil must be mounted

centrally inside an outer shield of height B ≥ b + D/2 (we

would typically recommend B = b + D/2), where b is the

coil height and D is the shield diameter, in order to keep the

coil fringe effects from reducing the coil’s inductance and

increasing the shield capacitance [20].

In order to achieve high Q factors, the resonator must be

built to minimise the resistance of the shield, the coil and

solder joints. The coil and shield should be made from a

highly conductive material (such as copper) which is thicker

than the skin depth at the desired operating frequency. Any

solder joints should be made with a clean oxide free sur-

face before soldering, with both parts of the joint reaching

a sufficient temperature to ensure good solder flow between

them.

A low resistance for the helical coil can be obtained by

ensuring the use of a large diameter wire, d0. The effect of

the wire diameter on the Q factor can be seen by plotting

the ‘largest’ Q factor vs wire diameter d0. We can define

the ‘largest’ Q factor available, Qlarge, for a given set of pa-

rameters, ω0, Ct , Cw , Rt and d0, where the coil diameter, d ,

and shield diameter, D, are chosen to maximise the Q fac-

tor. Figure 8 shows a plot of Qlarge vs d0 for three traps of

Ct = 5 pF and Rt = 5 ohm, Ct = 20 pF and Rt = 15 ohm,

Ct = 50 pF and Rt = 15 ohm all for a resonant frequency

of ω0 = 2π × 10 MHz. There is an asymptotic increase to

higher Q factors for large values of d0. Even for high resis-

tance, and capacitance traps modest Q factors of ≈100 can

Fig. 8 Q factor for values of d and d/D that maximise the Q fac-
tor for varying wire diameter, d0, for traps D (solid), H (dashed) and
I (dot-dashed) from Table 1 at ω0 = 2π × 10 MHz

Fig. 9 D vs d0 for the D value that achieves a Q factor of Qlarge

(solid line) and the minimum D value that achieves a Q factor of Q90%

(dashed line) for trap D from Table 1 at ω0 = 2π × 10 MHz

be achieved; however, this requires the coil to be formed

from a thick rod. The upper limit to d0 will result from an

intersection of the limits that the coil height must be larger

than the coil diameter, b/d ≥ 1, and the coil diameter must

be larger than the wire diameter, d > d0. Increasing d0 will

increase the Q factor but will also increase the size of the

resonator. It can be seen in Fig. 9 how the shield diameter re-

quired for Qlarge (solid line) rapidly increases with d0. How-

ever, for a Q factor 90% of Qlarge, Q90%, a smaller shield

diameter can be used. The minimum D for Q90% is shown

in Fig. 9 (dashed line). It is clear that making a resonator

with a Q factor of Q90% can reduce the size required for the

resonator.

When designing a helical resonator for a specific experi-

ment (for example a particular microfabricated ion trap [21])

it is useful to examine contour plots of the Q factor as a

function of coil diameter, d , and the ratio of the coil diame-

ter to the shield diameter, d/D, as shown in Figs. 10 and 11.

Using these plots, it is possible to choose values of d and

d/D that will optimise the Q factor for a set of parameters.

These plots can be obtained using the parameters for ω0, Ct ,

Cw , Rt for a given experiment and choosing values of d0, τ

and measuring or estimating Rj . The Q factor Q(d,d/D)

can be obtained by calculating:
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Fig. 10 Contour plots for traps A, B and C (specifications in Table 1) shown for operation frequencies of ω0 = 2π × 10 MHz, ω0 = 2π × 30 MHz
and ω0 = 2π × 50 MHz. The grey areas indicate where b/d < 1, therefore invalidating the theory

b(d, d/D)—the coil height—by using (28), KCs and KLc

from (26) and (27) and Kcb and Kcd from the approxima-

tion for the coil capacitance.

Cs(d, d/D)—the coil to shield capacitance—by substitut-

ing b(d, d/D) into (26).

Cc(d, d/D)—the coil self capacitance—by substituting

b(d, d/D) into (26).

Rs(d, d/D)—the shield resistance—by using (35).

Rc(d, d/D)—the coil resistance—by using (34).

RESR(d, d/D)—the total resistance—by using (24).

Lc(d, d/D)—the coil inductance—by substituting b(d,

d/D) into (27).

Q(d,d/D)—the Q factor—by substituting Lc(d, d/D)

and RESR(d, d/D) into (22).

Figures 10 and 11 show contour plots for parameters cor-

responding to traps from Table 1 for three resonant frequen-

cies with d0 = 5 mm and τ = 2d0. While larger values of

d0 would result in larger Q factors, and a larger Qlarge, the

values for d0 and τ have been chosen as they are typical for

a hand wound coil, which will be discussed in detail later.

