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Purpose: To evaluate the efficacy of deep convolutional neural net-
works (DCNNs) for detecting tuberculosis (TB) on chest 
radiographs.

Materials and 
Methods:

Four deidentified HIPAA-compliant datasets were used in 
this study that were exempted from review by the institu-
tional review board, which consisted of 1007 posteroante-
rior chest radiographs. The datasets were split into train-
ing (68.0%), validation (17.1%), and test (14.9%). Two 
different DCNNs, AlexNet and GoogLeNet, were used to 
classify the images as having manifestations of pulmonary 
TB or as healthy. Both untrained and pretrained networks 
on ImageNet were used, and augmentation with multi-
ple preprocessing techniques. Ensembles were performed 
on the best-performing algorithms. For cases where the 
classifiers were in disagreement, an independent board-
certified cardiothoracic radiologist blindly interpreted 
the images to evaluate a potential radiologist-augmented 
workflow. Receiver operating characteristic curves and 
areas under the curve (AUCs) were used to assess model 
performance by using the DeLong method for statistical 
comparison of receiver operating characteristic curves.

Results: The best-performing classifier had an AUC of 0.99, which 
was an ensemble of the AlexNet and GoogLeNet DCNNs. 
The AUCs of the pretrained models were greater than 
that of the untrained models (P , .001). Augmenting the 
dataset further increased accuracy (P values for AlexNet 
and GoogLeNet were .03 and .02, respectively). The 
DCNNs had disagreement in 13 of the 150 test cases, 
which were blindly reviewed by a cardiothoracic radiolo-
gist, who correctly interpreted all 13 cases (100%). This 
radiologist-augmented approach resulted in a sensitivity 
of 97.3% and specificity 100%.

Conclusion: Deep learning with DCNNs can accurately classify TB at 
chest radiography with an AUC of 0.99. A radiologist-aug-
mented approach for cases where there was disagreement 
among the classifiers further improved accuracy.
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chest radiography, one group recently 
used DCNN to achieve an AUC of 0.88–
96 on three different datasets (19).

In this study, we evaluate the effi-
cacy of DCNN for detection of TB on 
chest radiographs.

Materials and Methods

Datasets
All datasets were deidentified and 
compliant with the Health Insurance 
Portability and Accountability Act. The 
Belarus and Thomas Jefferson Univer-
sity datasets were exempted from insti-
tutional review board review at Thom-
as Jefferson University Hospital. The 
National Institutes of Health datasets 
were exempted from review by the in-
stitutional review board (No. 5357) by 
the National Institutes of Health Office 
of Human Research Protection Pro-
grams. This was a retrospective study 
that involved four datasets (Table 1).  
This includes two publicly available 
datasets maintained by the National 
Institutes of Health, which are from 
Montgomery County, Maryland, and 
Shenzhen, China (20). The other two 
datasets are from Thomas Jefferson 
University Hospital, Philadelphia, and 
the Belarus Tuberculosis Portal main-
tained by the Belarus TB public health 
program (21). For the Thomas Jeffer-
son University and Belarus datasets, 

Nijmegen, the Netherlands) had an 
area under the curve (AUC) that 
ranged from 0.71 to 0.84 in five stud-
ies, according to one review (8). The 
software is based on machine-learning 
approaches and uses a combination 
of textural abnormality and shape de-
tection (9). Another computer-aided 
diagnosis study for detection of pulmo-
nary TB at chest radiography used lung 
segmentation, texture and shape fea-
ture extraction, and classification with 
support vector machines to achieve an 
AUC of 0.87–0.90 (10).

Currently, deep learning tech-
niques are considered to be state of the 
art for classification of images, which 
arises from the recent success in the 
ImageNet Large Scale Visual Recogni-
tion Competition (11). Since 2012, all 
winning entries used deep convolu-
tional neural networks (DCNN), a type 
of deep learning approach well suited 
for analyzing images. This resulted in 
a decrease in the classification error 
rate from approximately 25% in 2011 
to 3.6% in 2015 (11,12). Convolutional 
neural networks have been around for 
some time; for example, in 1998 Le-
Cun et al (13) used them to classify 
handwritten digits. However, it was 
only until relatively recently that such 
networks could be applied to everyday 
images because of the tremendous par-
allel processing power required, which 
became possible with modern graphics 
processing unit technology.

