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ISSUES IN PSYCHOPHYSICAL MEASUREMENT

S. S. STEVENS 2

Harvard University

Two classes of ratio-scaling procedures are outlined—magnitude matching
and ratio matching—and their assets and liabilities are noted. Partition-
scaling procedures, which are supposedly designed for interval scaling, pro-
duce results that can be described by a power function with a virtual or
"as if" exponent. Since the virtual exponent is smaller than the actual
exponent of the continuum, the category scale is nonlinear. The virtual
exponent provides a convenient descriptor of several kinds of partition
operations. Other topics discussed include individual differences among
subjects' exponents, procedures of averaging, and the effects of stimulus
range on exponents. It is suggested that the power law asserts a nomothctic
imperative.

The task here is to review the matching
procedures used to determine the power func-
tions that govern the growth of sensation
magnitude and to consider some of the
sources of deviation and perturbation that
have raised questions concerning the nomo-
thetic quality of the psychophysical power
law.

Since all procedures of measurement in-
volve matching operations, the interesting
differences among different scales and differ-
ent kinds of measurement can often be re-
duced to a basic question : What was matched
to what, and how? In the domain of psy-
chophysics, numerous scaling methods have
been invented, many of them useful for the
determination of ratio scales of apparent
magnitude. The approaches of ratio scaling
can be catalogued in different ways, but for
present purposes they fall into two general
classes : magnitude matching, which includes
the subclasses (a) cross-modality matching,
( b ) magnitude estimation, and (c) magni-
tude production; and ratio matching which
includes the subclasses (a) cross-modal ra-
tio matching, (6) ratio estimation, and (c)
ratio production.

Since there are endless variations on psy-
chophysical procedures, it is possible here to
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comment on only a few of the features that
characterize the principal methods. Con-
sideration is also given to some of the in-
terval or partition methods, and to the dis-
tinction between the virtual exponent and
the actual exponent. Other problems dis-
cussed concern individual differences, aver-
aging, and range effects.

MAGNITUDE MATCHING

These procedures include all direct equa-
tions between two continua. Three principal
varieties of magnitude matching have been
distinguished.

Cross-Modality Matching

When the stimulus for a continuum can be
readily varied by means of a control of some
kind, it becomes possible to match that con-
tinuum to any other continuum. Figure 1
gives examples of matching functions pro-
duced when several different continua were
matched to vibration on the fingertip.

Ideally, the experiment comparing two
continua should provide for a balanced de-
sign in which each continuum is matched in
turn to the other continuum. A balanced
procedure may help to assess and correct the
regression effects that are always present in
the matching operation (Stevens & Green-
baum, 1966). Tn the typical experiment, the
observer tends to shorten the range of which-
ever variable he controls. Even within the
same modality the regression effect shows up
in matching functions. Thus, two somewhat
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ISSUES IN PSYCHOPHYSICAL MEASUREMENT 427

Relative intensities of criterion stimulus

FIG. 1. Equal sensation functions obtained by cross-modality matches be-
tween various continua and a 60-Hz. vibration on the fingertip. (The vi-
bration amplitudes were set by the experimenter. The observer adjusted the
other stimulus to produce an apparent match—from Stevens, 1968a.)

different functions were obtained, depending
on which auditory stimulus the subject ad-
justed in matching a tone to a noise.

Because it is often difficult to give the sub-
ject control of the stimulus, many cross-
modality comparisons have not yet been
made. It is difficult, for example, for the
subject to vary the heaviness of lifted weights
in order to match heaviness to loudness.

When a balanced design in the matching
of two continua is impracticable, an evalua-
tion of the regression effect may sometimes
prove possible by way of a third continuum.
Two principal paradigms can be distin-
guished.

1. Continuum A is adjusted to match each
of two continua, B and C. The ratio of the
exponents of the matching function A to B
and A to C determines the exponent of the
function relating B to C. The derived func-
tion would presumably be free of the regres-
sion e,ffect, provided the regression oc-
casioned by adjusting A remained constant
when the criterion continuum was changed
from B to C. The hoped-for constancy
might be upset by such factors as disparities
in difficulty or range.

2. A second procedure for counterbalanc-
ing the regression effect can be utilized
whenever it is possible to match both A and

B to a common continuum C. The two
matching functions provide exponents whose
ratio determines the exponent of the power
function relating A to B. Whether the re-
gression effects in the two matching func-
tions A to C and B to C are exactly equal
may not be known, of course, but the pro-
cedure may still cancel a major portion of the
regression bias.

An instance of the second paradigm was
provided by Moskowitz (1969), who asked
observers to match both numbers and loud-
ness to a wide variety of taste mixtures.
From each of the 68 pairs of experiments
that Moskowitz conducted we can derive an
estimate of the power-function exponent re-
lating number to loudness. The geometric
mean of the 68 estimates was .67, which
agrees with the value of the exponent
adopted for loudness calculation (Stevens, in
press). The standard deviation was .51
decilog, or about 12%. That degree of scat-
ter may be regarded as an empirical guide to
the amount of variability to be expected in
tests of transitivity among the exponents of
the power functions. When the regression
effect has been canceled, about two-thirds of
the measured exponents may be expected to
lie within plus or minus half a decilog of the
predicted exponents (see Stevens, 1969).
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428 S. S. STEVENS

The regression effect, of course, is only
one of the sources contributing to the sys-
tematic errors that affect the outcome of ex-
periments, but it is one of the most obstinate,
and therefore perhaps the most important.
And it may be composed of more than a
single factor.

Magnitude Estimation

This procedure is actually a form of cross-
modality matching in which numbers are
matched to stimuli. When first used, the
procedure was called absolute judgment
(Stevens, 1953), later numerical estimation
(Stevens, 1954), and still later magnitude
estimation (Stevens, 1955a). That last
name appears to have stuck. In this con-
text, the number continuum can be regarded
as another perceptual modality. Magnitude
estimation or "number matching" has be-
come a popular method, mainly because of its
convenience. The subject brings the num-
bers with him, so to speak, and the experi-
menter needs only to provide the target
stimuli to which the numbers are to be
matched. The nature of the task can be
portrayed in terms of a typical set of written
instructions to the subject.

You will be presented with a series of stimuli in
irregular order. Your task is to tell how — they
seem by assigning numbers to them. Call the first
stimulus any number that seems to you appropriate.
Then assign successive numbers in such a way that
they reflect your subjective impression. For ex-
ample, if a stimulus seems 20 times as •—, assign
a number 20 times as large as the first. If it
seems one-fifth as —, assign a number one-fifth as
large, and so forth. Use fractions, whole numbers,
or decimals, but make each assignment proportional
to the — as you perceive it.

Experience has shown that it is usually
better not to designate a standard. The sub-
ject then remains free to choose his own
modulus. If possible, stimuli should be pre-
sented in a different irregular order to each
subject, but the first stimulus is usually
chosen from among those in the middle re-
gion, rather than from one end of the range.
Between 10 and 20 stimuli may be presented
at a session. A good schedule provides for
one judgment, or at the most two judgments,
per stimulus by each subject. After the sub-

ject has learned to recognize a particular
stimulus, little or no new information is ob-
tained from subsequent judgments of its
repeated presentation. Furthermore, biases
due to range and spacing of stimuli seem to
have less effect when the subject is limited
to one judgment per stimulus.

Untrained, inexperienced college subjects
seem to do as well at the matching tasks as
those who have had many years of practice.
Hence, there is no need to "train" the sub-
jects. Indeed, since there is no right or
wrong to the subjects' responses, it is not
clear what would be meant by training.
Under some circumstances, the nature of the
task may profitably be clarified by allowing
the subjects to begin by matching numbers
to an easier continuum, such as apparent
length of lines, or apparent size of circles.

Averaging can be done by computing geo-
metric means or medians. The log-log slope
(exponent) determined by the geometric
means is not affected by the fact that each
observer uses a different unit of modulus.
When it is desired to adjust the judgments
to a common modulus, a good method is to
minimize the squares of the individual sub-
ject's intercept differences. The procedure
is: convert all scores to logs, compute grand
mean of logs, and adjust each log score for
each observer by whatever additive constant
makes the observer's mean correspond to the
grand mean. That procedure of modulus
equalisation permits each of an observer's
estimates to contribute to the correction fac-
tor to be applied to that observer's modulus.

Magnitude Production

Here the experimenter presents the num-
bers one at a time in irregular order, and the
subject adjusts the stimulus to produce an
apparent match. The numbers themselves
should normally approximate a geometrical
progression. For example, in an extensive
study of loudness and its inverse, softness,
the successive numbers presented were in the
ratio 2 to 1 and ranged from 1.25 to 80
(Stevens & Guirao, 1962). Sample results
are shown by the triangles in Figure 2.

Because of the regression effect, the power
functions obtained by magnitude production
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ISSUES IN PSYCHOPHYSICAL MEASUREMENT 429

are typically steeper (have larger exponents)
than those obtained by magnitude estima-
tion. An unusually large regression angle is
illustrated in Figure 2. It is often assumed
that the unbiased function lies between the
two functions obtained by estimation and
production, and indeed it may. But where?
Are the error sources in the one procedure
exactly balanced by the error sources in the
other ? Although exact balance may be pos-
sible, it seems hardly likely that no asym-
metry exists. An average function may
nevertheless be desired, in which case it may
be well to compute the geometric mean of
the two exponents. The geometric mean is
invariant under an interchange of the two
coordinates (Indow & Stevens, 1966).
When the results of magnitude estimation
and production are combined in an appropri-
ate way, the combined procedure offers ad-
vantages over either procedure alone.