Both plots feature a grey shaded region indicating where the

condition that b/d ≥ 1 (from (27)) is not valid. Within this

region, the coil inductance will deviate from that predicted

by (27), resulting in a deviation from the predicted ω0 and Q

factor. An expansion to this theory for short helical coils or

wire loops could be implemented by utilising an appropriate

equation for the inductance.

The experimental size restrictions will strongly dictate

the achievable Q factor of the resonator. The values of d and

d/D must be chosen to ensure that the shield diameter D

and the shield height B will be within these size constraints,

otherwise different values for d , d/D or d0 will need to be

chosen. Figure 10 for traps A to C show contour lines at a

range of Q factors (as labelled) enabling the values of d and

D to be chosen to maximise the Q factor for a given size

constraint. Figure 11 for traps D to I shows contour lines of

Q90% for each set of parameters. The values of d and D can

be chosen within the Q90% contour line to optimise the Q

factor (for a set of parameters ω0, Ct , Cw , Rt , Rj , τ and d0),

while enabling a choice of d and D that minimises the size

of the resonator.

For traps A, B and C Fig. 10 shows that higher Q fac-

tors are achieved when the coil diameter to shield diameter

ratio, d/D, is close to 0. This corresponds to a large separa-

tion between the coil and the shield and hence a small shield
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Fig. 11 Contour plots showing Q90% for each set of parameters cor-
responding to traps D to I from Table 1 for operating frequencies of
ω0 = 2π × 10 MHz (solid lines), ω0 = 2π × 30 MHz (dashed lines)

and ω0 = 2π × 50 MHz (dotted lines). The grey areas indicate where

b/d < 1, therefore invalidating the theory. The value of Q90% is indi-

cated next to the contour line

capacitance. At d/D = 0, the shield diameter, D, would be

infinite and the shield capacitance would be zero, indicating

the resonator is dominated by the trap capacitance. How-

ever, we can see in Fig. 11 that Q factors of Q90% can be

achieved at values of d/D of order 0.5 with larger trap ca-

pacitance enabling larger ratios and hence a smaller shield

diameter D and higher shield capacitance.

While Figs. 8 and 9 show that at large values of d0 high

Q factors may be achieved at a given size constraint, the

construction of such resonators needs to be taken into ac-

count. In order to construct a resonator without specialist

machinery, a wire diameter of approximately 5 mm is rec-

ommended. This wire size is sufficiently rigid not to be

susceptible to mechanical vibrations, while being flexible

enough when heated to be wound by hand into a coil. This

can be achieved by winding the wire around a tube with

notches cut into it to help align the wire to a constant wind-

ing pitch. The size of the resonator can be reduced by using

a small winding pitch, however, a minimum winding pitch

of τ = 2d0 is recommended when winding by hand in order

to keep the error in the winding pitch small. A higher Q fac-

tor could be achieved by using d0 = 10 mm; however, this

Table 1 Specifications of traps used for Figs. 10 and 11

Trap Resistance
in ohm

Capacitance
in pF

A 0.1 5

B 0.1 20

C 0.1 50

D 5 5

E 5 20

F 5 50

G 15 5

H 15 20

I 15 50

would be hard to wind by hand, which can result in large

errors in the winding pitch.

Coils can be constructed using large diameter wire but

may require the use of specialist machinery. It should be

noted that coils could be constructed from tubular material

as current is only carried on the skin of the metal; however,

this would affect the inductance of the coil. Similarly a rect-
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angular cross-section wire could be used to form a coil or

formed by cutting a tube into a coil. In order to predict ω0

and the Q factor reliably, (27) may need to be replaced with

an expression for the inductance suitable for the desired ge-

ometry.

We can summarise:

– A highly conducting material should be used to construct

the resonator (for example, copper).

– The coil wire should be made reasonably thick to provide

mechanical stability and reduce coil resistance. If wind-

ing the coil by hand a wire on the order of d0 ≈ 5 mm is

suggested.

– The winding pitch should be as small and uniform as pos-

sible. If winding the coil by hand, a minimum of τ ∼ 2d0

is recommended.

– A contour plot of Q(d,d/D) can be used to determine ap-

propriate parameters for d and D within size constraints.

– The coil height is calculated from (28).

– The coil height must be greater than the coil diameter for

(27) to be valid.

– The shield height B should be b + D/2.

– The coil and shield should be connected as close to the

vacuum system as possible.

– Any solder joints made should be of low resistance.

