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REVIEW

Deconstructing the sensation of pain:
The influence of cognitive processes
on pain perception
Katja Wiech1,2*

Phenomena such as placebo analgesia or pain relief through distraction highlight the
powerful influence cognitive processes and learning mechanisms have on the way
we perceive pain. Although contemporary models of pain acknowledge that pain is not
a direct readout of nociceptive input, the neuronal processes underlying cognitive
modulation are not yet fully understood. Modern concepts of perception—which include
computational modeling to quantify the influence of cognitive processes—suggest that
perception is critically determined by expectations and their modification through learning.
Research on pain has just begun to embrace this view. Insights into these processes
promise to open up new avenues to pain prevention and treatment by harnessing the
power of the mind.

W
atching a captivating film while a den-
tist is fixing your tooth can help you
endure the much-dreaded visit with sur-
prisingly little pain. Cognitive processes,
such as distraction, have the potential to

change the way we perceive pain—for better or
for worse, as I will show below. Based on a rich
psychological literature, brain imaging studies in
humans have sought to describe and character-
ize the influence of cognitive factors on the neu-
ral processing and perception of pain since the
1980s. I will first give an overview of our current
understanding of mechanisms and neural path-
ways to cognitive pain modulation and highlight
the most important recent strands of research
in this field, with an emphasis on experimental
studies in healthy individuals. In the second part,
I will outline how these findings may be inte-
grated with modern concepts of perception by
using computational models to explore the in-
fluence of cognition on pain at a more funda-
mental level.

The search for a “signature of pain
in the brain”

A modulatory influence of cognitive factors on
the perception of pain has been documented
for a number of processes including attention,
anticipation, catastrophizing, (re-)appraisal, and
perceived control over pain (1). Undoubtedly, the
most impressive and most extensively studied
example is a placebo analgesic response. Patients
with agonizing levels of pain can report com-
plete pain relief after administration of a sugar
pill they think is a powerful painkiller. But do such

changes in pain reports indeed reflect a change
in pain perception and neural pain processing—
or just a report bias? Answering this question is
notoriously difficult given the highly subjective
nature of pain. Attempts to identify an objective
readout of pain based on brain imaging data
are controversially discussed (2). Brain activation
induced by noxious input might in fact not be
pain-specific but also reflect processes that are
(inherently) linked to pain, such as the detec-
tion of salient events (3). Historically, the network
of brain regions involved in pain processing
(“pain matrix”) has been divided into sensory-
discriminative and cognitive-affective systems.
The sensory-discriminative system, which in-
cludes the lateral thalamus and primary and
secondary somatosensory cortex (SI and SII, re-
spectively), was thought to process nociceptive
input, including its intensity, localization, and
quality. In contrast, the cognitive-affective sys-
tem, comprising regions such as the anterior
insula and anterior cingulate cortex, was im-
plicated in psychological aspects of pain. How-
ever, this strict dichotomy turned out to be an
oversimplification, as sensory-discriminative brain
regions, for instance, can also be sensitive to
cognitive processes. Moreover, studies using a
decoding approach (i.e., the prediction of pain
perception based on activation patterns in the
brain) demonstrated that the prediction is sig-
nificantly improved when the different brain re-
gions are considered together. In the so-far most
rigorous attempt to characterize the “neurolog-
ical pain signature” (NPS), Wager and colleagues
(4) used a machine-learning algorithm to predict
the perceived intensity of experimentally induced
heat pain in healthy volunteers. The identified
network—comprising brain regions such as thal-
amus, SI, SII, anterior insula, and anterior cingulate
cortex—afforded a specificity of about 90% in dis-
criminating physical pain from related phenome-
na (e.g., “pain” due to social exclusion). Although
these first findings are encouraging, further
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validation of this “objective marker” is needed,
including its translation to clinical pain and
generalizability to different types of pain and
pain modulation.