A particular version of the combined pro-
cedure designed to produce a balanced func-
tion has been spelled out by Hellman and
Zwislocki (1968) and applied to loudness
functions.

Another way of combining some of the
features of production and estimation is to
permit the subject to set stimulus levels at
his own pleasure and to report the apparent
magnitude. The experimenter in effect gives
up all control over the stimuli. A radical
procedure of that kind was used by J. C.
Stevens and Guirao (1964) to show that in-
dividual subjects produce power functions
and that the power function is not, as some
writers had suggested, an artifact of averag-
ing. The key parts of the instructions were
as follows:

Your task is to set the tone to different levels of
loudness and to assign numbers to each of the
loudnesses. Make your numbers proportional to
the loudness you hear. You may make as many
settings as you want. Try to cover a wide range
of loudness.

Eleven subjects, chosen at random from
among students, staff, and secretaries, gave
the results shown in Figure 3. One subject
made as few as seven production estimations.
Another made five times that many. Two
subjects made settings that extended over
almost 100 decibels (db.) and made estima-

100

30 40 SO 60 70 60 90 dB 100

Relative sound pressure

FIG. 2. Magnitude estimation and magnitude
production of loudness. (Each point is the geo-
metric mean of two estimates or two productions
by each of 10 observers.) (Reprinted with per-
mission from an article by J. C. Stevens and M.
Guirao published in the Journal of the Acoustical
Society of America, 1964, Vol. 36. Copyrighted
by the Acoustical Society of America, 1964.)

tions that ranged over about 10,000 to 1,
which implies an exponent near .8. The ex-
periment was repeated some months later.
The geometric mean of the 22 exponents for
the 11 subjects was .7, which is fairly close
to the value 2/3, which has been proposed as
the standard value (Stevens, in press).

RATIO MATCHING

The earliest form of ratio matching ap-
pears to have been devised by Merkel (1888)
in order to determine what he called the
"doubled stimulus." It was a direct ratio-
scaling method, but its potentialities were
not effectively exploited. The method would
now be classed as one of the varieties of ratio
production. It is convenient to distinguish
three subclasses of ratio matching, as follows:

Cross-Modal Ratio Matching

J. C. Stevens set two different bright-
nesses in front of the subject and asked him
to adjust one of two noises to make the ratio
of the noises match the apparent ratio of the
brightnesses (see S. S. Stevens, 1961a, pp.
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430 S. S. STEVENS

10'

Relative sound pressure (subdivision = 20 dB)
FIG. 3. Individual functions obtained when each of the 11 observers set the stimulus level and esti-

mated the loudness. (Each point represents a judgment. There was no averaging—from J. C. Stevens
& Guirao, 1964.)

17-18). The results confirmed the relative
values of the exponents for loudness and
brightness, showing, in fact, that the two
exponents are approximately equal.

Ratio Estimation

Here the subject matches numerical ratios
to apparent stimulus ratios. In the "com-
plete" version of the procedure, stimuli are
presented in all possible pairs and the ap-
parent ratios are estimated (Ekman, 1958).
Other versions use fewer stimulus pairings,
and some versions provide for reporting in
terms of fractions or percentages. For ex-
ample, in an early experiment, Ham and
Parkinson (1932) presented a sound at one
level followed by a sound at a lower level,
and asked the subjects to estimate what per-
centage of the loudness remained.

Ratio Production

In this once-popular scaling procedure, the
subject is required to find or produce the
stimulus that seems to stand in a prescribed
relation to a standard stimulus. As we have
seen, Merkel invented that kind of task with
his method of doubled stimulus. Fractiona-

tion is the name commonly used for pro-
cedures that require the subject to set a
stimulus to one-half (or some other fraction)
of the standard. (For a tabulation of many
of the numerous ratio productions that have
been made with acoustic stimuli, see Stevens,
1955a.)

Ratio production has fallen into disuse
mainly because magnitude matching seems to
be a superior procedure. The biases in ratio
production are such that the method often
fails to produce a clean power function.

INTERVAL MATCHING AND VIRTUAL
EXPONENTS

Although the judgment of intervals or dif-
ferences, as required in various kinds of par-
titioning operations, may produce satisfactory
results on metathetic continua, systematic
biases afflict partitions carried out on pro-
thetic continua. Furthermore, the partition-
ing operations can produce at best an interval
scale, not a ratio scale. Nevertheless, one or
another form of interval matching has pro-
duced data that have played a role in the
establishment of the psychophysical power
law (Stevens, 1953).

In order to describe the procedures used
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ISSUES IN PSYCHOPHYSICAL MEASUREMENT 431

and the results obtained in the various kinds
of partition operations, it is convenient to
distinguish two exponents: a virtual or func-
tional exponent and the actual exponent of
the continuum in question. The virtual ex-
ponent is the one the observer appears to be
using when he makes his partition judgments.
It is an "as if" exponent. The value of the
virtual exponent a turns out to be lower
than that of the actual exponent /?. Since
a < ft, the scales created by partitioning are
nonlinear relative to the corresponding mag-
nitude scales created by magnitude or ratio
matching.

Perhaps the best known example of a
partition scale is the Munsell scale for the
lightness of grays. That scale has been
determined and redetermined by several
kinds of partition operations. A series of
gray papers may also be scaled by magnitude
estimation, as was shown by Stevens and
Galanter (1957). The virtual exponent of
the Munsell scale is approximately .33 and
is decidedly lower than the actual exponent,
approximately 1.2, obtained by magnitude
estimation.

Let us now consider four varieties of in-
terval scaling procedures.

Cross-Modal Interval Matching

This procedure seemed to work well in
a 1953 experiment when subjects adjusted
markers along a line (position, a metathetic
continuum) in order to match the apparent
spacing of a series of loudnesses. Subjects
also matched marker position to the apparent
spacing of the heaviness in a series of lifted
weights. The same principle is involved, of
course, in numerous rating scales: the sub-
ject expresses his opinion by marking a posi-
tion on a line. Newhall (1950) used a some-
what similar method, involving markers on
a two-dimensional grid, in order to deter-
mine spacings among the apparent light-
nesses of gray papers. His results agreed
with the Munsell scale. As a general
method, however, interval matching suffers
from a basic ambiguity, especially when
metathetic position is not one of the continua
used. If two prothetic continua are involved,
the subject may find it easier to match ratios

than differences, and without intending it, he
may actually produce ratio matches between
the pairs of stimuli on the two continua.

Efforts to judge intervals often encounter
a dramatic hysteresis effect, which makes the
judgment highly contingent on the order in
which the stimuli are presented (Stevens,
1957b).

Interval Estimation

Here the subject may be asked to assign
numbers to represent the sizes of apparent
differences. For example, Dawson (1968)
presented pairs of loudnesses and asked the
observers to make a magnitude estimation of
the apparent difference in each pair. He
also presented pairs of visual areas. The
typical biases that emerge under partitioning
procedures were apparent in the results,
especially in the judgments of loudness dif-
ferences. A constant loudness difference (in
sones) is not judged to be constant; rather a
given difference is judged smaller when it is
moved up the stimulus scale.

Another demonstration of the bias in in-
terval judgments—the operation of a virtual
exponent—is contained in the results of Beck
and Shaw (1967) who asked 28 subjects to
judge four loudness intervals, 5, 10, 15, and
20 sones in width, each located at four stim-
ulus levels. The median estimations for
three of the interval sizes are shown in
Figure 4 as a function of the sound pressure
level of the tone at the lower end of the in-
terval. The curved lines show the general
trend of the data.

If the world were so constructed that equal
prothetic intervals appeared equal to the per-
ceiving subject, the lines in Figure 4 would
be straight and horizontal. The downward
trend of the data in Figure 4 illustrates the
typical result obtained in partition judgments
of whatever variety: equal intervals are not
judged equal at different locations on a pro-
thetic continuum. As an interval of a con-
stant size moves up the scale of the contin-
uum, the constant interval is judged to be
smaller and smaller.

The curves in Figure 4 were generated by
a partition model in which it was postulated
that the observer's judgments are governed
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FIG. 4. Showing how the judgment of an inter-
val of a constant size depends on the location of the
interval. (Observers made magnitude estimations
of sets of intervals 5, 10, 20 sones wide. In another
set of experiments (triangles) the intervals were
approximately 30 sones wide. The stimulus level
at the bottom end of the interval is shown by the
abscissa. The ordinate gives relative values only.
As a constant interval moves upward in sound pres-
sure level, the perceived size of the interval de-
creases. The family of three curves was generated
by assuming that instead of the actual exponent of
the sone scale .6, the observers used a virtual or "as
if" exponent equal to .3. Triangles from Dawson,
1968; other data from Beck & Shaw, 1967.)

by a power law that does not have the actual
exponent of the continuum, but rather has a
virtual or functional exponent equal to .3.
The fit of the curves is only fair, for the data
do not provide enough information to dis-
tinguish between the family of functions gen-
erated by the virtual exponent value .3 and
the family given by some other nearby ex-
ponent. If the observer's virtual exponent
were .6, it would correspond to the actual
exponent, and the lines in Figure 4 would
then become straight and horizontal. As the
virtual exponent becomes smaller, the family
of curves tilts more steeply downward, and
the distance between the curves decreases.

