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1 Introduction
Symmetric models are usual in all quantum field the-

ory, the standard model itself is a SU(3)C × SU(2)L ×
U(1)Y model. Spontaneous symmetry breaking, associ-
ated with many vacua in the theory, gives birth to Gold-
stone bosons, massless particles associated with the bro-
ken symmetries, but what happens when we add a small
term to the Lagrangian that is not invariant under orig-
inal symmetries? In these cases we have what we call
pseudo-Goldstone bosons, with the main difference that
they have mass.

We are going to discuss some theoretical aspects that
enables us to evaluate these masses, and three models
with non exact symmetries: the SU(2)×SU(2) two quark
model (up and down quarks); SU(2)×SU(2) model that
describes the interactions of pions among themselves and
between pions and nucleons; and the SU(3)×SU(3) three
quark model (up, down and strange). In all of these cases
we break chiral symmetry and although in first two mod-
els we get only three pseudo-Goldstone bosons, identified
as the pions, in the last one we get eight of them.

2 Exact Symmetries
To explore properties of Goldstone bosons, we are go-

ing to study what happens when we break the symmetry
of an exactly symmetric Lagrangian and what are the
properties of the field related with those broken symme-
tries.

When we have Lagrangian that is invariant un-
der some continuous symmetry, whit the transformation
given by

φn(x) −→ φn(x) + iε
∑
m

tnmφm(x) (1)

with itnm a real matrix. The effective action is also in-
variant under this field transformation, so we have

δΓ[φ] =

∫
δΓ[φ]

δφn(x)
δφn(x)dx =

∫
δΓ[φ]

δφn(x)
iεtnmφm(x)dx = 0

(2)
from now, when we have a duplicated index it means the
we are summing over all values of it. For simplicity, we
are going to treat only the constant field case, but our
result is general. We can also relate this effective action
with the effective potential by

Γ[φ] = −V ol · Veff (φ) (3)

where V ol is the volume of the spacetime. Substituting
this in our previous relation, derivating it with respect

to φa(x) and evaluating at the minimum of the effective
potential, we have

∂2V (φ)

∂φn∂φa

∣∣∣∣
φ=φ

tnmφm = 0 (4)

with φ the field that minimizes this potential. We can
also relate the second derivative of the effective potential
with the inverse of the propagator by

∆−1na (q) =

(
∂2W [φ]

∂Jn∂Ja

)−1
= − ∂2Γ[φ]

∂φn∂φa
= V ol

∂2V (φ)

∂φn∂φa
(5)

Using this in Eq. (4) we have that

∆−1na (0)tnmφm = 0

So, if a symmetry associated with some transformation is
broken, and by that i mean that this transformation does
not leave the vacuum invariant (

∑
m tnm〈φm(x)〉V AC 6=

0), the term tnm〈φm(x) is an eigenvector of ∆−1na (0) with
eigenvalue zero. If we have this situation, ∆na(q) has a
pole at q = 0, what happens only if the associated parti-
cle has zero mass, so we must have one massless particle
in our spectrum associated with our broken symmetry.

More general, we have that the Goldstone’s theorem
says that for each broken symmetry the spectrum of par-
ticles must contain one massless particle with zero spin,
the same parity and internal quantum numbers as J0,
where J0 is the 0th component of the current associated
with the broken symmetry.

We can also calculate some amplitudes involving those
bosons and the currents associated with them. By
Lorentz invariance, considering that we have only one bro-
ken symmetry related to Jµ and one zero spin boson, we
have that

〈0| Jµ(x) |B〉 = −i
FpµBe

−ipB ·x

(2π)3
√

2p0B
(6)

and

〈B|φn(x) |0〉 =
ZeipB ·y

(2π)3
√

2p0B
. (7)

More generally, when we have more than one bro-
ken symmetry and more than one boson associated with
them, we have

〈0| Jµa (x) |Bb〉 = −i
Fabp

µ
Be
−ipB ·x

(2π)3
√

2p0B
(8)

and

〈Ba|φn(y) |0〉 =
Zane

ipB ·y

(2π)3
√

2p0B
(9)
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Now, using some relations that come from the general
proof of Goldstone’s theorem, we have that

i
∑
b

FabZbn = −
∑
m

[ta]nm〈φm(x)〉V AC (10)

where the subscript V AC means that we are taking the
expectation value with vacuum states, ta’s are related to
the field transformations and Z and F were just defined
above.