The descending pain control system:
Top-down modulation of pain

Neuroimaging studies have not only been con-
cerned with target regions of cognitive pain
modulation but also with areas that implement
the modulation. The so-called descending pain
control network comprises regions such as the
dorsolateral prefrontal cortex (DLPFC), rostral
anterior cingulate cortex, and periaqueductal
gray (PAG) (5). Activation and functional con-
nectivity between these regions are positively
correlated with the level of pain relief reported.
The engagement of this modulatory control net-
work has been linked to reduced activation in
other pain-related brain regions, albeit with vary-
ing consistency. Furthermore, the top-down in-
fluence has been shown to alter responses in
the spinal dorsal horn, which suggests that it
can modulate nociceptive processing at an early
stage (6). The DLPFC is thought to play a piv-
otal role in top-down control of pain, because
its transient lesioning by transcranial magnetic
stimulation (TMS) abolish the placebo analgesia
(7). Most of our knowledge of the pain-control
system stems from neuroimaging studies on
placebo analgesia, but this system has also been
found to be engaged during other types of cog-
nitive operations leading to pain reduction [e.g.,
distraction (8)]. Descending pain inhibition is
largely mediated through endogenous opioids
(9). There is, however, evidence for the contribu-
tion of other neurotransmitters, including can-
nabinoids (10) and dopamine (11). Taken together,
research on the descending pain control system
has described a network that is sensitive to cog-
nitive manipulations and can interact with other
brain regions involved in pain processing.

The frontostriatal system: Valuation of
nociceptive input and higher-order
integration of different aspects of pain

Do changes in perception based on cognitive
modulation differ from those induced by changes
in noxious input? Woo and colleagues (12) direct-
ly compared the modulation of pain through
different intensity levels of heat and through
cognitive self-regulation of pain in the same in-
dividuals. Although the former was indeed re-
flected in changes in the NPS, self-regulation had
no effect on the NPS but was associated with
changes in functional connectivity (i.e., the cross-
talk between brain regions) of mesolimbic brain
structures, including the ventromedial prefrontal
cortex (vmPFC) and nucleus accumbens (NAc).
This finding is remarkable for two reasons. First,
it challenges the concept of the NPS as a universal
signature of pain in the brain. If the NPS is to be
established as an objective readout of pain, it is
expected to reflect changes in pain irrespective
of the type of modulation that led to the change
in perception. Second, it highlights the contri-
bution of the mesolimbic network that has been
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Fig. 1. Influence of expectations on pain.
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implicated in learning and valuation
rather than in pain processing as such.
It could therefore be speculated that
this network translates sensory, cog-
nitive, and affective aspects of pain
into a “common currency” to inte-
grate them and give rise to one uni-
fied pain experience. In a longitudinal
study involving brain imaging (13),
functional and structural character-
istics of vmPFC and NAc have been
shown to predict the development of
chronic pain. On the basis of these
findings, it has been postulated that
the frontostriatal system is key not
only for the conversion of nociception
into the perception of pain but also
for the transition from acute to chro-
nic pain (14, 15).

Attention and the influence of
spontaneous brain activity on
pain perception

Changes in pain perception have not
only been observed following delib-
erate cognitive operations but can
also occur spontaneously (16). Re-
cent work linked this finding to spon-
taneous fluctuations in attention to
pain that depend ondynamic changes
in resting state activity in three dis-
tinct brain circuitries (17): (i) the “sa-
lience network,”which is involved in the detection
of biologically relevant stimuli and events and
comprises brain regions such as mid-cingulate
cortex, anterior insula, temporoparietal junction,
and DLPFC (18); (ii) the default mode network
(DMN), which shows a reduced signal level dur-
ing activity compared with a relaxed nontask
state and includes regions such as the medial
prefrontal cortex, the posterior cingulate cortex
and precuneus, the lateral posterior lobe, and
the medial temporal lobe (19); and (iii) the de-
scending pain control system described above.
Using an experience sampling approach in which
participants indicate to which extent they had
paid attention to pain, activation in the salience
network was found when attention spontane-
ously focused on pain (20). In contrast, the DMN
was engaged when attention was focused away
from pain (20). “Individuals’ intrinsic attention
to pain” (defined by the test-retest reproduci-
bility of an individual’s tendency to attend away
from pain) was related to their structural and
functional connectivity between DMN and the
descending pain control system [and the PAG
in particular (18)]. Also, alterations in the inter-
play between the salience network, DMN, and
descending pain control network have been
related to heightened attention to pain in chro-
nic pain patients (17). Although speculative at
this time point, research into the neural basis
of altered spontaneous focusing on pain might
therefore also be relevant for understanding
the “interruptive function of pain” (21) on con-
comitant cognitive processes in clinical pain
populations.