To a first approximation, then, it appears
that the observer judges loudness intervals
as if his power function had a virtual ex-
ponent about half as large as the actual
exponent of the continuum. That principle
was rather nicely confirmed in a second
experiment by Beck and Shaw (1967) in

which 29 observers made magnitude estima-
tions of another set of loudness intervals—
intervals that were constructed to be constant
in size as determined by the lambda scale, a
scale that was constructed so as to agree with
a particular set of bisection data (Garner,
1954). Over the stimulus range of interest
here, the lambda scale has an effective ex-
ponent of approximately .3. In other words,
the "constant" intervals provided by the ex-
perimenters were generated by a function
whose exponent coincided with that of the
virtual exponent. As we should expect,
therefore, the judged size of the intervals
did not show a downward drift with increas-
ing stimulus level. In fact, when the judg-
ments are plotted as in Figure 4, but with
lambda interval rather than sone interval as
the parameter, the data describe functions
that are very nearly horizontal. Thus the
principle is clear: When the generating func-
tion used to set up the equal intervals has
the same exponent as the virtual operating
function employed by the observers in their
partition judgments, then the intervals all
appear equal.

It is of interest next to consider the other
extreme and to ask what happens when the
equal intervals are generated by a function
with an exponent that is lower than the vir-
tual exponent. Since a power function with
a very low exponent resembles a logarithmic
function (see Figure 5), we can examine the
problem by setting up equal logarithmic or
equal decibel intervals. Again the results
turn out as expected. Decibel intervals ap-
pear to grow larger as their absolute level is
raised. Thus a series of successive 10-db.
intervals beginning at 40 db. produced the
following magnitude estimations: 1.51, 1.89,
2.65, 4.14, and 9.10 (Dawson, 1968). Those
values represent averages over four different
experiments. They show that the 10-db. in-
terval 80-90 db. was judged to be about six
times larger than the 10-db. interval 40-50
db. If plotted in Figure 4, the judgments of
10-db. intervals would describe a curve that
sweeps upward rather than downward. In
other words, observers' judgments demon-
strate that the virtual exponent is decidedly
greater than zero, and that a logarithmic
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ISSUES IN PSYCHOPHYSICAL MEASUREMENT 433

function does not accord with interval judg-
ments.

As a matter of fact, although Dawson did
not use intervals that were exactly constant
in sones, his data agree fairly well with func-
tions having the form of those generated by
a virtual exponent of about .3. The tri-
angles in Figure 4 show the magnitude esti-
mations of the largest sone intervals em-
ployed, ranging from 16 to 31 sones. The
magnitude estimations of those intervals were
multiplied by a factor in order to bring each
of them to the value it would have had if all
the intervals had been 30 sones. That multi-
plicative correction appears to do little or no
violence to the data. The path depicted by
the triangles in Figure 4 shows how the ap-
parent size of a 30-sone interval grows
smaller as the stimulus level used to define
the bottom end of the interval increases.

Interval Production

The production of prescribed intervals was
the method invented by Plateau (1872). He
asked eight artists to paint a gray such that
the intervals from gray to black and gray to
white would appear equal. That type of
procedure is often called bisection. When
more than two equal intervals are involved,
it is called equisection (Garner, 1954).

The intervals to be produced need not be
equal. For example, in one of my own ex-
periments, observers produced louclness in-
tervals corresponding to markers spaced
unevenly along a line. The results from that
procedure of multisection were consistent
with the results obtained by equisection.

Under conditions designed to make the
judgment maximally easy, the results of bi-
section experiments have sometimes been
found to agree fairly closely with the psy-
chophysical functions produced by magnitude
and ratio matching. In other words, al-
though the inevitable systematic difference
was clearly evident, the size of the difference
proved to be fairly small (see Stevens, 1955a
for loudness, 1961b for brightness). To a
limited extent, then, the bisection experi-
ments have confirmed the exponents of the
magnitude scale obtained by ratio-scaling
procedures. The magnitude-scale exponents

e x p o n e n t

O.I

2 3

Log a r i t h m i c

4 S

s c a l e

FIG. 5. Sample power functions plotted in semi-
logarithmic coordinates. (As the exponent of the
power function decreases, the graph of the function
becomes straighter. It thereby approaches the form
of a logarithmic function, which is described by a
straight line in these coordinates.)

serve as an upper bound and the bisection-
scale exponents normally lie below the bound.

In a bisection experiment in which <£a is
set midway between </>3 and </>i the virtual ex-
ponent of the power function can be deter-
mined by the bisection equation (Stevens,
19SSa), which may be written

The exponent a may be found by iteration.
It seems to be an invariant rule that, as with
other partitioning procedures, the value of
the virtual exponent determined from bisec-
tion has a lower value than the exponent
determined by procedures that call for ratio
judgments.

The family of curves in Figure 4 tells us
that a true bisection on a prothetic con-
tinuum will not appear correct to the ob-
server. The lower half of the interval will
appear larger than the upper half. Conse-
quently, when the observer himself makes
the bisection, he lowers the bisecting point.
In some bisection experiments, the bisection
point has fallen low enough to agree with the
exponent used to generate the curves in
Figure 4 (Garner, 1954). In other experi-
ments, the virtual exponent has been found
to lie closer to the actual exponent (Stevens,
1955a).
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434 S. S. STEVEN'S

Sum Production

The virtual exponent describes the con-
vexity in the partition function under still
another procedure. The bisection problem can
be turned around, so to speak, and instead of
asking the observer to produce segments, the
experimenter can present the segments and
ask the observer to produce the whole, or
the sum. If the virtual function is convex,
we should expect that the perceived whole
would prove to be less than the sum of the
perceived parts. When observers were
shown two or more line segments and asked
to produce a line that appeared equal to the
sum, the line produced was longer than the
sum of the separate lengths (Krueger, 1970).
In other words, a line equal to the sum of
the separate lengths would have appeared
shorter than the apparent sum. The experi-
mental results demonstrate that the exponent
1.0, which observers ordinarily use in judg-
ing apparent length, has been replaced by a
virtual exponent having a lower value.

RELATION TO POWER LAW

Perhaps the most important outcome of
the work on partition scales lies in the dem-
onstration, by means of interval methods,
that the psychophysical function is a power
law. The argument rests on the fact that the
apparent bisection point remains approxi-
mately constant when all the stimuli are
increased or decreased by the same factor.
For example, Plateau's eight artists each
worked in a different atelier, under a differ-
ent level of illumination, and yet they all
produced bisecting grays that, when viewed
in the same setting, were "presques identi-
ques." When that happens, the sensory
magnitude must follow either a logarithmic
law or a power law. If the bisection point
falls at the geometric mean between the end
points used to define the bisected interval,
then the log function is indicated. If the bi-
section point falls above the geometric mean,
as it seems to have done in Plateau's experi-
ment, then a power function is indicated.
And the virtual exponent a increases as a
function of the distance of the bisecting point
above the geometric mean. Some of those
basic relations are illustrated in Figure 6.

Under optimal experimental conditions,
the virtual exponent a, determined by bisec-
tion, may approach the value of the actual
exponent of the continuum as an upper
bound. Normally, as we have seen, the bi-
section exponent lies below the continuum
exponent. Nevertheless, the invariance of
the bisection exponent under multiplicative
variations in the stimulus levels has provided
evidence that equal stimulus ratios produce
equal sensation ratios—which is the invari-
ance principle that underlies the power law.

CATEGORY SCALES AND THRESHOLDS

The category scale calls for special con-
sideration because it is by far the most com-
mon and yet perhaps the least satisfactory
form of partition scale. Most of the many
users of category scales throughout science,
education, engineering, and commerce do not
intend a partitioning operation. Their hope
is to grade or assess some variable, but they
proceed to prescribe—and to limit!—the sub-
jects' response scale. Commerce does much
of its buying and selling with the aid of the
grading of goods by subjective assessment on
simple category scales, a crude procedure
perhaps, but it serves its limited purpose.
The business of scaling and measurement is
not a primary aim in industry as it is in psy-
chophysics. Nevertheless, category scaling
is occasionally used in psychophysical experi-
ments, despite the demonstrated inemcacy
of the procedure. Stevens and Galanter
(1957) examined some 70 different category
scales on a dozen different perceptual con-
tinua and found little to justify the use of
category scaling in quantitative studies.
Their hope was that category scaling would
thereafter fall into disuse. They hoped in
vain.

The categories may be designated by a
limited set of adjectives, such as large,
medium, and small. Or the categories may
be designated by a finite set of numbers,
such as 1 to 6. Those were the numbers
used for history's first recorded category
scale, the scale of stellar magnitude, which
dates from about 150 B.C. and which in a
much revised form still serves the astronomer
(see Stevens, 1960).

Marcelo Costa
Highlight

Marcelo Costa
Highlight

Marcelo Costa
Highlight

Marcelo Costa
Highlight

Marcelo Costa
Highlight



ISSUES IN PSYCHOPHYSICAL MEASUREMENT 435

On prothetic continua, the category scale
is invariably nonlinear relative to the magni-
tude scale. When plotted against the scale
obtained by magnitude estimation, for ex-
ample, the data from category judgments
produce a curve that is concave downward.
Whenever the subject is asked to categorize,
he is forced to divide the continuum into
parts or segments in order to make it con-
form to the limited, finite set of numbers or
adjectives that he is required to use. In
other words, he is obliged to attend to differ-
ences or distances. Under those circum-
stances, the subject is forced out of ratioing
and into partitioning.