3 Approximate Symmetries

We just studied what happens when we break a sym-
metry that is exact in our Lagrangian, but one can ask
what happens when we break a non-exact symmetry. We
are going to see now that we do not have massless Gold-
stone bosons anymore, but Pseudo-Goldstone bosons that
are massive.

To evaluate the mass of those Pseudo-Goldstone
bosons, lets write the effective potential as

V (φ) = V0(φ) + V1(φ) (11)

where V0 is invariant under some transformation and V1
is a small perturbation that is not invariant under this
transformation. The invariance of V0 can be written as

0 = δV0(φ) =
∂V0(φ)

∂φn
(tα)nmφm (12)

with tα the generator associated with the transformation
that leaves V0 invariant.

The minimum of the potential also changes due to
this additional term in our potential, in a way that our
minimum condition is given by

∂V (φ)

∂φn

∣∣∣∣
φ=φ0+φ1

= 0 (13)

where φ0 is the minimum of V0 and φ1 represents the
small change of the minimum. As V1 and φ1 are small
perturbations, we can expand this relation considering
only first order terms and, using Eq.4 with V0 as V and
φ0 as φ, we have

(tα)nm(φ0)m
∂V1(φ)

∂φn

∣∣∣∣
φ=φ0

= 0 (14)

To evaluate the masses of our Pseudo-Goldstone
bosons, at first order we have that them are related to
the effective potential by

M2
ab =

∑
nm

ZanZbm
∂2V (φ)

∂φn∂φm

∣∣∣∣
φ=φ0+φ1

(15)

with Z’s defined at Eq.9. Using Eq.10 and again doing
expansion until first order in V , we have that

M2
cd = −

∑
ab F

−1
ca F

−1
db

[∑
nm(taφ0)n(tbφ0)m

∂2V1(φ)

∂φn∂φm

∣∣∣∣
φ=φ0

+
∑
n(tatbφ0)n

∂V1(φ)

∂φn

∣∣∣∣
φ=φ0

]
(16)

Consider now that the perturbation to our invariant
part has the form

H1 = unΦn (17)

with Φn transforming like [Tα,Φn] = −(tα)nmΦm with
Tα the generators of our symmetry group. Equation 16
can be written as

M2
cd = −

∑
ab

F−1ca F
−1
db

∑
n

(tatbφ0)nun (18)

with (φ0)n the VEVs of the fields Φn. Using commutation
rules, we can write the masses as

M2
cd = −

∑
ab

F−1ca F
−1
db 〈[Ta, [Tb, H1]]〉V AC (19)

4 Two quark model
To apply those ideas of symmetry breaking, we can

use a model that involves only two quark fields(u and
d). This model involves the approximate chiral symme-
try SU(2) × SU(2) of strong interactions. At first ap-
proximation, we are going to consider that the quarks are
massless, so our Lagrangian can be written as

L = u /Du+ d /Dd (20)

where D is the covariant derivative associated with QCD
given by (DµΨ(x))l = ∂µΨ(x)l−iAβµ(x)(tβ)ml Ψ(x)m. The
transformation that leaves the Lagrangian invariant is
given by (

u
d

)
−→ exp

{
i~θV · ~t+ iγ5~θ

A · ~t
}(u

d

)
(21)

where the ~t =
~σ

2
and θA and θV are two real and in-

dependent three-vectors. Here we have two SU(2) alge-
bras related to the generators ~x = γ5~t and ~t. Note that
they are not two commuting algebras, but we can write
them as ~tL = 1