4.2 Case study

4.2.1 Resonator construction and measurement

We will now look at how resonator for a typical ion trap ex-

periment can be built without the need for specialist equip-

ment. We will then discuss how the resonant frequency and

Q factor can be measured, while ensuring impedance match-

ing between the RF source and the resonator.

The coil can be wound by hand by using an annealed

copper wire of diameter, d0 ≈ 5 mm. The copper can be

annealed by heating with a blow torch in order to give in-

creased flexibility. Once cooled the copper can be wound,

which will work-harden the copper, creating a rigid coil. To

ensure all the turns are equally spaced, the copper should be

wound around a tube of diameter, d − d0, with notches cut

into the tube to align the wire when winding.

Once the coil is constructed, it should be placed centrally

inside the shield in order to minimise the coil to shield ca-

pacitance Cs . To ensure this, it must be clamped in place at

the end of the coil before soldering the coil to a BNC bulk-

head located in the shield as shown in Fig. 12. This clamp-

ing must be kept in position until the joint to the BNC is

solid enough to support the coil on its own. This BNC bulk-

head can be used to electrically connect the coil to the shield

by connecting a BNC shorting cap. The ground rod is con-

nected in the same way although to the lower BNC bulkhead

shown in Fig. 12. The ground rod must exit the resonator (as

Fig. 12 (a) Picture showing a coil and location of the solder joint used
to make an electrical connection to the shield. This is done with the
use of a BNC bulkhead located at a distance D

4 from the top of the
shield where D is the diameter of the shield. The grounding rod is also
shown. (b) Picture showing a fully constructed resonator. The top hat
is shown on the bottom end cap and is designed to fit around a vacuum
feed-through (in this case, Kurt J. Lesker: EFT 0523052) which con-
nects the main coil and grounding rod to the ion trap. A window is cut
into the top hat to allow the connection between the feed-through and
the main coil and grounding rod to be made. The top end-cap shows
the BNC connection to the antenna coil, this is where the RF signal is
applied to the resonator

shown in Fig. 13) without coming into contact with con-

ducting material. The ground rod and main coil can be held

in place with the use of a non-conducting mesh, as shown in

Fig. 13, to reduce the mechanical stress applied to them from

connection to a vacuum feed-through or other similar load.

The antenna coil used to couple the radio frequency

source to the resonator can be constructed out of 1.5 ±
0.5 mm wire and wound into 3 turns with a winding pitch

of 10 ± 1 mm and diameter of 33 ± 1 mm. This, however,

should be varied in order to match the impedance of the

resonator to the source, as described in Figs. 4 and 5 and

(14). To measure the resonant frequency of the resonator,

a directional coupler (for example, Mini Circuits: ZDC-20-

3) should be placed between the output source port and the

RF input port of a spectrum analyser’s tracking generator

(for example, Agilent: N9320B) as shown in Fig. 14. Al-

ternatively, the spectrum analyser can be replaced by an RF

source and an oscilloscope, as shown in grey in Fig. 14. The

resonator should be connected to the directional coupler and

RF source via the end-cap that hosts the antenna coil shown
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Fig. 13 (a) Picture showing the bottom end cap including the top hat
used to connect the resonator to a vacuum feed-through (in this case,
Kurt J. Lesker: EFT 0523052). The main coil and ground rod can be
seen exiting the resonator and are held in position by a plastic mesh.
The window in the top hat provides access for connecting the main coil
and ground rod to feed-through pins. (b) Picture showing the top end
cap and antenna coil (shown in further detail in Fig. 2)

in Fig. 2. Using the experimental set up shown in Fig. 14,

the resonant frequency results in a minimum in the spec-

tral response of the reflected signal detected by the spectrum

analyser. The pitch and diameter of the antenna coil should

be altered until less than 5% of the applied radio frequency

signal is reflected back to the signal generator from the res-

onator when on resonance. The Q factor of this resonance

is simply measured by dividing the resonant frequency, ω0,

by the full width of the resonance at 1/
√

2 of the maximum

voltage reflection, δω0:

Q =
ω0

δω0
. (40)

Using the method described here, it is possible to mea-

sure the resonant frequency and Q factor of a resonator

when the ion trap is unconnected, which corresponds to

RT and CT being equal to infinity and zero, respectively.

The resonant frequency and Q factor of a resonator with

an ion trap applied across the output can then be measured

by adding the required values of resistance and capacitance

across the output of the resonator. The stray capacitance CW

created between the wires used to connect the trap resistance

and capacitance can be reduced by keeping these wires as

short and as separated as possible.