There is interest in applying deep 
learning in radiology because of the 
recent success, and with promising re-
sults. Some examples include detection 
of pleural effusion and cardiomegaly 
at chest radiography (14), mediastinal 
lymph nodes at computed tomography 
(CT) (15), lung nodules at CT (16), and 
pancreatic (17) and brain segmentation 
(18). Regarding classification of TB at 
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Advances in Knowledge

 n Deep learning with convolutional 
neural networks can accurately 
classify tuberculosis (TB) at chest 
radiography with an area under 
the curve of 0.99.

 n Pretrained neural networks (P , 
.001) and augmented datasets (P 
= .02 and P = .03) resulted in 
greater accuracy.

 n The most accurate model incor-
porated a radiologist overread 
when the machines were dis-
crepant, which had a net sensi-
tivity of 97.3% and a specificity 
of 100%.

Implication for Patient Care

 n Automated detection of pulmo-
nary TB at chest radiography 
may facilitate screening and eval-
uation efforts in TB-prevalent 
areas with limited access to 
radiologists.

Tuberculosis (TB) is an infectious 
disease caused by the bacillus My-
cobacterium tuberculosis. TB is 

a leading cause of death by infectious 
disease worldwide, alongside human 
immunodeficiency virus–acquired im-
mune deficiency syndrome (known as 
HIV-AIDS) (1). In 2014, approximately 
9 600 000 people developed clinical TB, 
resulting in 1 500 000 deaths (1).

While indiscriminate mass screen-
ing for TB should be avoided, the World 
Health Organization recommends 
broader use of screening by chest ra-
diography and rapid molecular diagnos-
tics for selected high-risk groups (1). 
Posteroanterior chest radiography is 
an important part of many algorithms 
for worldwide screening of TB (1,2). In 
addition, imaging also plays the central 
role in the work-up of patients suspect-
ed of having pulmonary TB (2,3).

It has been reported (4,5) that 
there is a relative lack of radiology 
interpretation expertise in many TB-
prevalent locations, which may impair 
screening efficacy and work-up efforts. 
An efficacious automated and cost-ef-
fective method could aid screening eval-
uation efforts in developing nations and 
facilitate earlier detection of disease. 
Therefore, there has been an interest 
in the use of computer-aided diagnosis 
for detection of pulmonary TB at chest 
radiography, with multiple approaches 
proposed (4,6,7).

Commercially available software 
(CAD4TB; Image Analysis Group, 
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TB of hard disk space, 32 GB of RAM, 
and a CUDA-enabled Nvidia Titan 312 
GB graphics processing unit (Nvidia).

Two different deep convolutional 
neural network architectures were eval-
uated in this study, AlexNet (23) and 
GoogLeNet (24), including pretrained 
and untrained models. Pretrained net-
works were already trained on 1.2 
million everyday color images from 
ImageNet (http://www.image-net.org/) 
that consisted of 1000 categories before 
learning from the chest radiographs in 
this study (referred to as pretrained). 
Untrained networks were not trained 
before they were used (referred to 
as untrained). This included AlexNet 
untrained (Alex-Net-U), AlexNet pre-
trained (AlexNet-T), GoogLeNet un-
trained (GoogLeNet-U), and GoogLeNet 
pretrained (GoogLeNet-T). Pretrained 
networks were obtained from the Caffe 
Model Zoo, an open-access repository 
of pretrained models for use with Caffe. 
The following solver parameters were 
used for training: 120 epochs; base 
learning rate for untrained models and 
for pretrained models, 0.01 and 0.001, 
respectively; stochastic gradient de-
scent; step-down, 33%; and g, 0.1.

All images were augmented by using 
random cropping of 227 3 227 pixels, 
mean subtraction, and mirror images, 
which were prebuilt options within the 
Caffe framework. Further augmentation 
was performed in training some of the 
DCNNs, including rotations of 90°, 180°, 
and 270°, and Contrast Limited Adaptive 
Histogram Equalization processing by us-
ing ImageJ v. 1.50i (NIH, Bethesda, Md) 
(25). The DCNNs that used this addi-
tional augmentation are labeled AlexNet-
TA and GoogLeNet-TA when pretrained 
on ImageNet, and AlexNet-UA and 
GoogLeNet-UA when untrained.