2 (1 − γ5) and ~tR = 1
2 (1 + γ5) so we have

two commuting algebras and identify our symmetry as
SU(2)×SU(2). When we broke the symmetry related to
the generators ~x, as discussed in Section 2, we have now
three massless particles in our spectrum that have the
same quantum numbers as our broken generators: nega-
tive parity, zero spin, unit isospin and zero baryon number
and strangeness. Therefore, we can associate those Gold-
stone’s bosons as pions in our theory. Pions as massless
particles is a good approximation since comparing their
real masses with a typical scale of mass from QCD we get
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m2
π/m

2
N ≈ 0, 02, where mN is the mass of a nucleon. We

can now evaluate the amplitude

〈0|Aµi (x) |πj〉 = −iFπδijp
µ
πe
−ipπ·x

(2π)3
√

2p0π
(22)

where Aµ is the current related with the broken sym-
metry and Fπ a constant. Using the relation of this cur-
rent with the charged currents of electroweak interactions
Aµ± = Aµ1 ±A

µ
2 , we can evaluate the decay rate of a pion

into a muon and a neutrino as

Γ(π −→ µ+ ν) =
G2
wkF

2
πm

2
µ(m2

π −m2
µ)2

16πm3
π

(23)

Using our known values for Gwk, a constant of elec-
troweak interactions, m2

µ and m2
π, we get the value to

our constant Fπ ≈ 184MeV .
We can now study the effect of a perturbation in our

Lagrangian that is not invariant under SU(2) × SU(2).
As discussed before, we expect that this term generates
mass for our pions. The term that explicitly breaks the
symmetry is the one related to the mass of our quarks,
given by

H1 = muuu+mddd = (mu +md)Φ
+
4 + (mu −md)Φ

−
3 .

(24)
Here, Φ−3 and Φ+

4 are the third and fourth components of

Φ+ : ~Φ+ = iqγ5~tq; Φ+
4 =

1

2
qq, (25)

Φ− : ~Φ− = q~tq; Φ−4 =
1

2
iqγ5q. (26)

We can see that this term is not invariant since Φ+ and
Φ− do not commute with the charges of our chiral sym-
metry. Explicitly, those commutation rules are given by

[ ~X,Φ±n ] = −
∑
m

(~Λnm)Φ±m (27)

where Λ matrices are given by

(Λa)b4 = −(Λa)4b = −iδab
(Λc)ab = −(Λc)44 = 0

with a, b, c = 1, 2, 3. Just as an example, we can write
one of those Λ matrices:

Λ1 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0


As the chiral symmetry is broken, we expect that our

Pseudo-Goldstone bosons, the pions, acquires mass as de-
scribed in Eq. 16. To break this symmetry, we are going

to take 〈Φ+
4 〉 6= 0 and 〈Φ−3 〉 = 0. So, using the form os Λ

elements, we have

[Xb,Φ
+
4 ] = −iΦ+

b =⇒ [Xa, [Xb,Φ
+
4 ]] = δabΦ

+
4

[Xb,Φ
−
3 ] = iδb3Φ−4 =⇒ [Xa, [Xb,Φ

−
3 ]] = δ3bΦ

−
a

with a, b = 1, 2, 3. We can see that 〈[Xa, [Xb,Φ
+
4 ]]〉V AC 6=

0 and 〈[Xa, [Xb,Φ
−
3 ]]〉V AC = 0, so pions masses are given

by
m2
π = 4(mu +md)〈Φ+

4 〉V AC/F 2
π . (28)

5 Pions and Nucleons interactions
We can also study how pions interact with themselves

and with nucleons (protons and neutrons) using a SO(4)
model given by

L =
1

2
∂µφ

µ
nφn −

M2

2
φnφn −

λ

4
(φnφn)2 (29)

where n = 1, 2, 3, 4. We are considering that the energy of
the Goldstone bosons (that we are going to identify as the
pions again) are small, so we can calculate the amplitude
of scattering involving those particles as powers of their
energies. To do this, we want that the terms involving
those fields appear with derivatives, so when we evaluate
so scattering amplitude we get an energy dependence. To
do this, we are going to write our original field φn(x) as

φn = R(x)