The need for a comprehensive
unified framework of cognitive
pain modulation
The studies portrayed above have provided im-
portant insights into the implementation of cog-
nitive pain modulation. They leave unanswered,
however, critical questions regarding its initiation,
maintenance, and integration. The processes
described in the previous sections need to be
carefully orchestrated to integrate momentary
demands with long-term goals (22) to ensure
survival of the organism. What triggers cogni-
tive pain modulation and what prevents or stops
it? Furthermore, the actual interface between
cognitive processes and pain as a perceptual ex-
perience has only insufficiently been described
so far. How are cognitive influences woven into
the perceptual process that gives rise to the ex-
perience of pain?

The construction of a pain experience:
“Perception as inference”

Modern concepts of perception outside the pain
field have begun to address these questions by
using computational models. In computational
modeling, measurable indices of behavior that
result from the inferential process (e.g., catego-
rization of stimuli as painful, versus nonpainful,
response times) are used to inform a theoretical
model, which maps sensory input (e.g., nox-
ious stimulation) onto behavior. Indicators of this
mapping are subsequently used in the analysis
of functional neuroimaging data to characterize
the inferential process. In the most prominent
theoretical framework of this lineage, termed

“predictive coding,” perception is
conceptualized as an inferential pro-
cess in which prior information is
used to generate expectations about
future perception and to interpret sen-
sory input (23). During the perceptual
process, incoming sensory informa-
tion is compared against a “template”
or expectation that reflects prior in-
formation. The concept of predictive
coding acknowledges that we are
more likely to perceive sensory in-
formation in accordance with our
template than with competing inter-
pretations. Perception is thereby un-
derstood as a process that favors
expected outcomes and weighs down
information that is incongruent with
the expectation. Evidence for such
biased perception in the context of
pain comes from studies using ex-
plicit cues to signal the intensity or
onset of an upcoming noxious stim-
ulus (24, 25) (Fig. 1) or, in more com-
plex paradigms, the predictability or
controllability of the stimulation [e.g.,
(26)]. Moreover, the generation of ex-
pectations is a shared feature of most
cognitive processes that have been
related to pain modulation, despite
their many differences (27). Biased
perceptual inference has recently been

postulated to contribute to various diseases, in-
cluding functional motor and sensory syndromes
and psychiatric disorders (28).
Studies in animals and humans have begun to

unravel neural mechanisms underlying the infer-
ential process and to characterize the influence
of prior information and expectations (29). Col-
lectively, they show that expectations can bias
perception by introducing changes not only in
sensory brain regions but also in those involved
in interpreting the incoming information. This
concept extends the traditional view that a cog-
nitive influence has to be implemented in a top-
down fashion (as, for instance, reflected in the
concept of the descending pain control system)
by emphasizing the relevance of higher-order cor-
tical processes that translate incoming informa-
tion into perception. In line with this notion, it
was recently shown that biased decision-making
can explain the influence of prior expectations
on the perception of pain (30). In sum, the con-
cept of “perception as inference” allows for the
integration of cognitive factors into the percep-
tual process itself and highlights the relevance
of expectations for perception formation.

Learning and updating internal models
about pain

If the influence of expectations on perception
is so profound, why do we not simply foster the
most extreme expectations of radical pain relief
as part of any pain treatment? Although the
influence of expectations is undoubtedly strong,
there are clearly limits to the extent expectations
can influence the perception of sensory signals
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Fig. 2. Prediction error processing and learning in the context of pain:
A schematic overview. Sensory input or pain-related cues trigger a pain-
related expectation. Subsequently, nociceptive input is compared with the
expectation that reflects prior information. If incoming information is in line
with prior assumptions, the expectation is confirmed. If they diverge, a pre-
diction error signal is generated, and the expectation is updated through
a learning rule. Note that the generation of a prediction error might not
necessarily lead to a revision of the expectation; following up on prediction
errors might selectively be impaired in a pathological state and might
contribute to aberrant learning in the context of pain.
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(31). Our representations of reality should first
and foremost enable us to successfully navigate
the environment with minimal costs, which ren-
ders delusional ideations impractical. A substantial
deviation of our expectations from reality should
therefore lead to course correction—an updat-
ing or revision of our expectations. Predictive
coding and learning models rooted in this ap-
proach assume that when expected and observed
sensory information diverge, a “prediction error
message” is generated in the brain that serves
as a teaching signal for model updating (Fig. 2).
So far, prediction error (PE) signaling has been
studied extensively in the context of reward lear-
ning and perceptual decision-making in the vis-
ual and auditory systems. However, a limited
number of studies have explored aversive PE pro-
cessing by using noxious stimuli as an aversive
experience during learning in humans (32–35).
But what constitutes an important enough

