A Universal Turing Machine
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A limitation of Turing Machines:

Turing Machines are “hardwired"

\ y
Y

they execute
only one program

Real Computers are re-programmable
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Solution:  Universal Turing Machine

Attributes:

* Reprogrammable machine

» Simulates any other Turing Machine
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Universal Turing Machine

simulates any Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Input string of M
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Tape 1

Three tapes
Description of M
Universal
: Tape 2
Turing D
Machine Tape Contents of M

Tape 3
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Tape 1

Description of M

We describe Turing machine M
as a string of symbols:

We encode M as a string of symbols
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Symbols:

Encoding:

Alphabet Encoding

a b C
A
| 11 111
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State Encoding

States: q k) q3 q4  *>
Encoding: ] 11 111 1111

Head Move Encoding
Move: L R

i i

Encoding: 1 11
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Transition Encoding

Transition: o(qy,a)=(q>,b,L)

/]

Encodingg 10101101101

|

separator
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Turing Machine Encoding

Transitions:

§(QIDG)Z(Q29b9L) 5(Q29b):(Q3acaR)

Encoding:
10101101101 00 1101101110111011

T

separator
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Tape 1 contents of Universal Turing Machine:

binary encoding
of the simulated machine M

Tape 1

101011011 010011 0110111 0111 O1100K

|
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A Turing Machine is described
with a binary string of O's and 1's

Therefore:

The set of Turing machines
forms a language:

each string of this language is
the binary encoding of a Turing Machine
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Language of Turing Machines

L = { 1010110101,

101011101011,

(Turing Machine 1)

(Turing Machine 2)

11101011110101111, e
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Countable Sets
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Infinite sets are either:
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Countable

or

Uncountable
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Countable set:

There is a one to one correspondence (injection)

of
elements of the set

to
Positive integers (1,2,3,...)

Every element of the set is mapped to a positive number
such that no two elements are mapped to same number
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Example: The set of even integers
IS countable

Evenintegers: (, 2, 4, 6, K

(positive)

Correspondence:

Positive integers: 1, 2, 3, 4, K

2n corresponds to n+1
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Example: The set of rational numbers
IS countable

Rational numbers:

o0 |

D | —
[ W
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Naive Approach Nominator 1
1 1 1
Rational numbers: ’

Correspondence:

Positive integers: , 2, 3, K

Doesn't work:
we will never count 2
numbers with nominator 2: |

Costas Busch - LSU 19



Better Approach

/\

DO | LI

1

3

2
3

/\

Costas Busch - LSU

/\

20



/\

DO | LI

U9 | =

W [ D

/\
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/\

/\
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/\
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/\
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25
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Rational Numbers:

Correspondence:

Positive Integers:
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We proved:

the set of rational numbers is countable

by describing an enumeration procedure
(enumerator)

for the correspondence to natural nhumbers
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Definition

Let S be aset of strings (Language)

An enumerator for § is a Turing Machine
that generates (prints on tape)
all the strings of § one by one

and
each string is generated in finite time
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strings S1,52,53,K €5

n
E um.era’ror output 51, 89,53, K
MC(Ch|n€ for' S (On Tape) )

7

A A

Finite time: tl? tz, f3,K
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Enumerator Machine
Configuration

Time O 010
q0
prinTs 51
Time X |# 8
K

ds
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Time I

Time I3

prints s,

X3

H

53

T

ds
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Observation:

If for aset S there is an enumerator,
then the set is countable

The enumerator describes the
correspondence of S to natural numbers
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Example: The set of strings S ={a,b,c}’
is countable

Approach:

We will describe an enumerator for S
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Naive enumerator:

Produce the strings in lexicographic order:

s=a

s,= aa

AN aaa
aaaa

Doesn't work:
strings starting with b
will never be produced
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Better procedure: Proper Order
(Canonical Order)

1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3

4. Produce dll strings of length 4
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Produce strings in
Proper Order:

5= A

= P

1\ C
aa

ab

aacC

length 1

ba

bbH
bc

cdad

chH

>~ length 2

cc /

aaa
aab

- length 3
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Theorem:  The set of all Turing Machines
is countable

Proof: Any Turing Machine can be encoded
with a binary string of O's and 1's

Find an enumeration procedure
for the set of Turing Machine strings
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Enumerator:

Repeat

1. Generate the next binary string
of O's and 1's in proper order

2. Check if the string describes a
Turing Machine
if YES: print string on output tape
if NO: ignore string
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Binary strings

0) ighore

1 ighore

00 ighore

01

\!

10101101100 s
10101101101 Lo
\ S
1011 01010010101 101 —=2

\!
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Turing Machines

10101101101

» 1011 01010010101 101

39



Simpler Proof:

Each Turing machine binary string is mapped
to the number representing its value
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Uncountable Sets
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We will prove that there is a language L
which is not accepted by any Turing machine

Technique:
Turing machines are countable

Languages are uncountable

(there are more languages than Turing Machines)
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Theorem:

If S is aninfinite countable set, then

the powerset 2° of S isuncountable.