0
0
0

σ(x)

 with RT (x)R(x) = 1 (30)

where R(x) is just an orthogonal 4×4 matrix (the reason
why we can do this is going to be clean in section 6) and
the Goldstone’s boson fields are going to be in R(x) when
we break the symmetry. The Lagrangian Eq. 29 has now
the form of

L =
1

2
∂µσ

µσ − σ2

2
∂µRn4∂

µRn4 −
M2

2
σ2 − λ

4
σ4. (31)

To get a result in a simpler way to visualize, we can
rewrite R matrix as

Ra4 = −R4a ≡
2ζa

1 + ~ζ2
; R44 =

1− ~ζ2

1 + ~ζ2
; Rab = δab−

2ζaζb

1 + ~ζ2

so we have the Lagrangian as

L =
1

2
∂µσ

µσ − 2σ2 ~Dµ · ~Dµ − M2

2
σ2 − λ

4
σ4 (32)

where this ~Dµ is defined as ~Dµ ≡ ∂µ~ζ

1+~ζ2
. The isomorphism

SO(4) ∼= SU(2)×SU(2) allows us to recognize the SO(4)
transformation as an isospin and a chiral transformation.
Although the ζa fields transform as expected for an isovec-
tor through isospin transformations, the way that they
transform through chiral ones is different from what we
expected for isovectors due to the non usual form of ~Dµ,
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so we call this a non-linear realization of SU(2)×SU(2).
Explicitly, under isospin rotations the σ(x) field is invari-

ant and ~ζ transform like

~ζ → ~ζ + δ~ζ = ~ζ + ~θ × ~ζ (33)

where θ is an infinitesimal parameter related with those
rotations. Under chiral transformations, again σ(x) is in-

variant and ~ζ fields transform as

~ζ → ~ζ + δ~ζ = ~ζ + ~α(1− ~ζ2) + 2~ζ(~α · ~ζ) (34)

where ~α is an infinitesimal parametrization of chiral trans-
formations. From the definition of ~Dµ we see that it also

just rotates under isospin transformations (since ~ζ2 is in-
variant), but through chiral transformation we can show
that it goes as

~Dµ → ~Dµ + δ ~Dµ = ~Dµ + 2(~ζ × ~α)× ~Dµ. (35)

When we break the chiral symmetry (〈σ〉 = |M |/
√
λ),

the term with ~Dµ gives rise to a kinetic term of ζa fields,
and we also can recognize them as massless. Doing a re-
definition of the fields as ~π ≡ F~ζ, with F = 2〈σ〉, the
kinetic term can be written as

L =
1

2

∂µ~π · ∂µ~π
(1 + ~π2/F 2)

(36)

where ~π are the usual pions of our theory, that in this ex-
act symmetric model do not have mass. To study the in-
teractions among pions, we can use effective theory with a
bottom-up approach. We want that the interaction terms
on pions have derivatives, so the more general Lagrangian
involving Eq. 36 term and derivatives on ~π has the form

L =
F 2

2
~Dµ · ~Dµ+

c4
4

( ~Dµ · ~Dµ)2+
c,4
4

( ~Dµ · ~Dν)( ~Dµ · ~Dν)+...

(37)
We can see that this is invariant under chiral transforma-
tions since

~Dµ · δ ~Dµ = 2εajkεjlmζlαmDµ,kDµ,a = 0
~Dµ · δ ~Dν = 2εajkεjlmζlαmDν,kDµ,a = −δ ~Dµ · ~Dν

where the first line is equal to zero since it is a anti-
symmetric tensor εajk on a, k contracted with a sym-
metric one (εjlmζlαmDµ,kDµ,a); and the relation of the
second line with invariance of L is that, when we do an in-
finitesimal transformation, the new terms originated from
~Dµ · ~Dν cancel one another. The invariance under isospin

transformations is direct since ~Dµ just rotates, so ~Dµ · ~Dν

is invariant.
As discussed before, we are going to do perturbation

theory with powers of Q, so if we want to evaluate our
amplitude up to some order Qν , we must analyze which

diagrams can contribute to it. To do this, we are going to
write a relation between the order ν and the parts of the
diagrams. Each internal line of our diagram associated
with a propagator of pions contributes with Q2; A vertex
in our diagram associated with a term in the Lagrangian
with di derivatives contributes with Qdi ; each loop comes
with an integral in four momentum directions, so it con-
tributes with a Q4. So, in general, a contribution of order
ν involves diagrams that satisfy