What we learn from category experiments
is that the human being, despite his great
versatility, has a limited capacity to effect
linear partitions on prothetic continua. He
may do quite well, to be sure, if the con-
tinuum happens to be metathetic, but, since
most scaling problems involve prothetic con-
tinua, it seems that category and other forms
of partition scaling ought generally to be
avoided for the purposes of scaling. If, for
some reason, an unbiased interval scale is
needed, it can be obtained from a ratio scale,
for the ratio scale contains the interval scale
(Stevens, 1946).

The reverse is not possible, however. The
ratio scale cannot be recovered from the in-
terval scale when only interval information is
available.

Is there a use for category scaling? Al-
though essentially useless for ratio scaling,
category methods play an indispensable role
in threshold measurements, where the prob-
lem reduces to the determination of bound-
aries between classes. In fact, all threshold
determinations involve category procedures,
because the problem is to sort stimuli into
classes, for example, those that are detectable
and those that are not, those that are dis-
turbing and those that are not, or those that
are acceptable and those that are not, and
so on.

Psychophysical thresholds are boundaries
between classes. Although the boundary
that we call a sensory threshold may be
sharp at a given point in time, in a living
organism the boundary behaves as though it
were jittering about. Consequently, the

O.I 0.8 03 0.4 OS 0.6 0.7 OB 0.9 1.0

Bisect ion point: log scale

FIG. 6. Schematic diagram showing a family of
power functions with exponents ranging from .1 to
1.2. (As shown by the circles, the position of the
bisection point moves upward along the stimulus
scale (abscissa) as the exponent increases. Bisec-
tion at the geometric mean would correspond to a
logarithmic function, or a vanishingly small ex-
ponent.)

measurement of a threshold becomes a sta-
tistical process: On the basis of repeated
samples, we make a statistical decision re-
garding the location of the boundary. Still,
the underlying experimental operation for
determining any kind of threshold always in-
volves a procedure of matching either stimu-
lus to category or category to stimulus.

POWER-GROUP TRANSFORMATIONS

As we have seen, partition scales can often
be usefully described by power functions.
Consequently, the nonlinearity of the parti-
tion scale can be conveniently described by
the difference between the virtual exponent
of the partition scale and the actual exponent
of the magnitude ratio scale. In other words,
the operation of partitioning causes the ob-
server to behave as though a power-group
transformation had been performed, that is,
as though an exponent had been altered.
Whenever two power functions differ in ex-
ponent, they are nonlinearly related. Since
the virtual exponent is always less than the
actual exponent, the curvature of the parti-
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436 S. S. STEVENS

tion scale, relative to the magnitude scale, is
always in the same direction.

More formally, we may express the sub-
jective magnitude ^ as a function of the
stimulus </> by i/» = k<$>&, where k depends on
units, and ft is the actual exponent of the
continuum. The actual exponent ft is the
one we hope to determine more and more
accurately as we learn to control regression
effects and other biases. The partition scale
value P can be expressed by a similar equa-
tion, but with an additive constant P0 to take
care of the arbitrary reference: P + P0 =
k<l>tt, where a is the virtual exponent.

The amount by which the value of a is less
than the value of ft determines the curvature
of the partition scale. In some kinds of
equisection experiments, the curvature is so
slight that the value of a. has been pushed to
within about 10% of the value of ft. At the
other extreme, in some forms of category
scaling, the value of « has fallen to very low
values (Marks, 1968).

It is interesting to note that the category
scale for stellar magnitude cannot be ex-
pressed in terms of a power function, because
the scale is more curved even than a log-
arithmic function. Otherwise said, the mid-
point or bisection point of the visual category
scale of stellar magnitude falls below the geo-
metric mean of the stimulus scale. The stel-
lar category scale is a rather special case,
however, because as a stimulus array, the
distribution of the stars is prodigiously
skewed. An attempted representation of the
stellar judgments by a power function with a
negative exponent was given by Marks
(1968), and a similar treatment for bisec-
tions falling below the geometric mean was
given by Fagot (1963). Negative expon-
ents, however, imply inverse or reciprocal
functions and do not seem to be appropriate
to the present problem.

A category production scale for loudness
gave the virtual exponent .3, which is about
half the value of the actual exponent for
loudness. The procedure of category pro-
duction serves to diminish the effects of
stimulus spacing and thereby to approximate
the pure form of the category scale. It is
interesting that the pure category scale
should have approximately the same virtual

exponent as that produced by the magnitude
estimation of differences, as in Figure 4.

In category scaling, the difference between
the virtual exponent a and the actual ex-
ponent ft seems also to depend on variability,
or on the noise load imposed by the task.
Some continua are easier to judge than
others. For example, the curvature of the
category scale was shown to increase and the
virtual exponent to decrease as the con-
tinuum was changed from length of lines to
largeness of squares to loudness of tones
(Stevens & Guirao, 1963). The variabilities
(standard deviations) with which the ob-
servers set values on those three continua
under the procedure of magnitude production
were: length, 1.0; largeness, 2.1; and loud-
ness, 4.0 decilogs.

It is especially important to note that
although partitioning produces a power-
group transformation that lowers the effec-
tive value of the exponent, the resulting
virtual exponent a is always positive. We
must, of course, exclude from that generali-
zation the category scale obtained with highly
skewed distributions of stimuli, because those
abnormalities are essentially artificial and
can be remedied by straightforward proce-
dures of experimental iteration (see Pollack,
1965). The iterated pure category scale
seems always to have a positive exponent.
The importance of a virtual exponent that is
positive and decidedly different from zero lies
in the evidence it provides that the category
scale is not a logarithmic function of the
magnitude scale. A logarithmic category
scale has often been assumed (e.g., Torger-
son, 1961), but under that assumption, the
virtual exponent would lie near zero.

The term power group was the name
proposed for the group of permissible trans-
formations on what I called a logarithmic
interval scale (Stevens, 1957b). The power
group provides that any scale value x may
be replaced by x' where x' = axb. The
transformation preserves the equality of
ratios, but not of differences. For the visu-
ally minded, it may be helpful to note that a
power-group transformation changes the
curvature, or, in log-log coordinates, the
slope of a function.

It is remarkable how widespread are the
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instances of power-group transformations.
Figure 2 shows a dramatic example: The
change from estimation to production pro-
duced a new power function with a larger
exponent, hence a different slope in log-log
coordinates, which means a different curva-
ture in linear coordinates. How is such a
complex power transformation produced
with such apparent precision? The experi-
menter reverses the procedure, whereupon
the observers alter the curvature of their
response function in just such a way as to
preserve ratios. How is that possible?

Many other circumstances produce power
transformations. Among them we find the
effect of adaptation on visual brightness.
The exponent rises from .33 to .44 when the
state of adaptation is changed from dark to
about 100 db. above threshold (J. C. Stevens
& Stevens, 1963). Even more drastic
changes in the exponent—alterations by a
factor of three or more—may take place
under inhibition, which includes visual con-
trast and auditory masking (Stevens, 1966).
Thus it appears that changes in the behavior
of sense organs under changing states of
adaptation, and under the inhibition created
by glare and masking, can be described by
power-group transformations. Similar trans-
formations occur in the dramatic summation
of warmth when the irradiated area of the
skin is increased. The exponent decreases
by a factor of about 2 when the area is in-
creased by a factor of 10 (J. C. Stevens &
Marks, 1971). Although I once regarded
the power group as something of a curiosity
and useful only in the discussion of scaling
theory, the piling up of examples has led to
the suggestion that the power group may
prove to be one of the most common trans-
formations in the biological domain.

A review of research since the 1930s
(Stevens, 1970, 1971) turns up many ex-
periments in which electrical recordings of
neurelectric effects in sensory receptors,
nerve fibers, and neural complexes have ex-
hibited a power-law dependence on stimulus
intensity. Thus, there exists rather direct
evidence that sensory systems are capable of
power-group transformations. Of course,
every placement of an electrode does not
produce a nice clean power function, but

power functions have been recorded by one
or more investigators in several sense modali-
ties : vision, hearing, taste, touch, kinesthesis,
and electrical pulses to the skin. The point
to be made here is that there appears to be a
tendency for the neurelectric exponent to de-
crease as the recording site becomes more
remote from the sense organ. That is to say,
following the power-law transduction per-
formed by the sense organ, there may ensue
subsequent power-group transformations
higher in the nervous system. But in the
present state of knowledge, such principles
remain as vague as the evidence.

THE PARTITION PARADOX

The tendency of observers to make parti-
tion judgments as though their effective or
virtual exponent is lower than the actual ex-
ponent of the continuum has impressed many
people as paradoxical. Krantz (1970)
wrote:

One of the long-standing puzzles is why the scales
obtained from category rating differ from those of
magnitude estimation [p. 40].

Why, in other words, does a constant inter-
val on a prothetic continuum such as loud-
ness not appear to remain constant when the
stimulus level is raised ?

Perhaps no answer will satisfy everyone,
but we can at least rule out the nature of the
observer's task. We cannot blame partition-
ing as such, because partition judgments lead
to linear results on metathetic continua. For
example, a S-mel interval sounds the same
size regardless of its location on the pitch
continuum. But a 5-sone interval does not
sound the same size at different locations on
the loudness continuum (see Figure 4).
Hence the problem must have to do with the
nature of the continuum. Among the fea-
tures that distinguish the two kinds of con-
tinua, there is one aspect of prime impor-
tance. On a metathetic continuum, such as
pitch, the error distribution, as measured by
the size of the just noticeable difference
(jnd) in subjective units (e.g., mels), re-
mains the same all along the continuum. In
other words, the absolute error is constant.
On a prothetic continuum it is the relative
error that stays constant, so that the jnd for
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438 S. S. STEVENS

loudness, measured in sones, grows very
large as loudness increases.

