01．Introduction to the PIC simulation
02．Random number generation and its application
03．Particle weighting and normalization
04．Particle pusher
05．Poisson＇s equation

Particle－in－Cell（PIC）kinetic simulations 06．One－dimensional electrostatic PIC code

Chun－Sung Jao（镜駿頌）

Assistant Research Scholar，
Institute of Space Science and Engineering，
National Central University，Taiwan
University of São Paulo，2019．11．25－12．06

What do we have now?

1. Random number generator for particle (velocity) distribution 06_02_initial.f90
2. Weighting function for putting particle in cell 06_02_initial.f90
3. Field solver for Poisson's equation 06_01_Inverse.f90
4. Particle pusher 06_03_BorisPusher.f90

What do we have now?

What do we have now?

1. Random number generator for particle (velocity) distribution 06_02_initial.f90

Periodic boundary
2. Weighting function for putting particle in cell 06_02_initial.f90
3. Field solver for Poisson's equation 06_01_Inverse.f90
4. Field on particles

5. Particle pusher

06_03_BorisPusher.f90

$$
\frac{\vec{x}_{t+\Delta t}-\vec{x}_{t}}{\Delta t}=\vec{v}_{t+\Delta t / 2}
$$

$$
\vec{x}_{t+\Delta t}=\vec{x}_{t}+\vec{v}_{t+\Delta t / 2} \times \Delta t
$$

What we did yesterday

1. Preset the E field and B field in a (infinite) simulation domain.
2. Give the position and the velocity to one particle at $\mathrm{T}=0$.
3. Based on the position of particle, we read the field and get the new particle velocity.
4. Based on the new particle velocity, we push the particle to the new position.
5. At certain point, we check the status of the particle.

What we are going to do today

1. Preset the E field and B field in a (infinite) simulation domain.
2. Setup a simulation domain (with $L x, \Delta x$ and $N x$, where $L x=N x \Delta x$).
3. Preset the E field and B field on the grid. EFx(0:Nx), EFy(0:Nx), EFz(0:Nx), BFx(0:Nx), BFy(0:Nx), BFz(0:Nx)
4. Preset the arrays for the charge density and electric potential. $\mathrm{CD}(0: \mathrm{Nx}), \mathrm{EP}(0: \mathrm{Nx})$
5. Give the position and the velocity to one particle at $\mathrm{T}=0$.
6. Based on the position of particle, we read the field and get the new particle velocity.
7. Based on the new particle velocity, we push the particle to the new position.
8. At certain point, we check the status of the particle.

What we are going to do today

1. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
2. Preset the E field and B field on the grid. EFx(0:NX), EFy(0:NX), EFz(0:NX), BFx(0:NX), BFy(0:NX), BFz(0:NX)
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to one particle at $\mathrm{T}=0$.
5. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
6. Based on the position of particle, we read the field and get the new particle velocity.
7. Based on the new particle velocity, we push the particle to the new position
8. At certain point, we check the status of the particle.

What we are going to do today

1. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
2. Preset the E field and B field on the grid.

EFx(0:NX), EFy(0:NX), EFz(0:NX), BFx(0:NX), BFy(0:NX), BFz(0:NX)
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
(You may like to output the field and particle data at $\mathrm{T}=0$)
3. Based on the position of particle, we read the field and get the new particle velocity.
5. Based on the position of particles, we read the field and get the new particle velocity.

4. Based on the new particle velocity, we push the particle to the new position

5. At certain point, we check the status of the particle.
6. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
7. Preset the E field and B field on the grid.

EFx(0:NX), EFy(0:NX), EFz(0:NX), BFx(0:NX), BFy(0:NX), BFz(0:NX)
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
(You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the position of particles, we read the field and get the new particle velocity.
4. Based on the new particle velocity, we push the particle to the new position.
6. Based on the new particle velocity, we push the particles to the new position.