Of the 1007 patients in the total da-
taset (Table 1), 150 random patients 
(14.9%) were selected for testing. Ran-
domization was performed by using 
pseudorandom numbers generated from 
the random function in the Python Stan-
dard Library (Python 2.7.13, Python 
Software Foundation, Wilmington, Del). 
Of these 150 test patients, 75 were pos-
itive for TB and 75 were healthy. Among 
the remaining 857 patients, they were 

the positive cases with radiologic man-
ifestations of pulmonary TB were con-
firmed with pathologic findings of spu-
tum, original authors of the radiology 
reports, and an independent radiolo-
gist (P.L., with 10 years of experience). 
For the Thomas Jefferson University 
Dataset, the healthy control patients 
were established from the original au-
thors of the radiology reports and an 
independent radiologist (P.L.). For the 
National Institutes of Health datasets, 
patients who were positive for TB and 
healthy control patients were estab-
lished from clinical records and expert 
readers. For the Belarus dataset, the 
first 88 consecutive cases (of 420 in the 
portal) were downloaded for patients 
who underwent posteroanterior chest 
radiography at the time of initial diag-
nosis and pathologic analysis. Because 
the Belarus dataset consisted of pa-
tients who were positive for TB, a sim-
ilar number of healthy control patients 
were obtained from Thomas Jefferson 
University Hospital so that the cumula-
tive total of all datasets would have a 
similar number of patients who were 
positive for TB and healthy patients 
(Table 1). The dataset from China in-
cluded a minority of pediatric images 
(21 pediatric, 641 adults) so the im-
age sizes had a larger range (Table 1).  
The patient demographics for the da-
tasets and additional pertinent findings 
such as pleural effusion, military pat-
tern of disease, and presence of cavi-
tation for positive cases are also pro-
vided in Table 1.

Methods
The chest radiographic images were re-
sized to a 256 3 256 matrix and con-
verted into Portable Network Graphics 
format. The images were loaded onto 
a computer with a Linux operating 
system (Ubuntu 14.04; Canonical, 
London, England) and with the Caffe 
deep learning framework (http://caffe.
berkeleyvision.org; BVLC, Berkeley, 
Calif) (22), with CUDA 7.5/cuDNN 5.0 
(Nvidia Corporation, Santa Clara, Ca-
lif) dependencies for graphics process-
ing unit acceleration. The computer 
contained an Intel i5 3570k 3.4-gHz 
processor (Intel, Santa Clara, Calif), 4 
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cardiothoracic radiologist (B.S., with 18 
years of experience) blindly interpreted 
the images as either having manifesta-
tions of TB or as normal. Contingency 
tables and sensitivity and specificity 
values were then created from these 
results (Fig 1).

Results

A summary of the results is provided in 
Table 3. For both deep neural networks, 
the AUCs of the pretrained models 
(AlexNet-T, GoogLeNet-T) were greater 
than that of the untrained models 
(AlexNet-U, GoogLeNet-U) (P , .001). 
In addition, augmentation of the da-
taset with additional transformations, 

16.8; MedCalc Software, Ostend, Bel-
gium). On the test datasets, receiver 
operating characteristic curves and 
AUCs were determined (27). Contin-
gency tables, accuracy, sensitivity, and 
specificity were determined from the 
optimal threshold by the Youden in-
dex, which is the following equation:  
[1 2 (false-positive rate + false-nega-
tive rate)]. For the receiver operating 
characteristic curves, standard error, 
95% confidence intervals, and com-
parisons between AUCs were made by 
using a nonparametric approach (28–
31). The adjusted Wald method was 
used to determine 95% confidence 
intervals on the accuracy, sensitivity, 
and specificity from the contingency 
tables (32). P values less than .05 
were considered to indicate statistical 
significance.

Ensembles were performed by tak-
ing different weighted averages of the 
probability scores generated by the 
classifiers (AlexNet and GoogLeNet). 
This ranged from using equal weighting 
(50% AlexNet and 50% GoogLeNet) to 
up to 10-fold weighting biased toward 
either classifier. Receiver operating 
characteristic curves, AUC, and optimal 
sensitivity and specificity values were 
then determined for various ensemble 
approaches.

For cases where the AlexNet and 
GoogLeNet classifiers had disagree-
ment, an independent board-certified 

randomly split into an 80%:20% ratio 
into training (685 patients) and vali-
dation (172 patients). The training set 
was used to train the algorithm, the 
validation set was for model selection, 
and the test set was for assessment of 
the final chosen model. In deciding the 
percent split, the goal is to keep enough 
data for the algorithms to train from but 
have enough validation and test cases to 
maintain a reasonable confidence inter-
val of the accuracy of the model (26).