In order to illustrate how unlikely, indeed
impossible, it would be for an observer to
make a correct judgment of a loudness differ-
ence regardless of stimulus level, let us con-
sider the following paradigm. We will as-
sume that the loudness exponent is .6 and
that the interval from 40 to 50 db. corre-
sponds to the subjective interval between a
loudness of 1 sone and a loudness of 2 sones,
or a difference of 1 sone. That happens to
be a clear and obvious difference. Now con-
sider the same 1-sone difference at 100 db.
where the loudness is 64 sones. An increase
from 100 to 100.2 db. makes a 1-sone differ-
ence, raising the loudness from 64 to 65
sones. But a change as small as .2 db. is so
small that it would be detected less than half
the time. It seems beyond possibility, there-
fore, that a constant difference of 1 sone
could be judged to be the same size regard-
less of where it occurred on the continuum.

That illustrative example may help to sug-
gest why it is that every variety of partition-
ing must give a distorted result on a pro-
thetic continuum. A constant difference
transforms itself from obvious to undetect-
able as we go from weak to strong stimuli.
Therein lies the essence of the prothetic
principle.

A graphic illustration of the underlying
principle is shown in Figure 7. The ordi-

70 SO

Sound pressure leve l

FIG. 7. Showing how the difference in decibels
required to produce a 1-sone loudness difference
falls off with increasing sound pressure level. (At
40 db. it requires an added 10 db. to add 1 sone. At
110 db. it requires an added .1 db. to add 1 sone.
The dashed line shows the approximate value of the
jnd, the increase that would be detected about half
the time.)

nate shows the stimulus change in decibels
that corresponds to a change of 1 sone. As
in the example above, at a level of 40 db. a
change of 1 sone corresponds to 10 db. At
100 db., tine required change is only .2 db.,
and it becomes still smaller at higher levels.
The jnd (Weber fraction) is plotted in Fig-
ure 7 as a horizontal line with an ordinate
value of about .5 db. (see Miller, 1947). A
plot similar to Figure 7 can be constructed
for any prothetic continuum. For visually
presented lengths, for example, such a plot
could be made to show how, in visual per-
ception, a centimeter added to a centimeter
makes a clearly perceived difference, whereas
a centimeter added to a meter becomes only
marginally detectable. Under successive
visual presentation, length behaves like loud-
ness, and a constant added difference be-
comes lost to view as the stimulus increases.

The smooth continuity of the curve in Fig-
ure 7 suggests that the underlying process
that forces a given constant difference to be-
come less and less apparent as the level in-
creases is a process that operates all up and
down the prothetic continuum. There are
no discontinuities, no sudden transitions.
When the observer attempts a comparison of
differences at any place on the continuum,
it is as though his perception undergoes an
asymmetrical distortion; a constant differ-
ence seems larger toward the lower than to-
ward the higher part of the continuum.
From that basic asymmetry, it follows that
the operations of partitioning on prothetic
continua will fail to produce a linear, un-
biased interval scale. Where the asymmetry
does not exist, as on a metathetic continuum,
it becomes possible for partitioning to pro-
duce a linear interval scale.

INDIVIDUAL DIFFERENCES

Let us turn at this point to a problem that
was especially well formulated by Jones and
Marcus (1961). Do different individuals
have different operating characteristics in
their sensory systems ? If not, then why do
the slopes (exponents) differ when observ-
ers match numbers to stimuli, as, for exam-
ple, in Figure 3 ?

If we were to take some of the measured
values literally, it would be incumbent on us
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to examine the implications. Consider in
Figure 3 the functions for observers EG
(exponent .4) and PK (exponent 1.1).
They both happen to be "normal" observers,
having similar audiometric thresholds. If,
as seems reasonable, the two observers ex-
perience the same loudness when a tone is
near threshold, what about a tone 100 db.
above threshold? The two exponents sug-
gest that the loudness at 100 db. would be
about 3,000 times greater for PK than EG.
Yet both observers react very similarly to
acoustic stimuli. For example, both observ-
ers report that 100 db. sounds very loud;
they both call 120 db. slightly painful; and
they both jump when it is first turned on.
Both observers set the intensity control of
the radio to roughly the same level for com-
fortable listening. Both carry on conversa-
tions in about the same level of voice. All
those bits of evidence make it hard to credit
a difference in exponent that entails a 3,000-
fold difference in loudness at 100 db.

Another consideration is this. The value
of an exponent reflects the curvature in the
operating characteristic of the sensory sys-
tem. As a function of sound pressure, the
exponent .4 suggests that the loudness func-
tion for EG is a decelerating function,
sharply concave downward. The exponent
1.1 suggests that the function for PK is con-
cave upward—an accelerating function of
sound pressure. In order to achieve such
an unlikely difference in curvature, nature
would have had to produce two radically dif-
ferent kinds of operating characteristics in
the two auditory systems.

An alternative hypothesis is that all hu-
man auditory systems operate on much the
same design, with very nearly the same ex-
ponents, but that there are wide individual
differences in what observers take to be the
numerical value of a loudness ratio. We
encounter that kind of individual difference
especially clearly when an observer is asked
to adjust one sound to make it appear half
as loud, or twice as loud, as another sound.
In an experiment with 22 observers, the
scatter of eight distributions of settings cov-
ered a median range of 14 db. (For plots
of the distributions, see Stevens, 19S7a.)
That range of settings would correspond to

a range of exponents from about .3 to 1.5.
The distributions of the ratio settings tended
to be roughly log normal, however, and there
appeared to be no reason not to average the
data, which is equivalent to averaging in-
dividual exponents.

Consider this question: What would hap-
pen if an experimenter were to report that
each of 22 observers in a group made an
identical setting when asked to produce a
two-to-one loudness ratio ? It is an interest-
ing question whether the scientific commu-
nity would regard such a result as a new
marvel, or whether scientists would simply
reject it as an implausible outcome. We ex-
pect variability and we usually find it. The
substantive question concerns whether and
how to average the data.

Although the operating characteristics of
normal sensory systems may have the same
or closely similar exponents, there are cir-
cumstances in which an abnormal exponent
can be demonstrated and in which the ab-
normality calls for careful measurement.
The otologist, contemplating middle-ear sur-
gery, needs to know whether so-called re-
cruitment, with its attendant large exponent,
characterizes the lower part of the patient's
loudness function. If the exponent is ab-
normally large, middle-ear surgery is con-
traindicated. But if the exponent is normal,
the otologist may feel free to try to correct
a middle-ear difficulty. (For a model de-
picting the manner in which Meniere's dis-
ease may produce power-group transforma-
tions on the loudness function, see Stevens &
Guirao, 1967.)

Except for clinical cases, it seems fair to
say that seldom, if ever, have investigators
undertaken the serious effort that is needed
to establish the existence of individual dif-
ferences in sensory power functions. Mostly,
we are shown the variability that happens to
be found in a particular matching response,
usually magnitude estimation. The obvious
next step, usually not undertaken, would be
to try magnitude production. I have found
that many individual differences vanish as
soon as the matching task is inverted. For
example, by magnitude estimation, the low-
est loudness exponent in a group was .4, but
by magnitude production, that particular ob-
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server produced the exponent .9; the geo-
metric mean of the two exponents is .6 (see
graphs in Stevens & Greenbaum, 1966).

Five observers in those same experiments
(Stevens & Guirao, 1962) made both magni-
tude estimations and magnitude productions
of the loudness of noise. The ratio of the
largest to the smallest exponent for estima-
tion was 1.42; for production, it was 1.27.
When the geometric means of the expon-
ents for estimation and production were ex-
amined, the range ratio fell to 1.14. In other
words, the individual differences were less
pronounced when both estimation and pro-
duction were used in a balanced design.

The balancing of estimation by production
may be good for a start, but if we are seri-
ously interested in the power function for a
particular individual, we will not stop with
magnitude estimation and production. We
will want to know the results from a bal-
anced array of additional cross-modality
matching tasks, the more the better.

VARIABILITY AND AVERAGING

Criticism of the power law has sometimes
centered on one or another aspect of varia-
bility. It would be good, of course, if varia-
bility could be reduced, so that the psycho-
physical functions could be determined with
higher precision. But empirical functions
always suffer from variability, and the cen-
tral question is not so much whether a mea-
surement is variable, or whether subjects
disagree, but whether averaging is appro-
priate. If the data can be appropriately
averaged, it does not matter how widely the
variability may range, provided the number
of independent measurements can be in-
creased. In principle, the standard error can
then be brought down to any desired level.

In electrophysiology, for example, mira-
cles of averaging are performed routinely by
computers programmed to dig a particular
waveform out of the myriad variations in the
ongoing neural activity of the brain. A re-
peated click delivered to the ear can then be
seen as an evoked potential at the scalp.
The response to the click emerges remark-
ably clear and unencumbered by the noise of
the brain, for the noise has been suppressed

by being averaged out. An analogous strat-
egy of error cancellation by averaging finds
usefulness in psychophysics and in all the
rest of science.