[^0]1. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
2. Preset the E field and B field on the grid.
$E F x(0: N X), E F y(0: N X), E F z(0: N X), B F x(0: N X), B F y(0: N X), B F z(0: N X)$
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
(You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the position of particles, we read the field and get the new particle velocity.
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.
[^1]1. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
2. Preset the E field and B field on the grid.

EFx(0:NX), EFy(0:NX), EFz(0:NX), BFx(0:NX), BFy(0:NX), BFz(0:NX)
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
(You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the position of particles, we read the field and get the new particle velocity.
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.
5. At certain point, we check the status of the particle.

1. Setup a simulation domain (with $L x, \Delta x$ and $N X$, where $L x=N X \Delta x$).
2. Preset the E field and B field on the grid.
$E F x(0: N X), E F y(0: N X), E F z(0: N X), B F x(0: N X), B F y(0: N X), B F z(0: N X)$
3. Preset the arrays for the charge density and electric potential. CD(0:NX), EP(0:NX)
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
(You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the position of particles, we read the field and get the new particle velocity.
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.
8. At certain point, we check the status of the particle.
9. After a while, we check the status of the particles and fields.
10. Setup a simulation domain
11. Preset the E field and B field on the grid.
12. Preset the arrays for the charge density and electric potential.
13. Give the position and the velocity to all particles at $\mathrm{T}=0$.
(You may like to output the field and particle data at $\mathrm{T}=0$)
A 5. Based on the position of particles, we read the field and get the new particle velocity. Δ
14. Based on the new particle velocity, we push the particles to the new position.
15. Base on the new position of particles, we calculate the new E field on the grid.
16. After a while, we check the status of the particles and fields.

$\vec{B}=\vec{B}\left(\vec{x}_{t}\right)$	\vec{B}_{t}		$\vec{B}_{t+\Delta t}$		$\vec{B}_{t+2 \Delta t}$
$\vec{E}=\vec{E}\left(\vec{x}_{t}, t\right)$	\vec{E}_{t}		$\vec{E}_{t+\Delta t}$		$\vec{E}_{t+2 \Delta t}$
	φ_{t}		$\varphi_{t+\Delta t}$		$\varphi_{t+2 \Delta t}$
	$\boldsymbol{\rho}_{c t}$		$\rho_{c t+\Delta t}$		$\rho_{c t+2 \Delta t}$
$\vec{v}_{t-\Delta t / 2}$	\vec{x}_{t}	$\vec{v}_{t+\Delta t / 2}$	$\vec{x}_{t+\Delta t}$	$\vec{v}_{t+3 \Delta t / 2}$	$\vec{x}_{t+2 \Delta t}$
$t-\Delta t / 2$	t	$t+\Delta t / 2$	$t+\Delta t$	$t+3 \Delta t / 2$	$t+2 \Delta t$

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256) .(\Delta t=0.01$, and $N T=51200)$
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential. $C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PPy(1:NP), PPz(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP) (You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the new particle velocity, we push the particles to the new position.
6. Base on the new position of particles, we calculate the new E field on the grid.
7. After a while, we check the status of the particles and fields.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256)$. ($\Delta t=0.01$, and $N T=25600$)
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential. $C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$. PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP) 06_02_initial.f90
Ion: $\quad \mathrm{m}=1836, \mathrm{e}=1, \mathrm{vd}=0.0, \mathrm{vth}=0.1, \mathrm{NP}=256 * 256$, uniform distribution electron1: $m=1 \quad, e=-1, v d=5.0, v t h=1.0, N P=128 * 256$, uniform distribution electron2: $m=1 \quad, e=-1, v d=-5.0, v t h=1.0, N P=128 * 256$, uniform distribution
(You may like to output the field and particle data at $\mathrm{T}=0$)
5. Based on the position of particles, we read the field and get the new particle velocity.
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256) .(\Delta t=0.01$, and $N T=25600)$
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial.f90
Ion: $\quad \mathrm{m}=1836, \mathrm{e}=1, \mathrm{vd}=0.0$, $\mathrm{vth}=0.1, \mathrm{NP}=256 * 256$, uniform distribution
electron1: $m=1, e=-1, v d=5.0, v t h=1.0, N P=128 * 256$, uniform distribution
electron2: $m=1 \quad, e=-1, v d=-5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $\mathrm{T}=0$) (Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)
5. Based on the position of particles, we read the field and get the new particle velocity.
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.
8. After a while, we check the status of the particles and fields.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256) .(\Delta t=0.01$, and $N T=25600)$
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial.f90
Ion: $\quad m=1836, e=1, v d=0.0, v t h=0.1, N P=256^{*} 256$, uniform distribution
electron1: $m=1, e=-1, v d=5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
electron2: $m=1 \quad, e=-1, v d=-5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $T=0$)
(Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)