ν =
∑
i

Vidi − 2I + 4L =
∑
i

Vi(di − 2) + 2L+ 2 (38)

where Vi is the vertex related to the term in L with di
derivatives, and the second equality comes from topolog-
ical relations. Note that from Eq. 37 we have di ≥ 2, so
the lowest order diagrams are processes of order ν = 2.
Studying the scattering ππ → ππ at this order, we see
that the only diagram that contributes is the one with
L = 0, Vi 6= 0 for di = 2 and Vi = 0 for di > 2. So, the
vertex term comes from the first term in Eq. 37, and the
amplitude has the form of

Mν=2 = 4
F 2 [δabδcd(−pA · pB − pC · pD)+

+δacδbd(pA · pC + pB · pD) + δadδcb(pA · pD + pC · pB)]

where pA, pB , pC and pD are the moments associated
with the pions. Note that each vertex term comes with
two momenta, associated with the two derivatives that we
have in our interaction term. If we want to study up to
order ν = 4, we have the contribution of diagrams with:
one loop and interaction terms with two derivatives; no
loops and interaction vertex with di = 2 or a single vertex
diagram with di = 4. From the study of the current asso-
ciated with the broken symmetry, we have that F = Fπ.

Now we can study what are the corrections to the
amplitudes that arise when we consider the mass of the
pions. The mass term for pions can be identified as the
term that comes with a m2

π as coefficient, and from Eq. 28
we see that the mass squared is proportional to mu+md.
In our two quark model, we saw that the term with the
coefficient mu +md transforms as the fourth component
of a chiral four vector, with the four component a scalar.
In our SU(2) × SU(2) model, the chiral four vector is
φn(x), with the fourth component σ(x) a scalar (as dis-
cussed before), so the mass term for the pion is given by
φ4(x) = R44σ(x), and apart from a constant and discon-
sidering σ since it is a scalar, we write it as

L ⊃ −m
2
π

2

~π2

(1 + ~π2/F 2
π )
. (39)

Note that this term is not invariant under chiral transfor-
mations, so this is not a symmetry of our Lagrangian any-
more. We expected this since now our Goldstone bosons
have mass. We can also note that this term does not have
a derivative on pion field, but we are going to consider the
mass of the pion of the order of Q, in a way that this is
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a term of order 2. Therefore, our relation that gives the
order of Qν changes to

ν =
∑
i

Vi(di + 2mi − 2) + 2L+ 2 (40)

Now, reevaluating the amplitude of order two, we have
that this additional interaction gives

Mν=2 = 4
F 2
π

[δabδcd(s−m2
π)+

+δacδbd(t−m2
π) + δadδcb(u−m2

π)]

in particular, in the limit s = 4m2
π and t = u = 0, we

have

Mν=2(s = 4m2
π) = 32πmπ

[
7mπ
8πF 2

π
M (0) + −mπ

4πF 2
π
M (2)

]
= 32πmπ

[
a0M

(0) + a2M
(2)
]

where a0 and a2 are two coefficients that are measured
and agree with experiments. Higher order amplitudes can
also be evaluated by this method, where in those cases we
are going to get corrections for this coefficients.

We can now try to describe the interactions among
nucleons and pions by introducing a nucleon doublet N
in our Lagrangian. To do this, we must write a term that
is invariant under SU(2)× SU(2). Our first choice is

LN = −N(/∂ + g[φ4 + 2i~t · ~φγ5])N (41)

where we can see explicitly that this is invariant under
chiral transformations due to the way that those fields
transform

δ~φ = 2~αφ4 ; δφ4 = −2~α · ~φ ; δN = −2iγ5~α · ~tN (42)

with ~t the same as the two quark model. As discussed be-
fore, we do not want interaction terms of the pion fields
without derivatives on them, so to solve this problem we
are going to redefine our N field by

N ≡ (1− 2iγ5~t · ~ζ)√
1 + ~ζ

2 Ñ . (43)

With that definition, we see that this Lagrangian can be
written as

LN = −Ñ

[
/∂ + gσ +

2i~t · (~π× /∂~π)

F 2
π [1 + ~π2

F 2
π

]
+

2iγ5~t · ~/∂~π
Fπ[1 + ~π2

F 2
π

]

]
Ñ .