In the long run, since scientists tend to be-
lieve only those results that they can repro-
duce, there appears to be no better option
than to await the outcome of replications. It
is probably fair to say that statistical tests of
significance, as they are so often miscalled,
have never convinced a scientist of anything.
By contrast, a tabulation of 178 determina-
tions of the loudness exponent, based on 25
years of accumulated results from several
different laboratories, produced a median re-
sult .6, which became the exponent recom-
mended by the International Standards Or-
ganization (see Stevens, 1955a). Since
then, a further accumulation of experimental
determinations has begun to fix the second
decimal place, and it now appears that the
value 2/3 may be more representative (Stev-
ens, in press). The value 2/3 happened to
correspond to the modal value of the 1955
distribution, but at that time, the median
seemed a better choice than the mode.

How to average data presents serious and
interesting questions. The median is per-
haps the single most unbiased measure of
location, and it has often been used in psy-
chophysics. A popular rule is: when in
doubt, use the median. On the other hand,
a more efficient average is often wanted, and
the choice of an efficient measure can usually
be made to rest on the form of the distribu-
tion. Thus, two different averages have
proved appropriate in psychophysical scal-
ing, each under a particular circumstance.

In an equisection experiment, 45 subjects
divided a 40-db. segment of the loudness con-
tinuum into four equal-appearing intervals.
Because the decibel measures of the subjects'
settings gave skewed distributions, it did not
seem proper to average the decibel values,
which would have been equivalent to com-
puting geometric means. When the decibel
measures were converted into sones (a linear
loudness value), the settings showed the de-
sired symmetries. It was concluded that
averaging should be done by computing the
arithmetic means of the loudness values, and
an iteration procedure for determining those
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values was outlined (Stevens, 1955b). The
arithmetic mean is also an appropriate aver-
age for other kinds of partition scales, such
as the category scale.

In experiments involving magnitude esti-
mation and other forms of cross-modality
matching, it is the geometric mean, not the
arithmetic mean, that appears to be the ap-
propriate average. Against a linear scale,
the response distributions are skewed, as in-
deed they must be when error is proportional
to magnitude. When error grows in pro-
portion to magnitude, so that the relative
error stays constant, a logarithmic trans-
formation tends to undo the skewness. The
applicable principle states that when error is
relative, the error distribution is log normal.

The log-normal model for magnitude esti-
mation was tested by J. C. Stevens who
plotted the results obtained when 70 naive
observers estimated the loudness of a white
noise presented by a loudspeaker in a class-
room (J. C. Stevens & Tulving, 1957). In
the first of two experiments, the observer
chose his own modulus by assigning to the
first stimulus (85 db.) whatever number
seemed appropriate. In the second experi-
ment, the stimuli were presented in pairs, a
standard at 85 db. called 10 followed by a
variable. When the cumulative frequencies
for this second experiment were plotted on
probability paper against the logarithm of
the magnitude estimations, the result was a
family of straight lines. In other words, the
distributions were log normal.

Some five years later J. C. Stevens and
Miguelina Guirao applied the modulus equal-
ization procedure to the data of the first ex-
periment, the one in which each of the 70
subjects had chosen his own modulus. (The
deviation of each subject's scores from the
average function was minimized by the pro-
cedure for modulus equalization described
above.) The cumulative frequencies of the
judgments subjected to modulus equalization
are shown in Figure 8. Again the straight
lines demonstrate that the distributions are
approximately log normal.

Other features of the results in Figure 8
are also of interest, especially in view of the
fact that those were the first magnitude esti-
mations ever made by that large group of

Stimulus order
SPL in 4B

5 8 2 6
90 95 100 109

0 02 0.4 06 0,8 1 0 1 2 1.4 1.6 1.8 2.0 2.2
Log magnitude estimation

FIG. 8. Cumulative frequency distributions of
magnitude estimations. (Each of 70 subjects, mak-
ing their first judgments ever, assigned whatever
number seemed appropriate to eight levels of white
noise presented in the order shown. The data of
three subjects who used negative numbers or zeros
were not tabulated. In these coordinates, a straight
line signifies a log-normal distribution. Data from
J. C. Stevens & Tulving, 1957.)

naive listeners. Since it was a classroom
experiment, the order of the stimuli could
not be made different for the different listen-
ers. Consequently, the order of the stimuli
is reflected in the slopes of the cumulative
frequency lines, or, in other words, in the
standard deviations. The first stimulus has
the smallest standard deviation (1.0 deci-
log), the second stimulus the next smallest
(1.4 decilog), and so forth. If the stimulus
order had been made different for each ob-
server, the lines in Figure 8 would be more
nearly parallel. But a tendency has been ob-
served in numerous experiments for the vari-
ability to increase at the low end of the scale,
and to a lesser extent, at the high end. That
same tendency is apparent in Figure 8.
Hence, it can be seen that the effect due to
stimulus order cuts across the normal tend-
ency for the variability to be slightly lower in
the middle range.

The lines in Figure 8 make it clear that
the geometric mean is an appropriate aver-
age for the data. In this instance, the geo-
metric means determine a power function
with the exponent .55.

A similar treatment was applied to the
data from the original "no standard" experi-
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ment carried out in 1954. The elimination
of the standard was an important procedural
change suggested by Geraldine Stevens. A
group of 32 observers each made two judg-
ments of each level of a 1000-hertz (Hz.)
tone. (The details of the procedure are given
in Stevens, 1956.) The level of the first tone
was varied from one observer to another and
was assigned whatever number the observer
thought appropriate. The cumulative fre-
quencies were nicely log normal, both before
and after modulus equalization. The effect
of the modulus equalization was to reduce
the standard deviations by a large factor, as
shown in Table 1.

It is significant to note that the standard
deviations were larger when the stimulus to
be judged was 1000 Hz. (Table 1) than
when it was a white noise (Figure 8). In
numerous experiments, it has been found
that a noise is easier to judge than a tone.

Still more difficult for most observers are
magnitude estimations of apparent pitch.
Each of 20 subjects made two judgments of
12 frequencies between 100 and 7500 Hz.,
with no designated standard (Stevens &
Galanter, 1957). With such a small number
of scores, the cumulative frequency plots
showed much scatter, but the overall pic-
ture was log normal. Corrected by modulus
equalization, pitch judgments yielded stand-
ard deviations that were not very different
from the corrected values for the loudness
judgments in Table 1. For pitch, the stand-

TABLE 1

STANDARD DEVIATIONS IN DECILOGS OF MAGNITUDE
ESTIMATIONS DETERMINED GRAPHICALLY

FROM CUMULATIVE DISTRIBUTIONS

Stimulus

110
100
90
80
70
60
50
40

SD
unconnected

5.6
5.4
4.7
4.7
4.6
5.0
5.5
5.8

SD
corrected

3.0
2.3
1.8
1.7
1.7
1.9
3.0
3.2

Note.—Thirty-two subjects made two judgments of each
stimulus (1000 Hz.), When corrected by modulus equalization,
the variability fell by a factor of approximately 2.

ard deviations ranged from 1.7 to 5.4 deci-
logs, with a median value of 2.2 decilogs.

The variability in the results of cross-
modality matching for a group of observers
can be divided into three main components,
namely, the variability attributable to differ-
ences from observer to observer in the effec-
tive modulus (intercept), the effective ex-
ponent (slope), and the residual scatter in
each observer's matches. It is sometimes
useful to partial out those sources of varia-
bility (see Stevens & Stevens, 1960).

RANGE EFFECTS

Much has been written about the effects of
stimulus range on the exponents of the sen-
sory power functions. The range (loga-
rithmic spread) of the stimuli used in cross-
modality matches may affect the exponent,
but the experimenter can design tactics to
offset the biasing effects of range, if he so
chooses. Analogous options face the experi-
menter with regard to other distorting fac-
tors, and the same principle applies to mea-
surements in physics as well as psychophys-
ics. A scientific measurement of serious
consequence can never be based on one
experiment, because multiple experiments
are required to detect and correct the sys-
tematic errors. Multiple experiments are
the rule in physics; they ought also to be
the rule in psychophysics.

There is a negative correlation between
the measured exponents and the ranges of
the stimuli that were used in some of the
experiments by which the exponents were
determined. For example, a range as great
as 90 db. has been used for loudness, which
has a low exponent, compared with a range
of about 10 db. for electric current through
the fingers, which has a high exponent. The
negative correlation between range and ex-
ponent has led Poulton (1968) to say

that in designing the experiments to measure the
exponent, the experimenters did not adequately
compensate for the effects of the different physical
ranges . . . [p. 5].

To be sure, the experimenter could choose a
10-db. range for the study of loudness; but a
90-db. range of electric current through the
fingers would prove insupportable. It seems
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ISSUES IN PSYCHOPHYSICAL MEASUREMENT 443

that stimulus ranges are to a very large ex-
tent selected by experimenters because na-
ture's exponents are what they are, not the
other way around.

In suggesting that the experimenter should
compensate for the effects of the different
physical ranges, Poulton directed attention
to the wrong side of the equation. It is not
the physical ranges that need compensation;
rather, the experimenter should try to en-
sure that the subjective ranges are as com-
parable as possible. Stimulus measures have
much arbitrariness about them: measures of
sound pressure give one loudness exponent;
measures of sound power give an exponent
that is half as large. For apparent size, the
measured diameter of circles gives one ex-
ponent, the measured area of circles gives
another, and so on.

In comparing the exponents of different
continua, the experimenter would like to be
able to select stimuli—regardless of how they
happen to be measured—so that they would
produce a constant subjective range. If he
could do that, then the correlation would
uniquely fix the relative values of all the ex-
ponents. Of course, if the experimenter
knew in advance how to choose the stimulus
ranges that would produce the perfect corre-
lation, he would not need to run the experi-
ment. In effect, then, much of the extensive
work with cross-modality comparisons can
be regarded as an effort by trial and error
to determine what stimulus ranges would be
needed to provide a constant subjective range
on all continua and thereby make it possible
to produce a perfect negative correlation be-
tween logarithmic range and exponent.

