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Visual Presentation of Data
by Means of Box Plots

Data analysis should always start by (Iiterallfﬁ)_ qu
An efficient way to do this is to use box and ths‘

Robus't Statistics:, i
The bex plot is baséd:taﬂirﬂbust gatistics.
Robust statistics are called thus because
they are"moreiresistant (fobust) to the .
preseice of ottligrs thar ‘thieiclassigal:
statistics based on the normal distribution.
Consider, for instance, the determination
of the mean, one of the simplest statistical
operations possible and suppose the
following series of results was obtained:
2,3, 2,4, 3,4, 3. The mean of these data
is 3. It describes one of the aspects of this
data set, the so called central tendency, in
an adequate way. Now suppose an outlier
is present, perhaps because an error was
made or because one of the objects
measured belongs to another population
than the other six. One of the 4sis
replaced by a 11: 2, 3, 2, 4, 3, 11, 3. The
mean is now 4, which is no longer a
representative measure for the central
tendency of the data set since five of the
seven values are smaller than 4 and only
one is larger: the mean is not robust
towards outlying observations. It can be
shown that this is also true for the usual
measure of dispersion or spread within the
data, the standard deviation.

The Median

Robust statistics replaces the mean by other
measures of central tendency and the most
common of those is the median. When the
number of data is odd, the median is the
middle observation in a ranked series of

example of the precedmg sect|0h the

i.ranked dataare: 2:.2, 3,.3,"3, 4, 4.There =3~
i are sevep ddta ang; therefqre, the'fqurth in:

the series is the median: it is equal to 3.
The second example yields the ranked
series 2, 2, 3, 3, 3, 4, 11. The median is still
3 and is, therefore, not affected by the
outlier: it is robust towards the outlier. Even
if the outlier were 100, the median would
still be 3.

Interquartile Range

The interquartile range or IQR is a robust
way of describing the dispersion of the
data. It is the range within which the
middle 50% of the ranked data are found.
This is also the range between what is
called the lower quartile value and the
upper quartile value. Let us consider a
somewhat larger data set to show how the
IQR is determined (See Table 1).

First the median is obtained. Since the
number of data is even, the median is equal
to the mean of the two middle values, 13.1
and 13.3, (i.e., the median is 13.2). The
data is then split into an upper and a lower
half. When the number of data is odd,

'“s:/lfhich:'is not th'ésituation i the example,
The median of the ﬂrst half i |s the lower
quattile valire;i(i.e., the value befow which
the:25% feayvest valugs ‘dre found). Here it is
the sixth value, (i.e., 12.0). Likewise the
upper quartile value is the value above
which the 25% highest values are found. It
is equal to 14.5 and the IQR is the
difference between the two quartile values,
(i.e.,,IQR=145-12.0=2.5).

The Box and The Whiskers
The median and the IQR are used to
construct the box. It has a height equal to
the IQR and is drawn so that it starts at the
lower guartile value and stops at the upper
quartile value. A horizontal bar is drawn at
the height of the median. In our example
(Figure 1(a)) the box encompasses the
values from 12.0 to 14.5, and the
horizontal bar for the median is drawn at
13.2. The whiskers indicate the range of
the data and they are usually represented
as vertical lines ending in a small horizontal
line. In our situation, they are drawn at
11.0 and 16.0.

A provision is also made for the
representation of extreme values. An upper

Table 1: Data set 1.

11.0
13.3

1.2
13.4

11.5
13.8

11.6
13.9

11.9
14.2

12.0
14.5

12.2
14.5

12.8
14.6

12.9
15.3

12.9
155

13.1
16.0
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extreme value limit is computed as the
upper quartile range + 1.5 X IQR and the
lower extreme value limit as the lower
quartile range — 1.5 X IQR. These limits
are therefore 12.0 — 1.5 X 2.5 = 8.25 and
145 + 1.5 X 2.5 = 18.25. None of the
data exceeds these values and, therefore,
the box plot is left unchanged.

When the highest value 16.0 is replaced
by 19.0, which is quite high compared with
the rest of the series (See Table 2), the
highest value now exceeds 18.25 and is,
therefore, considered extreme. The box
plot emphasizes the presence of the
extreme value by giving it a specific

sample, such as classical oenological
parameters, macroelements, isotopic ratios,
inorganic and organic minor and trace
compounds such as trace elements,
biogenic amines, alcohols and esters. This
yields very large databases and advanced
data analysis is needed. Many of the

extreme characteristics.

techniques used"argof Course,
multlvarlate i3uch nctpalcomponent

symbol; in Figure 1(b), a + sign. The box ana|y5|s n initial phase, it is
does not change except that the highest also hédd jdble
value within the extreme value limit is now individual Sy). In
15.5, instead of 16.0 and the upper what foltows amples of box

whisker is now drawn at this value. plots obtdipegiit hﬂse tta. Since the

results have diyet, we
Using Box Plots will not idep# por the
Box plots can ke used in many ways and, variables

to illustrate th;' we will make,use.of data

countr|es each year 100° samples are taken
accordmg toa samplmg plan that

commeroal wines, some are wines
obtained from grapes collected by official
oenological institutes at exactly known
places and vinified according to known
procedures (authentic wines). Initially close
to 100 variables were measured for each

Country B has a low value for sample 093
and one low and one high value for
country D (samples 455 and 465
respectively). In Figure 2(c) we see a very
different picture. There are now extreme
values for all countries, a rather large one

Table 2: Data set 2.

