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PRACTICAL 
DATA HANDLING

Robust Statistics
The box plot is based on robust statistics.
Robust statistics are called thus because
they are more resistant (robust) to the
presence of outliers than the classical
statistics based on the normal distribution.
Consider, for instance, the determination
of the mean, one of the simplest statistical
operations possible and suppose the
following series of results was obtained: 
2, 3, 2, 4, 3, 4, 3. The mean of these data
is 3. It describes one of the aspects of this
data set, the so called central tendency, in
an adequate way. Now suppose an outlier
is present, perhaps because an error was
made or because one of the objects
measured belongs to another population
than the other six. One of the 4s is
replaced by a 11: 2, 3, 2, 4, 3, 11, 3. The
mean is now 4, which is no longer a
representative measure for the central
tendency of the data set since five of the
seven values are smaller than 4 and only
one is larger: the mean is not robust
towards outlying observations. It can be
shown that this is also true for the usual
measure of dispersion or spread within the
data, the standard deviation. 

The Median
Robust statistics replaces the mean by other
measures of central tendency and the most
common of those is the median. When the
number of data is odd, the median is the
middle observation in a ranked series of

data. When it is even, it is the mean of the
two middle observations. In the first
example of the preceding section the
ranked data are: 2, 2, 3, 3, 3, 4, 4. There
are seven data and, therefore, the fourth in
the series is the median: it is equal to 3.
The second example yields the ranked
series 2, 2, 3, 3, 3, 4, 11. The median is still
3 and is, therefore, not affected by the
outlier: it is robust towards the outlier. Even
if the outlier were 100, the median would
still be 3.

Interquartile Range
The interquartile range or IQR is a robust
way of describing the dispersion of the
data. It is the range within which the
middle 50% of the ranked data are found.
This is also the range between what is
called the lower quartile value and the
upper quartile value. Let us consider a
somewhat larger data set to show how the
IQR is determined (See Table 1).

First the median is obtained. Since the
number of data is even, the median is equal
to the mean of the two middle values, 13.1
and 13.3, (i.e., the median is 13.2). The
data is then split into an upper and a lower
half. When the number of data is odd,

which is not the situation in the example,
the median value is included in both halves.
The median of the first half is the lower
quartile value, (i.e., the value below which
the 25% lowest values are found). Here it is
the sixth value, (i.e., 12.0). Likewise the
upper quartile value is the value above
which the 25% highest values are found. It
is equal to 14.5 and the IQR is the
difference between the two quartile values,
(i.e., IQR = 14.5 – 12.0 = 2.5).  

The Box and The Whiskers
The median and the IQR are used to
construct the box. It has a height equal to
the IQR and is drawn so that it starts at the
lower quartile value and stops at the upper
quartile value. A horizontal bar is drawn at
the height of the median. In our example
(Figure 1(a)) the box encompasses the
values from 12.0 to 14.5, and the
horizontal bar for the median is drawn at
13.2. The whiskers indicate the range of
the data and they are usually represented
as vertical lines ending in a small horizontal
line. In our situation, they are drawn at
11.0 and 16.0. 

A provision is also made for the
representation of extreme values. An upper
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Data analysis should always start by (literally) looking at the data.
An efficient way to do this is to use box and whisker plots, which,
for short, are called box plots. All figures in this column are box
plots and Figures 2 to 4 are box plots for real data sets. In this
column we will explain how to construct them and how they can
help you to learn more about your data.

11.0 11.2 11.5 11.6 11.9 12.0 12.2 12.8 12.9 12.9 13.1

13.3 13.4 13.8 13.9 14.2 14.5 14.5 14.6 15.3 15.5 16.0

Table 1: Data set 1.
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extreme value limit is computed as the
upper quartile range � 1.5 � IQR and the
lower extreme value limit as the lower
quartile range � 1.5 � IQR. These limits
are therefore 12.0 � 1.5 � 2.5 � 8.25 and
14.5 � 1.5 � 2.5 � 18.25. None of the
data exceeds these values and, therefore,
the box plot is left unchanged.

When the highest value 16.0 is replaced
by 19.0, which is quite high compared with
the rest of the series (See Table 2), the
highest value now exceeds 18.25 and is,
therefore, considered extreme. The box
plot emphasizes the presence of the
extreme value by giving it a specific
symbol; in Figure 1(b), a � sign. The box
does not change except that the highest
value within the extreme value limit is now
15.5, instead of 16.0 and the upper
whisker is now drawn at this value.

Using Box Plots
Box plots can be used in many ways and,
to illustrate this, we will make use of data
from a European Union funded project,
called Wine D(ata)B(ase). The aim of the
project is to be able to authenticate the
origin of wines from certain countries
outside the European Union. For five such
countries each year 100 samples are taken
according to a sampling plan that
guarantees representativity as well as
possible. Some of these samples are
commercial wines, some are wines
obtained from grapes collected by official
oenological institutes at exactly known
places and vinified according to known
procedures (authentic wines). Initially close
to 100 variables were measured for each

sample, such as classical oenological
parameters, macroelements, isotopic ratios,
inorganic and organic minor and trace
compounds such as trace elements,
biogenic amines, alcohols and esters. This
yields very large databases and advanced
data analysis is needed. Many of the

techniques used are, of course,
multivariate, such as principal component
analysis (PCA),1 but, in an initial phase, it is
also necessary to analyse each variable
individually, (i.e., in a univariate way). In
what follows we will give examples of box
plots obtained for these data. Since the
results have not been published yet, we
will not identify the countries nor the
variables.