deviation to challenge our current model and

trigger updating? Both premature and delayed
model updating can be risky. Premature or overly
frequent updating might lead to a highly volatile
andunreliablemodel and also absorb large amounts
of attentional resources for constant monitoring.
Conversely, delayed model updating might bear
the risk that true changes are not considered early
enough to prevent costly erroneous decisions. In-
dividualsmayoptimally integrate newly available
information into their existing model when short-
lastingnoxious stimuli are appliedunder controlled
experimental conditions. There is, however, ample
evidence that information integration and learning
are suboptimal in patients suffering from chronic
pain (36), and lead to change-resistant mental
representations of pain and delayed updating.
Premature updating of expectations, on the

other hand, might be particularly detrimental
when the maintenance of positive expectations
could aid treatment success and their (premature)
downward corrections might compromise the
outcome. As with placebo analgesia, the experi-
ence of insufficient pain relief during treatment
might be irreconcilable with the expectation of
a successful treatment—and, therefore, lead to
model updating (37). Treatment expectations
are—if at all—often only assessed once before
treatment onset, but it seems reasonable to
assume that expectations are modified if the
treatment effect falls short of pretreatment
expectations. This downward adjustment may
not only cause patients to drop out of treatment
programs but might directly prejudice treatment
success, because the inferential processes of pain

perception and treatment judgment are no longer
supported by a positive expectation of pain relief.
Critically, negative treatment experiences have a
prolonged effect that can also hamper subsequent
unrelated treatment (38). In sum, learning mod-
els characterize the modification of expectations
when new information becomes available and
could be applied to explore aberrant learning that
is frequently found in the context of chronic pain.

Conclusions and outlook

With the departure from a rather rigid concept
of pain as a direct readout of sensory input,
neuroimaging of cognitive pain modulation has
provided valuable insights into the complex na-
ture of pain and its neural basis. However, fur-
ther research is needed to integrate the various
efforts into a coherent model that addresses all
aspects of modulation, including its initiation, im-
plementation, and monitoring, and also includes
the existing behavioral and neuroimaging litera-
ture (39). The concept of predictive coding could
provide the theoretical framework for this en-
deavor. For example, Büchel and colleagues (37)
pointed out that although the descending pain-
control system is commonly interpreted as a top-
down influence, its constituting brain regions
have reciprocal connections, which allow for up-
and downward projections of information. They
therefore suggest that—in line with the concept
of predictive coding—the descending system
could be part of a larger recurrent network ex-
changing PE signals at all levels of the neuraxis.
Several findings point at a critical role of the
DLPFC in orchestrating this network. As described
above, the DLPFC is part of various networks that
are involved in cognitive pain modulation. It plays
a key role in evidence accumulation during per-
ceptual decision-making, as described in the con-
text of perception as inference (40) and learning.
The integration of these different strands of re-
search with respect to DLPFC functioning and
its governance of learning networks can be ex-
pected to provide the much-needed unifying
model of neural mechanisms underlying cog-
nitive pain modulation.
The concept of pain as an actively constructed

experience that is determined by expectations
and their modification through learning has far-
reaching implications for pain treatment and
prevention. Treatment success is known to be
critically depending on patients’ expectations,
not only in the context of placebos but also with
active interventions such as analgesic drugs (41).
Expectations—in turn—are shaped by the infor-
mation that is provided by health care practi-
tioners. How could information be designed to
optimally guide expectations for maximum treat-
ment outcome? How could aberrant information
processing be addressed using the framework of
predictive coding? Future research should explore
the translation of research on the inferential
process underlying the perception of pain into
clinical practice to optimally inform pain pre-
vention and treatment strategies.
Patients’ complaints about pain that persists

despite numerous treatment attempts are often

dismissed as being “all in their head.” Modern
pain research has shown that this notion is in
fact true for any kind of pain, acute or chronic,
easy to treat or resistant to all treatments cur-
rently available. We are only beginning to under-
stand that the head (or the brain, for that matter)
also holds the key to new ways to help patients
conquer their pain.
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