The 75 test patients positive for 
TB were analyzed by a cardiothoracic 
radiologist (P.L.) for degree of pulmo-
nary parenchymal involvement by TB 
and placed into one of the following 
three categories: subtle (pulmonary 
parenchymal involvement, ,4%), in-
termediate (pulmonary parenchymal 
involvement, 4%–8%), and readily 
apparent (pulmonary parenchymal 
involvement, .8%) (Table 2). To de-
termine this, the right and left lungs 
were divided into three zones (upper, 
middle, and lower). Opacities that oc-
cupied half or more of one zone were 
considered readily apparent. Opacities 
occupying a fourth to half of a zone 
were considered intermediate. Opac-
ities occupying less than a fourth of a 
zone were considered subtle.

Statistical and Data Analysis
All statistical analyses were per-
formed by using software (MedCalc v. 

Table 2

Distribution of Test Cases Positive 
for TB

Degree of Conspicuity Cases (%)

Subtle (,4% pulmonary  
parenchymal involvement)

33.3 (25/75)

Intermediate (4%–8%  
pulmonary parenchymal  
involvement)

37.3 (28/75)

Readily apparent  
(.8% pulmonary  
parenchymal involvement)

29.3 (22/75)

Note.—Data in parentheses are numerator and 
denominator.

Figure 1

Figure 1: Contingency tables. A, Sensitivity, 92.0% (95% confidence interval: 83.3%, 96.6%); specificity, 98.7% (95% confidence interval: 92.1%, 100%); accu-
racy, 95.3% (95% confidence interval: 90.5%, 97.9%). B, Sensitivity, 92.0% (95% confidence interval: 83.3%, 96.6%); specificity, 94.7% (95% confidence interval: 
86.7%, 98.3%); accuracy, 93.3% (95% confidence interval: 88.0%, 96.5%). C, Sensitivity, 97.3% (95% confidence interval: 90.2%, 99.8%); specificity, 94.7% (95% 
confidence interval: 86.7%, 98.3%); accuracy, 96.0% (95% confidence interval: 91.4%, 98.3%). D, Sensitivity, 97.3% (95% confidence interval: 90.2%, 99.8%); 
specificity, 100% (95% confidence interval: 95.8%, 100%); accuracy, 98.7% (95% confidence interval: 95.0%, 99.9%). 
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of GoogLeNet-TA was 92.0% and the 
specificity was 98.7%. The sensitivity of 
the ensemble was 97.3% and the spec-
ificity was 94.7%.

The distribution of the conspicuity 
of the 75 test patients who were posi-
tive for TB is provided in Table 2.

Radiologist-augmented Approach
The classifiers (AlexNet-TA and 
GoogLeNet-TA) had disagreement in 13 
of the 150 test cases. The 13 discordant 
cases were then blindly reviewed by a 

A comparison of receiver operat-
ing characteristic curves for the un-
trained and pretrained augmented 
models for AlexNet and GoogLeNet, 
as well as ensemble approaches, are 
provided in Figure 2.

The contingency tables for the 
best-performing models, including 
GoogLeNet-TA, AlexNet-TA, ensem-
ble of AlexNet-TA, and GoogLeNet-TA 
are provided in Figure 1. The sensitiv-
ity of AlexNet-TA was 92.0% and the 
specificity was 94.7%. The sensitivity 

such as rotations and Contrast Limited 
Adaptive Histogram Equalization, fur-
ther increased accuracy for both neural 
networks (AlexNet-UA, GoogLeNet-
UA) over untrained models (AlexNet-
U, GoogLeNet-U) (P = .03 for AlexNet 
and P = .02 for GoogLeNet). The best-
performing ensemble model had an 
AUC of 0.99, which was significantly 
greater than that of the untrained 
AlexNet-U and GoogLeNet-U models, 
which had AUCs of 0.90 and 0.88, re-
spectively (P , .001).

Table 3

AUC Test Dataset

Parameter Untrained Pretrained Untrained with Augmentation* Pretrained with Augmentation*

AlexNet 0.90 (0.84, 0.95) 0.98 (0.95, 1.00) 0.95 (0.90, 0.98) 0.98 (0.94, 0.99)
GoogLeNet 0.88 (0.81, 0.92) 0.97 (0.93, 0.99) 0.94 (0.89, 0.97) 0.98 (0.94, 1.00)
Ensemble 0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.

* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing. 