4.2.2 Experimental analysis of typical resonators

Two resonators were constructed with a range of parameters

as described in Table 2. The theoretical resonant frequencies

of the resonators have been plotted in Fig. 15 as a function of

the trap capacitance, Ct . The theoretical Q factor for these

resonators can be seen in Fig. 16 plotted as a function of the

trap capacitance, Ct , applied to the resonator. All these are

plotted for typical trap resistances, Rt , of 0.1, 1 and 10 ohm,

which is representative of the typical range over which the

resistance of an ion trap can vary depending on what type of

material and fabrication techniques are used.

Fig. 14 Experimental setup
required to measure the resonant
frequency, coupling and Q
factor of a resonator. The
resonator is connected to a
spectrum analyser with a
tracking generator via a
directional coupler such that the
reflected signal from the
resonator is displayed on the
spectrum analyser. Alternative
equipment can be used and is
shown in grey. This comprises
of a signal generator and an
oscilloscope
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Table 2 Specifications of the resonators. The Q factors and frequen-
cies quoted are without the addition of an ion trap load

Resonator A B

Shield diameter D [mm] 108 ± 2 76 ± 2

Shield height h [mm] 120 ± 2 90 ± 2

Coil diameter d [mm] 42 ± 2 46 ± 2

Coil wire diameter d0 [mm] 5.0 ± 0.1 5.0 ± 0.1

Winding pitch τ [mm] 9 ± 1 15 ± 1

Number of turns N 6.75 ± 0.25 4.5 ± 0.25

d/D ratio 0.4 ± 0.2 0.6 ± 0.2

Predicted frequency [MHz] 64+8
−6 78+10

−7

Measured frequency [MHz] 67 ± 0.5 83 ± 0.5

Predicted Q 1970+252
−374 689+46

−115

Measured Q 2176 ± 200 631 ± 60

Fig. 15 The resonant frequencies of resonator A (circles) and res-
onator B (squares) are shown as a function of the trap capacitance they
are attached to. The dashed curves represent the error on this calcula-
tion based on the design errors stated in Table 2. The resonant frequen-
cies were measured for a resistance of 1 ohm; however, we note that
they are actually independent of the resistance

Figures 15 and 16 show that the experimental measure-

ment of the Q factor and resonant frequency over a wide

range of trap loads is consistent with the theory described

in this work. The Q factor of resonator A can be seen to be

higher than that of resonator B as it possesses specifications

which are either optimal or nearer to optimal than resonator

B (depending on the trap load applied). It can be seen that

although the resonator is not optimal for the various ion trap

impedances, the Q factor may still be sufficient for many

experiments. This shows that a new resonator does not nec-

essarily have to be built if the trap is altered slightly.

5 Experimental measurement of κ

It was shown in Sect. 2 that the voltage output of a resonator

is given by Vrms = κ
√

PQ, where P is the power of the sig-

nal applied to the resonator, Q is the quality factor of the res-

onator and κ = (L/C)
1
4 . Here we will experimentally mea-

sure the value of κ in an ion trap experiment. The value of

κ is required in order to calculate the voltage applied to the

ion trap electrodes used to create a trapping potential. A res-

onator, described in Table 3, was electrically connected to

Table 3 Specification of resonator used for κ measurements

Resonator C

Shield diameter, D [mm] 76 ± 1

Shield height, B [mm] 105 ± 1

Coil diameter, d [mm] 52 ± 2

Coil wire diameter, d0 [mm] 4.0 ± 0.1

Winding pitch, τ [mm] 7 ± 3

Number of turns, N 7 3
4

Fig. 16 The Q factor of resonator A (left) and resonator B (right)
are shown as a function of the trap capacitance. The dashed curves
represent the error of the calculation based on the design errors stated
in Table 2. The Q factor was measured for different resistance loads

shown by the triangles (0.1 ohm), squares (1 ohm) and diamonds
(10 ohm)
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Fig. 17 The factor κ from (7) is plotted as a function of the trap ca-
pacitance for the resonator described in Sect. 5. The thick curve shows
the value of κ with the dashed curves showing the error on this cal-
culation due to the uncertainty of the resonator specifications and its
imperfections. The data point shown is for the resonator attached to a
17 ± 3 pF ion trap and vacuum system

an ion trap and vacuum system with a capacitance and resis-

tance measured to be 17 ± 2 pF and ≈0.1 ohm, respectively.

The resonant frequency and Q was then measured with this

additional load to be ω0 = 2π × 21.895 ± 0.010 MHz and

Q = 477 ± 28, respectively.