(44)
We see that this is not the way we want since there is no
coupling constant in the interaction terms, so we can try
to study which terms are independently invariant in LN
and construct a Lagrangian from them. Combining Eq.

42 with Eq. 43, we can see that the Ñ field transform
like

Ñ → Ñ + 2i~t · [~ζ × ~α]Ñ (45)

so, based on our construction of the chiral invariant La-

grangian Eq. 41, knowing that the term ÑσÑ comes
from

ÑσÑ = N(φ4 + 2i~t · ~φγ5)N (46)

and that σ is a scalar under chiral transformations, we

have that ÑÑ is a invariant term in our Lagrangian. We
can also define

DµÑ ≡

[
∂µ +

2i~t · (~π× /∂~π)

F 2
π [1 + ~π2

F 2
π

]

]
Ñ (47)

and check that this field respects the same transformation

rules as Ñ . Then we have that, just like ÑÑ , ÑDµÑ is
invariant under chiral transformations. Being Eq. 44 in-
variant under those transformations, we also have that

the term Ñ

[
2iγ5~t · ~/∂~π
Fπ[1 + ~π2

F 2
π

]

]
Ñ is invariant. Now we can

construct the Lagrangian that describes the interactions
among nucleons and pions by

LN = −Ñ

[
/D +mN +

2igAγ5~t · ~/∂~π
Fπ[1 + ~π2

F 2
π

]

]
Ñ (48)

where gA is our coupling associated with the interaction
term. In the context of effective field theory, we are con-
sidering pπ � pN , so in this limit we have that the prop-
agator associated with the nucleon can be written as

−i( /p+ q) +mN

(p+ q)2 +m2
N

−→
−i/p+mN

2p · q
(49)

then the contribution of this propagator to the amplitude
of some diagram is proportional to 1/Q. We can then
rewrite the relation to evaluate the power of Qν in some
diagram by

ν =
∑
i Vi(di + 2mi)− 2Iπ − IN + 4L

=
∑
i Vi(di + 2mi + ni

2 − 2) + 2L− EN + 2
(50)

where the second equality comes from topological rela-
tions. Here, ni is the number of nucleon fields in the in-
teraction vertex Vi, EN is the number of external nucleon
lines and Iπ,N is the number of internal lines associated
with each particle. With this, we can evaluate any scat-
tering of nucleons with pions at any desired order. By
example, if we want to evaluate N +π → N +π at lowest
order we get a result that is compatible with experimen-
tal data. Before proceed with the three quark model, we
are going to discuss some important group relations that
are going to be useful to describe how our quarks and
Goldstone boson fields transform under SU(3)× SU(3).
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6 Groups and broken symmetries
Suppose that we have a theory that is invariant un-

der some transformations of a compact group G, and this
symmetry is broken to a subgroup H ⊂ G, and by that
we mean that, given h ∈ H, we have

hnm〈ψm(x)〉 = 〈ψn(x)〉 (51)

To exemplify, in our previous SU(2) × SU(2) model,
G = SO(4) and was broken to H = SO(3). As we did
in section 5, we want to write the field ψ as a rotation
γ ∈ G acting in a field ψ̃ where the Goldstone modes has
been eliminated. We can represent this as

ψn(x) = γnm(x)ψ̃m(x). (52)

In sections 5, we had

γ(x) = R(x) and ψ̃(x) =


0
0
0

σ(x)

 . (53)

It is not clear what we mean by “Goldstone modes elim-
inated”, so remembering from section 2 and generalizing
our results, we have that some independent combinations
of the vectors [tα]nm〈ψm(0)〉V AC are eigenvectors of the
mass matrix associated with massless particles, where tα

are the generators of G. We can define ψ̃(x) being Gold-
stone mode independent by