Figure 2

Figure 2: (a) Comparison of receiver operating characteristic curves for the untrained AlexNet-U and GoogLeNet-U models and pretrained with augmentation 
AlexNet-TA and GoogLeNet-TA models. The receiver operating characteristic curves for the AlexNet-TA and GoogLeNet-TA models had an AUC that was significantly 
greater than that for the untrained AlexNet-U and GoogLeNet-U models (P , .001) (Table 3). (b) Comparison of receiver operating characteristic curves for the 
AlexNet-TA, GoogLeNet-TA, and ensemble of the two models. The ensemble provided the best AUC (Table 3).
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layers were set to random initialization 
of weights so that they could relearn 
from the medical images provided.

Augmentation of the dataset with 
rotated images and image contrast en-
hancement with Contrast Limited Adap-
tive Histogram Equalization further im-
proved performance (Table 3, Fig 2). 
It was shown (35) that more variations 
supplied to the neural network can im-
prove generalization and performance of 
the DCNN.

One of the problems with machine 
learning, including deep learning, is 
overfitting (36). Overfitting occurs when 
the trained model does not generalize 
well to unseen cases, but fits the train-
ing data well. This becomes more ap-
parent when the training sample size is 
small. Both of the DCNNs in this studied 
used dropout or model regularization 
strategies to help overcome this issue 
(23,24,36). Assessment of the training 
curve (Fig 3) can be used to assess the 
possibility of overfitting. From the curve, 
it is apparent that the data loss is similar 
for both validation and training datasets, 
which indicates well-fit curves. If there 
were overfitting, the loss on the training 
data would be much greater than that 
of the validation data. In addition, for 
this reason, the cases were split three 
ways (training, validation, and test). 
The AUCs for the receiver operating 
characteristic curves of the classifiers 
were based on the test dataset, which 
had not been seen by the trained net-
works (Table 3, Fig 2). This shows that 
the algorithm is generalizable and could 
provide accurate results with cases not 
previously seen.

The use of ensembles is another 
method to improve performance. This 
involves blending multiple algorithms 
to improve the predictive performance 
compared with any one algorithm alone 
(37). Ensembles are more effective when 
individual classifiers are not as correla-
tive, and they work by removing uncor-
related errors of individual classifiers 
by using averaging (37). For ensemble 
methods in this study, we used weighted 
averages of the probability scores for 
both the AlexNet and GoogLeNet al-
gorithms, with up to 10-fold weighting 
in each direction. A 10-fold weighted 

One of the advantages of deep 
learn ing is its ability to excel with high-
dimensional datasets, such as images, 
which can be represented at multiple 
levels. For example, regarding images, 
DCNNs can be represented at lower 
levels with pixel intensity values, edges, 
and blobs; at intermediate levels, with 
parts of objects; and at higher levels, 
the object as a whole.

In this study, the DCNNs pretrained 
with everyday images on ImageNet per-
formed better than the untrained net-
works, concordant with previously pub-
lished works (Table 3, Fig 2) (14,15,19). 
This concept is called transfer learning. 
Although how the use of pretrained net-
works with nonmedical images would aid 
in a classification task of medical images 
at first may not seem intuitive, there are 
elements to all images that are similar, 
including edges and blobs that compose 
the initial layers of the neural network. 
By applying the pretrained networks 
to medical images, the fully connected 

cardiothoracic radiologist, who cor-
rectly interpreted all 13 cases (100%). 
The contingency table of this radiolo-
gist-augmented approach is provided 
in Figure 1, with a sensitivity of 97.3% 
and a specificity of 100%. This ap-
proach uses the classifier’s answers for 
the 137 cases where there is agreement 
and the radiologist’s answers for the 13 
cases with disagreement.

Discussion

Machine learning is a branch of artifi-
cial intelligence in which computers are 
not explicitly programmed but can per-
form tasks by analyzing relationships 
of existing data (33). In this study, we 
use supervised DCNNs, a type of deep 
learning that employs multiple hidden 
layers and has been remarkably suc-
cessful for image classification (34). It 
is referred to as supervised because the 
machine was trained on many prela-
beled examples.