A single 174Yb ion was trapped in the electric field cre-

ated by the trap electrodes with the resonator supplied with

1.0 ± 0.1 W at its resonant frequency. The secular frequen-

cies of the ion under these conditions were then measured

and a boundary element method (BEM) model of the trap-

ping field was used to determine the RF voltage required to

create such a field. This voltage was found to be 400 ± 20 V

which, when used in (7) along with the power used to trap

the ion, results in a κ of 12.9 ± 1.4. This result is compared

with the theoretical prediction of κ (from (7)) in Fig. 17. We

note that the value of κ depends on the impedance of the ion

trap attached to the resonator.

6 Conclusions

We have carried out a detailed study of helical resonators

for the use in applying high voltages at radio frequencies to

ion traps. This has been done by modelling the resonator as

a lumped element circuit along with a detailed discussion

on the losses present in helical resonators connected to ion

trap loads in order to arrive at an expression for the Q factor

and resonant frequency ω0. It has been shown how a res-

onator and load can be impedance matched to a frequency

source by simply adjusting the physical parameters of an an-

tenna coil which inductively couples the two. A general ex-

pression for the voltage output of the resonating system has

been derived in terms of the systems Q factor, input power,

P , and a κ factor which is a function of the systems capaci-

tance and inductance. We have experimentally confirmed the

value of this factor using a single trapped ion. The theory

described in this paper has been confirmed by fabricating

two resonators and measuring their Q factor and resonant

frequency, ω0, for a range of different trap loads (CT from

2 pF to 85 pF and RT from 0.1 to 10 ohm).

A detailed design guide has been presented showing how

a helical resonator can be designed which provides the high-

est Q factor achievable for a desired resonant frequency

within the constraints of an particular experiment. Produc-

ing a resonator with an optimised Q factor allows the ap-

plication of high voltages with optimised filtering. This will

result in less noise injected into the system which could re-

duce anomalous heating of the trapped ions. The applica-

tion of high voltages can give larger trap depths, leading to

longer trapping lifetimes and increased secular frequencies.

This technology plays a significant role in many ion trap-

ping experiments and should allow for progress in a variety

of fields that require trapped ions or high radio frequency

voltages.

Acknowledgements This work was supported by the UK Engi-
neering and Physical Sciences Research Council (EP/E011136/1 and
EP/G007276/1), the European Commission’s Sixth Framework Marie
Curie International Reintegration Programme (Grant No. MIRG-CT-
2007-046432), the Nuffield Foundation, and the University of Sussex.

References

1. W. Paul, Rev. Mod. Phys. 62, 531 (1990)
2. J.J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert, D.J.

Wineland, IEEE Trans. Instrum. Meas. 40, 126 (1991)
3. P.T. H Fisk, M.J. Sellars, M.A. Lawn, G. Coles, IEEE Trans. Ul-

trason. Ferroelectr. Freq. Control 44, 344 (1997)
4. D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)
5. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)
6. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)
7. R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, J. Appl. Phys. 105,

013114 (2009)
8. P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleis-

chhauer, K. Singer, Phys. Rev. A 80, 060301 (2009)
9. D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)

10. H. Schmitz, A. Friedenauer, C. Schneider, R. Matjeschk, M. En-
derlein, T. Huber, J. Glueckert, D. Porras, T. Schaetz, Appl. Phys.
B, Lasers Opt. 95, 195 (2009)

11. M. Yu, V. Dokas, in Proceedings of 34th European Microwave
Conference, vol. 2 (2004), pp. 989–992

12. J.C. Collingwood, J.W. White, J. Sci. Instrum. 44, 509 (1967)
13. W. Meyer, IEEE Trans. Microw. Theory Tech. 29, 240 (1981)
14. W.W. Macalpine, R.O. Schildknecht, Proc. IRE 47, 2099 (1959)
15. P.K. Ghosh, Ion Traps (Oxford University Press, Oxford, 1996)
16. M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Mon-

roe, Appl. Phys. B, Lasers Opt. 78, 639 (2004)
17. D. Hucul, M. Yeo, W.K. Hensinger, J. Rabchuk, S. Olmschenk, C.

Monroe, Quantum Inf. Comput. 8, 501 (2008)
18. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M.

Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M.
Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000)

19. R.G. Medhurst, Wir. Eng., February and March 35, 80 (1947)
20. A.I. Zverev, H.J. Blinchikoff, IEEE Trans. Component Parts 8, 99

(1961)
21. M.D. Hughes, B. Lekitsch, J.A. Broersma, W.K. Hensinger, Con-

temp. Phys. 52, 505 (2011)