The powerset 25 contains all possible subsets of §

Example: S={a,bt 2°={D,{a\, (b}, {a,b}}
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Proof:

Since S is countable, we can list its
elements in some order

S = {S19S2>S39K}

/4

Elements of S
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Elements of the powerset 25 have the form:
%
{S19S3}

155,57,59,510

They are subsets of O
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We encode each subset of §
with a binary string of O's and 1's

Binary encoding

Subset of S S1 S>»  S3  Sgq 0~
{Sl} 1 0 0 0 n
157,53} 0 1 1 0 ~

{SIDS39S4}

1 0 1 | A
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Every infinite binary string corresponds
to a subset of §:

Example: 1001110

Corresponds to: {81,84,55,56,K } € 2>
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Let's assume (for contradiction)
that the powerset 25 is countable

Then: we can list the elements of the
powerset in some order

2S — {t19t29t39K}

./
Subsets of S
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Powerset

Binary encoding example

element
t I 0 0 0 0 n
tr I 1 0 0 0 n
3 I 1 0 1 0 ~n
Ly I 1 0 0 1 n

/ \
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I —the binary string whose bits
are the complement of the diagonal

N
\
N
N
\
N
A N
* ~ /\
N \
N N
> N
N \
N N
N \
s N
N N
N \
N N
Y

y o 0 o
Binary string: 7 = 0011A

(birary complement of diagonal)
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The binary string

corresponds
to a subset of §:

7 =0011K

t={s,s,K}e2®
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I —the binary string whose bits
are the complement of the diagonal

N
. /\
N
N
Y
N
N
Y
N N
N N
s N
s N
N N
N N
s N
N N
N
N
A N
A N
N N
N
N

t5 .0 0 0 ~

N
Y
N
N
N AN
N N
N N
N
Y
N N
N N
N N
N N
N N
. N /\
N N
N N
N
N
s N
N N
N
N
A N
» N
N

4 1

1 0
r =0011A
Question: ¢ = ¢, 2 NO: differ in 15" bit
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N N
N N
\ O\ 1
A N
N
N
. . /\
N N
N
N
A N
N .
N
N
N
N
N




I —the binary string whose bits
are the complement of the diagonal

N
N
N
N
N
N N
‘ * /\
N N
N N
N N
A N
N N
N N
A N
N N
N N
N N
s N
s \
N
Y
N
N
N
N
N /\
N
Y
N
N
N
N
N
N AN
N N
N
N
N N
N N
N
Y
N N
N N
N N
N N
N N
. N /\
N N
N
N
N
N
N
N
N
Y

{4 L1 00 1 A
r=0011A
Question: ¢ = ¢, ? NO: differin 2" bit
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I —the binary string whose bits
are the complement of the diagonal

f 1 0 0 0 0~
t | 0 0 0 -
I3 1 |l

L4 0 0 [~

t —oo@m
Question: £ =75 2 NO: differ in 37 bit
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Thus: { # [ for every |
since they differ in the ith bit

However, te2° =t = t. forsome i

Contradictionlll

Therefore the powerset 2% is uncountable
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An Application: Languages

Consider Alphabet : 4 ={a,b}

The set of all strings:
S = {a,b}* =1{¢&,a,b,aa,ab,ba,bb,aaa,aab,K }

infinite and countable

because we cah enumerate
the strings in proper order
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Consider Alphabet : 4 ={a,b}

The set of all strings:
S = {a,b}* =1{¢&,a,b,aa,ab,ba,bb,aaa,aab,K }

infinite and countable

Any language is a subset of S :

L =1{aa,ab,aab}
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Consider Alphabet : 4 ={a,b}
The set of all Strings:

S=4 ={a,b} ={¢,a,b,aa,ab,ba,bb,aaa,aab,K }
infinite and countable

The powerset of § contains all languages:
2° ={D {e},{a},{a, b}, {aa,b},...,{aa,ab,aab} K }
uncountable
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Consider Alphabet : 4 ={a,b}

countable
Turing machines: My M, My~
accepts
Languages accepted v v v
By Turing Machines: Ly Ly Ly n
countable

Denote: X ={L},L,L3,K} Note: X C 2S
countable
(Sz{a,b}*)
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Languages accepted
by Turing machines: X countable

All possible languages: 2S uncountable

Therefore: X # ZS

(sinceXg2S, we get XCZS)
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Conclusion:

There is a language [, not accepted
by any Turing Machine:

Xc2°

—

AL €2’ and Le¢ X
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Non Turing-Acceptable Languages

L

Turing-Acceptable

Languages
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Note that: X =1{[1,L,,[3,K}

is a multi-set (elements may repeat)
since a language may be accepted
by more than one Turing machine

However, if we remove the repeated elements,
the resulting set is again countable since every element
still corresponds to a positive integer
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