Do loop starts.

5. Based on the position of particles, we read the field and get the new particle velocity. 06_03_BorisPusher.f90
(Refer to 06_02_initial.f90, do some works for the field on particles)
6. Based on the new particle velocity, we push the particles to the new position.
7. Base on the new position of particles, we calculate the new E field on the grid.
8. After a while, we check the status of the particles and fields.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256)$. ($\Delta t=0.01$, and $N T=25600$)
2. Preset the E field and B field on the grid.
$\operatorname{EFx}(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial.f90
Ion: $\quad \mathrm{m}=1836, \mathrm{e}=1, \mathrm{vd}=0.0$, $\mathrm{vth}=0.1, \mathrm{NP}=256{ }^{*} 256$, uniform distribution
electron1: $m=1, e=-1, v d=5.0, v t h=1.0, N P=128 * 256$, uniform distribution
electron2: $m=1 \quad, e=-1, v d=-5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $T=0$)
(Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)
Do loop starts.
5. Based on the position of particles, we read the field and get the new particle velocity. 06_03_BorisPusher.f90 (Refer to 06_02_initial.f90, do some works for the field on particles)
6. Based on the new particle velocity, we push the particles to the new position. 06_03_BorisPusher.f90 (pay attention for the boundary-crossing particles)
7. Base on the new position of particles, we calculate the new E field on the grid.
8. After a while, we check the status of the particles and fields.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256)$. ($\Delta t=0.01$, and $N T=25600$)
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial.f90
Ion: $\quad \mathrm{m}=1836, \mathrm{e}=1, \mathrm{vd}=0.0$, $\mathrm{vth}=0.1, \mathrm{NP}=256{ }^{*} 256$, uniform distribution
electron1: $m=1, e=-1, v d=5.0, v t h=1.0, N P=128 * 256$, uniform distribution
electron2: $m=1 \quad, e=-1, v d=-5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $T=0$)
(Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)
Do loop starts.
5. Based on the position of particles, we read the field and get the new particle velocity.

06_03_BorisPusher.f90 (Refer to 06_02_initial.f90, do some works for the field on particles)
6. Based on the new particle velocity, we push the particles to the new position. 06_03_BorisPusher.f90 (pay attention for the boundary-crossing particles)
7. Base on the new position of particles, we calculate the new E field on the grid. 06_02_initial.f90 for particle weighting to get charge density, notice the boundary. 06_01_Inverse.f90 for field solver

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256) .(\Delta t=0.01$, and $N T=25600)$
2. Preset the E field and B field on the grid.
$E F x(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial.f90
Ion: $\quad m=1836, e=1, v d=0.0, v t h=0.1, N P=256^{*} 256$, uniform distribution
electron1: $m=1, e=-1, v d=5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
electron2: $m=1, e=-1, v d=-5.0, v t h=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $\mathrm{T}=0$)
(Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)
Do loop starts.
5. Based on the position of particles, we read the field and get the new particle velocity.

06_03_BorisPusher.f90 (Refer to 06_02_initial.f90, do some works for the field on particles)
6. Based on the new particle velocity, we push the particles to the new position.