1.0 11.2 115 116 119 120 122 128 129 129 131
133 134 138 139 142 145 145 146 153 155 190

Practical Data Handling

(sample 112) for country C and clusters of
extreme samples for countries B and D.

A question might be how conservative
the box plot is: does it tend to find many or
only few extreme values? For a normal
distribution, the IQR is equal to about 5
standard deviations, which means that

The most evident application is to identify samples with

about 2% of all data coming from such a
distribution would be considered extreme.
This is somewhat more than for the usual
outlier test where the recommended level
would be 1%. Depending on the software,
some box plots are more conservative in
the sense that in addition to the extreme
level as computed above, they use a
second extreme level, more distant from
the box than the first one. This is the
atton in Flgure 3,.where.a distinction is

Figure 1: Box plots for 22 data points
(see text). (a) Without and (b) with

one extreme value.
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Figure 2: Box plots for wine samples collected in four countries (A-D) for three variables (a—c).
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Practical Data Handling

This should not be understood as a
statement that outlier tests are never useful.
For instance, when a laboratory repeatedly
measures the same sample and one of the
results appears to be far away from the
rest, an outlier test can be useful to make a
decision. The outlier test which is most
accepted in the analytical community is
Grubb’s test. It is the test recommended by
ISO to investigate replicate determinations.
There is a single Grubb’s test, used to
decide on a statistical basis if one single
result is an outlier and there is a double
Grubb’s test, which is used when there are
two suspect values. While this test would
probably perform correctly for the data of
Figures 2(a) and (b), it is, however, clear
that it cannot be used for the variable of
Figure 2(c). For many sets of data, such as
the one here, the visual analysis by box
plots is to be preferred.

Finding extreme values, and sometimes
many extreme, values is the rule rather

A sample with uncharacteristic values may
truly represent p.a.rt of the. populahon of

context the term “extreme value” to

“outlier”. Such samples should be marked
as “suspect” or “extreme,” but still be
processed.

Skewed Distributions

Contrary to the implicit belief of many
analytical chemists, data are often not
normally distributed. Data with low values
may for instance be more frequent than
data with a high value, leading to skewed
distributions with a long tail towards the
high end of the distribution. Such
distributions are often found for data sets
consisting of environmental, food and
other natural samples and can easily be
detected with a box plot. Because there are
more data with low values, the median is
shifted towards the low end of the data
range and is found towards the bottom of
the box. Usually there are also several
samples with extreme high results. They
might (wrongly) be considered to be
outliers and deleted from the data set. If
they are kept in, they have too large an
influence in the data analysis. Moreover,
many statistical tests, such as the t-test,
assume normal distribution of the data.
When a skewed distribution is encountered

Figure 3: Box plots of two series of wine samples. (a) Original data, (b) after log
transformation.
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to confirm that the data are indeed log
normally distributed. For the wine data set
it was shown that nearly all, close to 100,
variables were log normally distributed and
the log values were systematically
substituted for the original data in the
subsequent data analysis.

Comparing Series of Results
Comparing two or more series of results is
one of the most often performed data
analysis tasks. Classical statistical methods
are the t-test for comparing means and the
F-test for comparing variances of two series
of data, and analysis of variance (ANOVA)
for more than two series. These methods
are vulnerable to the presence of outliers
and are based on assumptions such as
normal distributions and (depending on the
test) equal variance.

The juxtaposition of box plots is an
excellent way to investigate if there are
differences between the data sets and can
be applied without any statistical
assumptions. In our wine example, the
analyst would like to know whether certain
variables allow a distinction to be made
between wines of different countries. In
Figure 4 the discrimination potential of

three variables is investigated. It is
immediately clear that variable (a) is
useless: the box plots show that the four
countries yield similar results. Variable (b)
shows some potential since it discriminates
most of the B samples from those from

method), it mlght st||| r)rove useful
Variable (c) achjeves excellent separation of
courttry D from fthe oI;herS :
Conclusion

Always look at your data!
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Figure 4: Box plots comparing the results obtained for wine samples from four countries (A-D) for three variables (a—c).
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