ψ̃n(x)[tα]nm〈ψm(0)〉V AC = 0. (54)

To demonstrate that we always can write the relation
given in Eq. 52, define

Vψ(g) ≡ ψn(x)gnm〈ψm(0)〉V AC (55)

where g ∈ G is in the real orthogonal representation of G.
Since Vψ is continuous and G is compact, so Vψ is limited,
to each x exists a g = γ(x) associated with the maximum
of Vψ(g). Under some infinitesimal transformation, a el-
ement of G goes as

g → g(1 + iεαtα) = g + δg (56)

where εα is just a transformation parameter. As γ(x) is
associated with the maximum at some fixed x, we have

δVψ(γ(x)) = 0 = ψn(x)δgnm〈ψm(0)〉V AC =
= iεαψn(x)γnl(x)[tα]lm〈ψm(0)〉V AC

= iεα(γ−1)ln(x)ψn(x)[tα]lm〈ψm(0)〉V AC

where in the last equality we used that g is in an or-
thogonal representation. So, as εα is arbitrary, if we take
ψ̃l(x) = (γ−1)ln(x)ψn(x) with γ(x) the matrix that max-
imizes Vψ(g) we have Eq. 54 satisfied, as we wanted.

If the broken Lagrangian is invariant under h ∈ H, by
Eq. 51 and Eq. 55

Vψ(g) = Vψ(gh) , h ∈ H (57)

so if γ maximizes Vψ, γh also does to any h ∈ H. There-
fore, in Eq. 52 we can choose γ or γh, so there is an
equivalent relation given by

γ1 ∼ γ2 ⇔ γ1 = γ2h for some h ∈ H (58)

it is easy to see that this is a real equivalent relation since
H is a subgroup. The equivalent class associated with this
equivalent relation is given by

[γ] = {g ∈ G | g ∼ γ} (59)

so we can divide G into disjoint equivalence classes, where
those are known as the right cosets of G with respect to
H. Let {ti} be the generators of H and {xi} the other
independent generators of G, as they span Lie algebras
we can write any element of G as

g = exp{iξaxa} exp{iθiti} (60)

but γ(x) in Eq. 52 is defined up to a h ∈ H multiplying
in the right, so we can always take

γ(x) = exp{iξa(x)xa} (61)

where ξa(x) are the Goldstone bosons of our theory. We
can then label our γ’s in different equivalence classes [γ]
by the fields ξ(x), and relate the way that ξ(x) transform
with the way that our ψ(x) fields transform. Note that,
when we write our kinetic term as a function of the ψ̃(x)
field, we have

∂µψ(x) = γ(x)∂µψ̃(x) + ∂µγ(x)ψ̃(x) (62)

so our interaction terms between ψ̃(x) and ξ(x) involves
derivative terms on ξ(x).

To study how those fields transform under a general
transformation of G, we get

ψ(x)→ ψ′(x) = gψ(x) = gγ(ξ(x))ψ̃(x). (63)

Also, as gγ(ξ(x)) is a element of G, we have that it be-
longs to some [γ(ξ′(x))], so

gγ(ξ(x)) = γ(ξ′(x))h(ξ(x), g) (64)

and putting everything together we have that ψ′(x) and
ψ̃′(x) transform as

ψ′(x) = γ(ξ′(x))ψ̃′(x) with ψ̃′(x) = h(ξ(x), g)ψ̃(x) (65)

and ξ fields by

h−1(ξ(x), g) g γ(ξ(x)) = γ(ξ′(x)). (66)

Note that by Eq. 65 the ψ̃(x) field transformation de-
pends only on the non broken subgroup H as we saw in
the last section with Ñ fields in Eq. 45.
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7 Three quark model

As we did for the SU(2) × SU(2) quark model, we
are now going to construct a model that is involves three
quarks and is invariant under the transformationud

s

→ exp

{
i
∑
a

(θVa λa + θAa λaγ5)

}ud
s

 (67)

where λa are the Gell-Mann matrices. In this model we
have a SU(3)×SU(3) symmetry, where SU(3) has 8 gen-
erator, so when we break the symmetry we get 8 Gold-
stone bosons the involves, besides the three pions, the eta

meson η0 and Kaons K+, K
−

, K0 and K
0
.