06_03_BorisPusher.f90 (pay attention for the boundary-crossing particles)
7. Base on the new position of particles, we calculate the new E field on the grid.

06_02_initial.f90 for particle weighting to get charge density, notice the boundary. 06_01_Inverse. 990 for field solver
8. After a while, we check the status of the particles and fields. (Output PPx, PVx, EP, EFx at T = 64, 128, 192, 256. Note the Time of the file name.) Make the PPx-PVx plots.

One-dimensional electrostatic PIC code

1. Setup a simulation domain (with $L x=256, \Delta x=1$, and $N X=256)$. ($\Delta t=0.01$, and $N T=25600$)
2. Preset the E field and B field on the grid.
$\operatorname{EFx}(0: N X)=0, B F x(0: N X)=0, B F y(0: N X)=0, B F z(0: N X)=0$
3. Preset the arrays for the charge density and electric potential.
$C D(0: N X)=0, E P(0: N X)=0$
4. Give the position and the velocity to all particles at $\mathrm{T}=0$.

PPx(1:NP), PVx(1:NP), PVy(1:NP), PVz(1:NP)
06_02_initial. 990
Ion: $\quad m=1836, e=1, v d x=0.0, v d y=v d z=0.0, v t h x=v t h y=v t h z=0.1, N P=256 * 256$, uniform distribution
electron1: $m=1, e=-1, v d x=5.0, v d y=v d z=0.0, v t h x=v t h y=v t h z=1.0, N P=128^{*} 256$, uniform distribution
electron2: $m=1, e=-1, v d x=-5.0, v d y=v d z=0.0, v t h x=v t h y=v t h z=1.0, N P=128^{*} 256$, uniform distribution
(You may like to output the field and particle data at $\mathrm{T}=0$)
(Output PPx, PVx, EP, EFx. Note the Time of the file name. Make a first plot for PPx-PVx)
Do loop starts.
5. Base on the new position of particles, we calculate the new E field on the grid.

06_02_initial.f90 for particle weighting to get charge density, notice the boundary. 06_01_Inverse.f90 for field solver
6. Based on the position of particles, we read the field and get the new particle velocity.

06_03_BorisPusher.f90 (Refer to 06_02_initial.f90, do some works for the field on particles)
7. Based on the new particle velocity, we push the particles to the new position. 06_03_BorisPusher.f90 (pay attention for the boundary-crossing particles)
8. After a while, we check the status of the particles and fields. Make the PPx-PVx plots. (Output PPx, PVx, EP, EFx at T $=64,128,192,256$. Note the Time of the file name.)
Do loop ends.

One-dimensional electrostatic PIC code

$\begin{aligned} & \vec{B}=\vec{B}\left(\vec{x}_{t}\right) \\ & \vec{E}=\vec{E}\left(\vec{x}_{t}, t\right) \end{aligned}$	\vec{B}_{t}		$\vec{B}_{t+\Delta t}$		$\vec{B}_{t+2 \Delta t}$
	\vec{E}_{t}		$\vec{E}_{t+\Delta t}$		$\vec{E}_{t+2 \Delta t}$
	φ_{t}		$\varphi_{t+\Delta t}$		$\varphi_{t+2 \Delta t}$
	$\rho_{c t}$		$\rho_{c t+\Delta t}$		$\boldsymbol{\rho}_{c t+2 \Delta t}$
$\vec{v}_{t-\Delta t / 2}$	\vec{x}_{t}	$\vec{v}_{t+\Delta t / 2}$	$\vec{x}_{t+\Delta t}$	$\vec{v}_{t+3 \Delta t / 2}$	$\vec{x}_{t+2 \Delta t}$
$\mathrm{t}-\Delta \mathrm{t} / 2$	t	$t+\Delta t / 2$	$t+\Delta t$	$t+3 \Delta t / 2$	$t+2 \Delta t$

[^0]: 5. At certain point, we check the status of the particle.
[^1]: 5. At certain point, we check the status of the particle.