Extreme Values (Outliers)
The most evident application is to identify
samples with extreme characteristics.
Figure 2 gives examples of box plots
obtained for four countries and three
variables. Figure 2(a) tells us that this
variable is very well behaved: no single
sample is considered extreme. In Figure
2(b) there are a few extreme values.
Country B has a low value for sample 093
and one low and one high value for
country D (samples 455 and 465
respectively). In Figure 2(c) we see a very
different picture. There are now extreme
values for all countries, a rather large one

(sample 112) for country C and clusters of
extreme samples for countries B and D.

A question might be how conservative
the box plot is: does it tend to find many or
only few extreme values? For a normal
distribution, the IQR is equal to about 5
standard deviations, which means that

about 2% of all data coming from such a
distribution would be considered extreme.
This is somewhat more than for the usual
outlier test where the recommended level
would be 1%. Depending on the software,
some box plots are more conservative in
the sense that in addition to the extreme
level as computed above, they use a
second extreme level, more distant from
the box than the first one. This is the
situation in Figure 3, where a distinction is
made between close extreme values and
far away extremes ( the * symbol).

Classical outlier tests would not be
effective for the data set described here.

The most evident application is to identify samples with
extreme characteristics.
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Figure 1: Box plots for 22 data points
(see text). (a) Without and (b) with
one extreme value.
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Figure 2: Box plots for wine samples collected in four countries (A–D) for three variables (a–c).

11.0 11.2 11.5 11.6 11.9 12.0 12.2 12.8 12.9 12.9 13.1

13.3 13.4 13.8 13.9 14.2 14.5 14.5 14.6 15.3 15.5 19.0

Table 2: Data set 2.
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This should not be understood as a
statement that outlier tests are never useful.
For instance, when a laboratory repeatedly
measures the same sample and one of the
results appears to be far away from the
rest, an outlier test can be useful to make a
decision. The outlier test which is most
accepted in the analytical community is
Grubb’s test. It is the test recommended by
ISO to investigate replicate determinations.
There is a single Grubb’s test, used to
decide on a statistical basis if one single
result is an outlier and there is a double
Grubb’s test, which is used when there are
two suspect values. While this test would
probably perform correctly for the data of
Figures 2(a) and (b), it is, however, clear
that it cannot be used for the variable of
Figure 2(c). For many sets of data, such as
the one here, the visual analysis by box
plots is to be preferred.

Finding extreme values, and sometimes
many extreme values, is the rule rather
than the exception in data like this.
Therefore, samples are not eliminated
because one or two variables show
outlying values, except when it is found
that this is because of technical reasons,
for instance malfunction of an instrument.
A sample with uncharacteristic values may
truly represent part of the population of
samples and should not be deleted. This is
also the reason why we prefer in this
context the term “extreme value” to
“outlier”. Such samples should be marked
as “suspect” or “extreme,” but still be
processed.

Skewed Distributions
Contrary to the implicit belief of many
analytical chemists, data are often not
normally distributed. Data with low values
may for instance be more frequent than
data with a high value, leading to skewed
distributions with a long tail towards the
high end of the distribution. Such
distributions are often found for data sets
consisting of environmental, food and
other natural samples and can easily be
detected with a box plot. Because there are
more data with low values, the median is
shifted towards the low end of the data
range and is found towards the bottom of
the box. Usually there are also several
samples with extreme high results. They
might (wrongly) be considered to be
outliers and deleted from the data set. If
they are kept in, they have too large an
influence in the data analysis. Moreover,
many statistical tests, such as the t-test,
assume normal distribution of the data.
When a skewed distribution is encountered

it is, therefore, always better to try
transforming it into a more symmetric and
preferably a normal distribution.

An example of a skewed distribution is
shown in Figure 3(a). The box plots
concern the same trace compound in two
sets of about 50 wine samples. In Figure
3(b) the same data as in Figure 3(a) are
shown, but instead of the raw data, their
logarithms are plotted. This is called a log
transform. There are now no longer
extreme values and the median has moved
towards the centre of the box. This is
indicative of what is called a log normal
distribution. Statistical tests like the
Kolmogorov–Smirnov test can be applied
to confirm that the data are indeed log
normally distributed. For the wine data set
it was shown that nearly all, close to 100,
variables were log normally distributed and
the log values were systematically
substituted for the original data in the
subsequent data analysis.

Comparing Series of Results
Comparing two or more series of results is
one of the most often performed data
analysis tasks. Classical statistical methods
are the t-test for comparing means and the
F-test for comparing variances of two series
of data, and analysis of variance (ANOVA)
for more than two series. These methods
are vulnerable to the presence of outliers
and are based on assumptions such as
normal distributions and (depending on the
test) equal variance.

The juxtaposition of box plots is an
excellent way to investigate if there are
differences between the data sets and can
be applied without any statistical
assumptions. In our wine example, the
analyst would like to know whether certain
variables allow a distinction to be made
between wines of different countries. In
Figure 4 the discrimination potential of

three variables is investigated. It is
immediately clear that variable (a) is
useless: the box plots show that the four
countries yield similar results. Variable (b)
shows some potential since it discriminates
most of the B samples from those from
country D; also C is to some extent
separated from both B and D. Alone, this
variable is not able to perform a complete
discrimination between any pair of
countries, but together with other
variables, (i.e., using a multivariate
method), it might still prove useful.
Variable (c) achieves excellent separation of
country D from the others.

Conclusion
Always look at your data!
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Figure 3: Box plots of two series of wine samples. (a) Original data, (b) after log
transformation. 
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Figure 4: Box plots comparing the results obtained for wine samples from four countries (A–D) for three variables (a–c).