The correlation between stimulus range
and exponent has been reported as high as
— .94 by Teghtsoonian (1971), who proposed

that a single scale of sensory magnitude serves a
wide variety of perceptual continua, and that vari-
ation in power law exponents is primarily due to
variation in dynamic ranges [of stimuli] [p. 71].

That is an interesting hypothesis, even
though a test of it would require that we
learn how to determine dynamic range,
which may prove to be an elusive variable.

It is important to note that a short range
does not necessarily produce a large ex-

ponent. Some of the lowest measured ex-
ponents apply to odor. Benzaldehyde (syn-
thetic almond) gave the exponent .2 (Stev-
ens, 1957b). That was probably the first ol-
factory exponent ever determined. A similar
low value has since been found by Berglund,
Berglund, Engen, and Ekman (1971). The
stimulus range for benzaldehyde is relatively
short, at least as compared to loudness or
brightness. From the point of view of the
observer, the subjective range of the odor
seems extremely short compared to the
enormous subjective ranges that can be pro-
duced in loudness or brightness.

EFFECTS OF REPETITION

Although range effects may be present in
any given experiment, the degree to which
they affect the outcome may sometimes
be altered by repeated presentation of the
stimuli.

An experiment showing how repeated pre-
sentations of a very short range of luminous
targets can cause the measured brightness
exponent to increase on successive presenta-
tions was carried out in 1960 by A. W. F.
Huggins (reported in Stevens & Stevens,
1960). The results are shown in Figure 9.
The stimuli, a series of Munsell grays rang-
ing from black to white, were viewed under
so-called reduction conditions, which made
them appear as luminous targets, not as sur-
faces. The stimulus range covered only 16
db., because that is all there is between a
black paper and a white one. The stimuli
were also presented under two levels of il-
lumination, which extended the range and
which gave the filled points in Figure 9.
The exponent for the extended range is .35.
The magnitude estimations for the shorter
range on the first presentation follow very
closely the lowest five points on the extended
range, but later presentations give succes-
sively steeper slopes (higher exponents).
Although the limiting of the experimental
procedure to a single presentation of each
stimulus may attenuate some of the effects
of range, residual effects on the exponent
may still remain. Under some circum-
stances, the residual effects can be balanced
out in the experimental design, as is shown
below.
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FIG. 9. Showing how Munsell grays, extending
from black to white, are judged when they are pre-
sented entirely alone with no other visible lumi-
nance in the field of view. (The luminance then
covers a range of about 16 db., which seems sub-
jectively rather short. On the three successive pre-
sentations of the set of stimuli, the exponent be-
came larger (unfilled symbols). The filled symbols
show the results for an extended luminance range.
The exponent is .35, which is much lower than the
value 1.2 obtained when the Munsell grays are
placed one by one on a table in front of the ob-
server.)

COUNTERBALANCING FOR RANGE

The general problem of the interaction of
range and exponent may be thought of in
terms of the matching of two continua, A
and B, each of which may serve in turn as
the adjusted and as the criterion continuum.
What does the observer tend to do to the
adjusted stimulus as a function of the range
(logarithmic difference) between two cri-
terion stimuli set by the experimenter ? For
purposes of discussion let us assume that the
true exponent determined by the slope A/B
in log-log coordinates is 1.0.

If the experimenter were to set the cri-
terion range to a very small value, say, to a
small fraction of a decilog, on the average the

observers would necessarily respond with
adjusted ranges that average larger than the
criterion range. That value of the adjusted
range would then determine an exponent
greater than 1.0. On the other hand, if the
criterion range was set at a very large value,
the observers would tend to match it with
shorter ranges, determining thereby an ex-
ponent smaller than 1.0. Between those two
extremes, the exponent would decrease
monotonically as the range increased.

Since the two continua A and B can be
interchanged in their roles of criterion and
adjusted variable, in a balanced experiment
two paths would be traced by the exponent
as the criterion range was varied from very
small to very large. Those two paths would
cross, and the crossing point would presuma-
bly determine the unbiased exponent—un-
biased by the effect of range, but not neces-
sarily free of other possible biases.

A concrete example of the two paths fol-
lowed by the exponent when range is varied
in a fairly well-balanced experiment can be
constructed from the data of Stevens and
Poulton (1956). The loudness function for
a 1000-Hz. tone was studied by allowing
groups of 8 to 11 unpracticed observers to
make only a single judgment, either a ratio
estimation or a ratio production. A stand-
ard stimulus was sounded first and called
100, and the observer expressed the apparent
ratio by assigning a number to a second
stimulus at a lower level. The exponents
corresponding to the median estimations of
each group are shown by the triangles in
Figure 10. Each triangle represents a dif-
ferent group of listeners.

For the ratio productions, the observers
adjusted a sone potentiometer to produce a
prescribed fractional loudness relative to a
standard. The exponent corresponding to
the ratio productions (sone average) for
each group of subjects is shown by a circle
in Figure 10. Again each circle represents
a different group of listeners. The data
show an approximate symmetry and suggest
that for those naive observers making their
first loudness judgments, the exponent lies
between .6 and .7. The range effect emerges
as a dramatic but orderly variable, and since
it shows an approximate symmetry, it can in
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FIG. 10. The range effect in a partially balanced
experiment. (Each point represents a separate
group of subjects who estimated a loudness ratio
(triangles) or produced a loudness ratio (circles).
When the range effect produces symmetrical func-
tions, as is approximately true here, the exponent
may be uniquely determined. It is the value that
makes the exponent corresponding to the crossover
point equal to the exponent implied by the relation
of the scales at the top and bottom of the figure.
The exponent so determined is .65. Data from
Stevens & Poulton, 1956.)

principle lead to a unique exponent de-
termined by the crossing point in Figure 10.

The actual crossing point depends, of
course, on the relation between the two scales
(top and bottom in Figure 10) against which
the two sets of data are plotted. But the re-
lation between the values on the two scales
(both logarithmic) also expresses an ex-
ponent. The problem, then, is to adjust the
relation between the two scales (ratios to be
produced and ratios to be estimated) so that
the exponent determined by the scale relation
coincides with the exponent determined by
the crossing point. The adjustment can be
carried out by iteration.

In plotting Figure 10, I first assumed that
the exponent was .60. Accordingly, the
ratio 1/2 at the top of the graph was set
directly above 10 db. at the bottom of the
graph. The other ratios were then set ac-
cording to a logarithmic spacing. When the
data were plotted, the crossover was found
to correspond to .64 on the ordinate—a value
that was larger than my assumed exponent.
I next assumed a larger exponent, .67, and

changed the upper scale and the location of
the circles accordingly. The resulting cross-
over then fell at .65—a value smaller than
my assumed exponent. Thus the two as-
sumptions, one too high and one too low,
had succeeded in bracketing the exponent
between .64 and .65, but closer to .65. With
fallible empirical data, the exact value of the
exponent cannot be taken too literally, but it
is nevertheless interesting that the crossover
value accords approximately with the con-
sensus of other measurements.

The search for other instances in which a
pure range effect could be studied has been
only partially successful. Experiments with
the required balanced design seem to be rare,
but we can compare two separate experi-
ments that add up to a partly balanced de-
sign. In Figure 11, the triangles show the
exponents corresponding to the median ratio
estimations made by groups of about 30 sub-
jects (Poulton, 1969). Each group judged
one noise level set at 5, 20, or 35 db. above a
standard noise (600 to 1200 Hz.) at 65 db.
The circles in Figure 11 represent the ex-
ponents determined from the ratios produced

R a t i o t o b e p r o d u c e d

2 4 10

0.4
0 10 20 30 40 dB 50

R a t i o t o b e e s t i m a t e d

FIG. 11. Range effect shown in two noncompara-
ble experiments. (Separate groups of subjects esti-
mated loudness ratios (triangles) of a band of
noise, 600-1200 Hz. (Poulton, 1969). A single
group of subjects produced fractional and multiple
ratios (circles) of a 40-tone complex (Geiger &
Firestone, 1933).)
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by 31 listeners who made multiple and frac-
tional settings of noise consisting of a 40-
tone complex (Geiger & Firestone, 1933).
Both the multiple and the fractional produc-
tions were averaged to determine the ex-
ponents. The same group of listeners heard
all the stimuli, and the order of the ratio
productions was 1/2, 1/4, 1/10, . . . 2, 4,
and 10.

In order to plot the circles in Figure 11,
the exponent was assumed to be .67, and
the ratio 2 on the upper scale was set di-
rectly above 9 db. on the lower scale. The
crossover point then fell at .77. If the ex-
ponent is assumed to be .8, and if the scale
values and the circles are moved accordingly,
we find that the crossover point becomes
about .78. Thus the two assumed exponents
have bracketed the crossover exponents.
Consequently, the exponents that would be
determined by the data in Figure 11, if they
were homogeneous and suitable for such a
purpose, would lie between .77 and .78.
That value is on the high side, even though
the measured exponents for noise are often
larger than those for tones. The mean ex-
ponent for white noise in an earlier compila-
tion was approximately .72 (Stevens, 19SSa).