From the previous section, the quark fields that are
independent on the Goldstone bosons can be obtained
from

q(x) ≡ exp

{
−iγ5

∑
a

ξa(x)λa

}
q̃(x). (68)

where ξa are the eight Goldstone fields.
Using Eq. 64, the relation that dictates the way that

ξ(x) fields transform is

exp
{
i
∑
b(θ

V
b λb + θAb λbγ5)

}
exp{iγ5

∑
a ξa(x)λa} =

exp{iγ5
∑
a ξ
′
a(x)λa} exp{i

∑
b θb(x)λb}

,

(69)
from where we have that the transformation of the Gold-
stone fields is given by

U(x)→ exp

{
i
∑
a

λaθ
R
a

}
U(x) exp

{
−i
∑
a

λaθ
L
a

}
(70)

where θR = θV + θA and θL = θV − θA, with θA, θV

parameters of the transformations and U(x) a unitary
matrix given by

U(x) ≡ exp

{
2i
∑
a

λaξa(x)

}
. (71)

The only kinetic term involving Goldstone bosons and
second derivatives as before is

L =
1

16
F 2
πTr(∂µU∂

µU†) (72)

where the constant Fπ is the same as the other models
by the identification of pions as some Goldstone bosons.
Explicitly, we can write the exponent of U in terms of the
Goldstone fields as

√
2B

F
≡
∑
a λaξa =

=
√
2

F 2


1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K
−

K
0 −

√
2

3
η0

 .

Note that the kinetic term in 72 is obtained by the mul-
tiplication of the first terms in the expansion of U(x),
where using that U is unitary we get

Tr(∂µU∂
µU†) =

8

F 2
π

Tr(∂µB∂
µB) + ... =

=
8

F 2
π

[
∂µπ

0∂µπ0 + ∂µη
0∂µη0 + ∂µK

0∂µK0 + ...
]

+ ...
.

(73)
The choice of the multiplicative constant in Eq. 72 was
made to have the kinematic terms as usual. At this point,
we still have massless bosons, but by adding a quark mass
term that breaks the SU(3) × SU(3) symmetry we also
add mass to the bosons. So, the quark mass term in terms
of the fields q̃(x) is

L ⊃ −qMqq = −q̃e−i
√
2γ5B/FπMqe

−i
√
2γ5B/Fπ q̃ (74)

where Mq is the diagonal quark mass matrix. The mass
terms of the Pseudo-Golstone bosons can be obtained
from Eq. 74 by expanding both exponentials till second
order as

−q̃e−i
√
2γ5B/FπMqe

−i
√
2γ5B/Fπ q̃ =

= −q̃
[
Mq

(−2(γ5)2B2)
2F 2
π

+ (−2(γ5)2B2)
2F 2
π

Mq +
(−2)γ5BMqγ5B

F 2
π

]
q̃

=
1

F 2
π

q̃(B(MqB +BMq) + (MqB +BMq)B)q̃

=
1

F 2
π

q̃{B, {B,Mq}}q̃

(75)
and now, breaking the symmetry by taking

〈q̃aγ5q̃b〉V AC = 0 and 〈q̃aq̃b〉V AC = −vδab (76)

we have

Lmass = − v

F 2
π

Tr{B, {B,Mq}} (77)

from where the mass terms for pions can be taken as

m2
π =

4v

F 2
π

[mu +md]. (78)

Note that we still have the same mass for different pions,
the difference of their masses arises only when we con-
sider electromagnetic effects. Also from Eq. 77, the other
boson masses are

m2
K+ =

4v

F 2
π

[mu +ms]

m2
K0 =

4v

F 2
π

[md +ms]

m2
η0 =

4v√
3F 2

π

[
4ms +md +mu

3

]
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