Figure 3

Figure 3: Training curve of AlexNet-TA classifier. The orange line represents the accuracy over the course 
of training, which increases over time, with a final accuracy of 98.2% at the final epoch. Training was 
performed for 120 epochs, and each epoch represents one pass through the entire training dataset. The 
blue and green curves represent the loss on the training and validation datasets, which decreases over time. 
The loss represents the fit between a prediction and the ground truth label. As expected, there is a reduction 
of loss over the course of training as accuracy improves. The loss on the validation is similar to the training, 
which indicates that there is no appreciable overfitting. These training curves are used for model selection. 
In this case, the best performing model at epoch 120 was used on the test data for final assessment. Val = 
validation.
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missed by both the DCNNs, and there-
fore never made it to the radiologist 
for review. The false-negative findings 
are shown in Figure 5. In the first case, 
the opacity is subtle in the right upper 
lobe. The other case shows a more ap-
parent opacity in the right suprahilar 
region. It is conceivable that the use 
of larger training datasets, additional 
image augmentation methods, and ad-
ditional machine learning approaches 
with more ensembles could improve 
this result. This workflow may be 
helpful in certain TB-prevalent regions 
where access to radiologists is lacking 
or cost prohibitive (4,5,20), in which 
an automated method could solely in-
terpret a large portion of the cases, 
and only the equivocal cases are sent 
to a radiologist. One could also imagine 
a system with multiple (ie, more than 
two) classifiers, which may further im-
prove accuracy, because a highly accu-
rate automated system would be more 
desirable in this regard.

It is interesting to note that the 
DCNNs in this study outperformed 
that described by Hwang et al (19), 
which showed AUCs that ranged from 
0.88 to 0.96, despite many more train-
ing cases. It is unclear if this is related 
to the different DCNN architectures 
or augmentation strategies used in 
this study. We also used two distinct 
DCNNs and provided an ensemble to 
further improve performance. Finally, 
we randomized the images from all of 
our datasets and split them into train-
ing, validation, and tests. This included 
images from many sites, with chest ra-
diographs generated by both digital ra-
diographic and computed radiographic 
technologies, which may have aided 
generalization and performance of the 
DCNNs. On the other hand, Hwang 
et al used only one large dataset for 
training (from Korea), consisting of 
only digital radiography images, and 
tested cross-over performance on the 
additional National Institutes of Health 
datasets from Shenzhen, China, and 
Montgomery County, Maryland, which 
had digital radiography and computed 
radiography images, respectively.

There are limitations to this work. 
The DCNNs do not replace human 

Figure 4

Figure 4: (a) Posteroanterior chest radiograph shows upper lobe opacities with pathologic analysis–proven 
active TB. (b) Same posteroanterior chest radiograph, with a heat map overlay of one of the strongest activa-
tions obtained from the fifth convolutional layer after it was passed through the GoogLeNet-TA classifier. The 
red and light blue regions in the upper lobes represent areas activated by the deep neural network. The dark 
purple background represents areas that are not activated. This shows that the network is focusing on parts 
of the image where the disease is present (both upper lobes).

average toward GoogLeNet (stron-
ger weighting of GoogLeNet) provided 
better accuracy than the other tested 
choices, with an AUC of 0.992 (standard 
error, 0.0046; 95% confidence interval: 
0.961, 1.000).

It was previously described (38) 
that neural networks, particularly deep 
neural networks, are functionally so-
called black boxes, meaning it is dif-
ficult to determine how the network 
arrived at its conclusion. This is an 
important consideration because one 
would want to know that DCNN was 
looking at a parenchymal abnormality 
in the lung apices consistent with TB, 
as in the case of this study, rather than 
a nonrelevant part of the image per se. 
The functional black-box effect is com-
plicated by the sheer size of DCNNs; 
for example, AlexNet has 60 000 000 
trained parameters, and it would be 
practically infeasible to analyze them 
individually (20). However, there are 
tools that can help aid visualization of 
a neural network (38), which can give 
more confidence that a DCNN is acti-
vated by the appropriate part of the im-
age. For example, Figure 4 shows one 

of the strongest activations within the 
GoogLeNet classifier, after being given 
a chest radiograph that is positive for 
TB. In this example, the lung apices 
have some of the strongest activations, 
which correspond to areas of paren-
chymal disease. One can feel more 
confident in the ability of the classifier 
through such visualization methods.

One potential method to improve 
accuracy is a radiologist-augmented 
system, in which some of the images 
are sent to a radiologist for a so-called 
overread. In this system, images that 
were discordant (classified by one 
DCNN as positive for TB and the other 
as negative for TB) were sent to the ra-
diologist for the final interpretation. Of 
the 150 test images, the best AlexNet 
and GoogLeNet classifiers agreed 137 
times (91.3%) and disagreed 13 times 
(8.7%). A blinded board-certified ra-
diologist then reviewed the 13 discor-
dant images and correctly classified all 
13 images (100%). This radiologist-
augmented approach increased the 
sensitivity to 97.3% and specificity to 
100% (Table 2). There were two false-
negative findings, which were findings 
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