The groups of subjects who gave the re-
sults that determined the triangles in Figure
11 subsequently judged all the other stimuli.
The pooled results determine a power func-
tion with an exponent of about .73, provided
no attempt is made to force the best fitting
line to pass through the standard stimulus.
Although experimenters have sometimes as-
sumed that the function must pass through
the standard, there is in fact no such re-
quirement. The observer does not respond
to any stimulus, whether standard or vari-
able, with zero error.

The foregoing examples of the sources of
error and distortion that may plague a psy-
chophysical measurement are more illustra-
tive than exhaustive. As has often been
said, there are many ways to perform a bad
experiment. Not even the expert in statis-
tical design can tell exactly how to perform
a good one. In principle, however, we can
study each experimental ailment and utilize
the rules of its behavior in order better to
diagnose the nomothetic substrate.

THE NOMOTHETIC IMPERATIVE

The scientist's contest with nature has
prospered to the degree that simplicities and
uniformities have been detected amid the
complexities that afflict observation and ex-
periment. The simple invariances have often
proved hard to find, however, because no ex-
periment can be performed without its "con-
text," and no measurement can be made
without error. In psychophysics, each ex-
perimenter records results that disagree to
some extent with those of his colleagues,
and a penumbra of uncertainty surrounds
even our best determinations. Consequently,
there is room for many hypotheses and for
many views regarding the structure of the
psychophysical domain.

First there are those whose working hy-
pothesis states that there exist laws to be
discovered. Heeding the nomothetic im-
perative, those investigators refuse to be put
off by the apparent chaos in the organism's
reactions to stimuli, and they try to order,
classify, and systematize the behavioral facts.
Some people seem willing to gamble that the
sense organs operate in beautifully simple
ways and that what we take to be complexity
lies more in our inept descriptions than in
nature's actual comportment. As regards
the particular question of reactions to stimu-
lus intensity, the nomothetic outlook assumes
that there exists an orderly input-output
function, a simple law of some sort—how-
ever difficult it might be to pin it down in its
exact form. Perhaps it was that same nomo-
thetic outlook that drove Kepler to search
for simple invariant laws in the baffling paths
of the wandering planets, which were thought
in early times to crisscross the skies impelled
by their own volition.

The nomothetic viewpoint is consonant
with an objective, operational approach, but
it does not necessarily entail a particular
philosophy of reality. In the fitting of sche-
matics to empirical fact—what I have called
the schemapiric endeavor—there is no neces-
sity that we take a stand regarding any ulti-
mate concern. We can simply note, for ex-
ample, that when the intensity of the visual
stimulus increases, the observer's response
changes in an orderly fashion. If he is in-
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strutted to squeeze a hand dynamometer to
match the apparent intensity of what he sees,
then the force of his squeeze increases as a
power function of the physical luminance (J.
C. Stevens, Mack, & Stevens, 1960). That
is the first-order fact. But what shall we say
about it? We have obviously measured
something, but have we measured sensation ?
As soon as that word appears, a discordant
chatter sets in, because many authors con-
tend that sensation is not a thing that can
be measured.

If I thought it would help, I should hap-
pily give up the word sensation in favor of
some other term, such as behavioral response
or apparent effect, but the philosopher would
shortly discover that my new term is only a
euphemism for what I regard as a straight-
forward construct, a construct that can per-
haps best be communicated to other people
by my labeling it sensation.

A prime source of confusion in this seman-
tic issue rests with the fact that each of us
experiences sensations, and to each of us our
sensations seem personal and private and in-
accessible to measurement. As scientists, we
should try to ignore that fact. To help free
us of narcissistic introspection, there is the
example of Plateau, the blind physicist, who
gave us our first interval scale for the light-
ness of grays. He himself did not need to
see the grays that the eight artists painted,
for he could record the reports of other ob-
servers. Plateau's achievement drives home
a crucial point: the blind could develop the
psychophysics of vision; the deaf could de-
velop psychoacoustics.

Sensation then is a construct, a name
given to a constellation of behaviors. The
justification for saying that sensation is sub-
jective is that a human subject exhibits the
behaviors. The heating coil in an electric
stove also exhibits interesting behaviors, but
quite arbitrarily we refrain from using the
term subjective for those behaviors or for
the constructs built on them. The simple,
operational dichotomy into subjective (mean-
ing people) and objective (meaning not peo-
ple) seems eminently convenient, but words
and slogans sometimes cause clash and con-
flict. In the schemapiric view of science,
words and symbols serve only the neutral

purpose of implementing a schematic struc-
ture which may be related by operational
rules to an empirical structure (see Stevens,
1968b).

As an experimenter, I feel free to use
terms like sensation and subjective, because
they can be defined operationally in the con-
text of psychophysical research. For some
writers, however, the use of such words puts
the user in the camp of Subjectivism, as op-
posed to Behaviorism (e.g., see Baird, 1970).
I have long thought of myself as a behavior-
ist, but it has not seemed defensible to assert
that verbal taboos provide a tool for ad-
vancing science, as some behaviorists have
seemed to believe. A viable injunction is
this: Use any words you care to, but let it
be plain what operations lie behind your ver-
bal forms. Otherwise said, construct the
schema as you will, but tell us precisely how
the empirics articulate with the schematic
terms in order to produce the schemapiric
substance.

Such protestations, I realize, will avail
nothing with those who want to maintain a
philosophical distinction between certain
traditional views and to preserve a dualism
that to an operationist is devoid of meaning.
Since I do not believe in the usefulness of
the distinction, I am happy to read that
It is impossible to locate Stevens' view precisely,
since he constantly shifts back and forth between a
behaviorist and some other way of treating the
question . . . [Savage, 1970, p. 390].

More damning than that, however, the whole
psychophysical enterprise is said by Savage
to be wrongly conceived, so that
However we reconstrue Stevens' law, it cannot be
construed as one relating sensations to stimuli,
since the former are incapable of measurement [p.
541].

More than half a thousand pages, it should
be said, are devoted by Savage to the thesis
that we cannot measure what psychophysi-
cists seem so delightedly to be measuring.

Philosophical problems must not detain us,
however, for philosophical issues are eternal
and do not go away. More tractable, per-
haps, are some of the specific issues that
strike directly at the nomothetic imperative.
A cluster of questions has concerned the
problem of picking the best sensory scale.
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When three different scales have been created
on the same continuum by three separate
sets of operations—jnd's, category estima-
tion, and magnitude matching—on what
grounds do we presume to ascribe to one of
those scales a superior position? Helson
(1964) seemed to deny that we can make
any such judgment, for he said that

no one scale, however carefully established, can be
considered better than other scales obtained under
different conditions of judging [p. 179].

Other authors have also lamented the ab-
sence of criteria for determining the validity
of a choice of one kind of scale over another.
Validity is indeed the issue here. Which
scale best measures what it is that we want
to measure? Since it is that kind of ques-
tion, the answer becomes a matter of opinion
—a value judgment. It appears that all
problems related to validity must seek their
ultimate solution in the pragmatic domain.
If a scale does the job we want done, we
usually accept it.

But opinions differ about problems and
solutions. How else can we understand the
decision of an experimenter to limit the ob-
server's responses to a finite set of numbers,
such as 1 to 7 or 1 to 20? That curious
maneuver of constraining the observer's re-
sponses is a tactic that seems somewhat
mulish to those who have allowed the ob-
server a full range of responses and have
witnessed the greater usefulness of the re-
sulting ratio scales. It may be true that in
the long run, superior procedures tend to
replace inferior procedures, but in almost
two decades of practice, magnitude estima-
tion has not displaced category estimation—
nor does it seem likely to do so any time
soon.

Even among those who have given up
category scaling in favor of ratio or magni-
tude matching, there remains a matter of
taste and opinion that divides the practition-
ers. One view holds that the construct we
call sensory magnitude follows simple laws,
and in particular that under proper circum-
stances, the sensation magnitude experienced
by the typical (median) observer grows as a
power function of the stimulus magnitude.
The power law is thought to set constraints

on our expectations regarding the outcome
of experiments, so that a discordant result
becomes suspect until verified by adequate
replication. In other words, the sensory
power law takes precedence over the results
of any particular experiment, just as the
power law governing gravitational attraction
usually remains unquestioned despite a par-
ticular experimenter's inability to confirm it
by dropping objects in a laboratory. Both
kinds of power laws make possible many
kinds of predictions; yet they both can be
shown to fail to some degree in particular
contextual circumstances.

The other view holds that the nomothetic
imperative has no compelling jurisdiction in
psychophysics, because departures from the
power law are too numerous to be ignored.
It is claimed that the ways in which the
human observer responds to stimulus in-
tensity depend on prior learning, adaptation,
range of stimuli, nature of the matching task,
and so on; and that until those many factors
and contextual influences can be discovered,
explored, and understood, it is premature to
speak of a psychophysical law.

The two views sketched above may prove
more extreme than the attitude of any par-
ticular scientist, but they illustrate two poles
of opinion. Perhaps the least nomothetic
view yet expressed was that of Poulton
(1968) who concluded his review of "the
new psychophysics" by saying, "The mechan-
ism of response learning and response bias
must be included in any adequate descrip-
tion. To this reviewer," he added, "they
present the more interesting and challenging
problems." In my own view, the problems
of response bias rate no better than a nui-
sance, an interesting nuisance, perhaps, as
some of the foregoing sections have tried to
show, but nevertheless a diversion from the
basic business of sorting out the fundamental
principles. Fortunately for science, how-
ever, its practitioners are motivated by a
diversity of values and interests. It would
stifle the enterprise if we all tried to crowd
in on one single problem.
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