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A Universal Turing Machine 
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Turing Machines are “hardwired” 

they execute 

only one program 

A limitation of Turing Machines: 

Real Computers are re-programmable 
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Solution: Universal Turing Machine 

• Reprogrammable machine 

 

• Simulates any other Turing Machine 

Attributes: 
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Universal Turing Machine  

simulates any Turing Machine M

Input of  Universal Turing Machine: 

Description of transitions of M

Input string of  M
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Universal  

Turing  

Machine 
M

Description of  

Tape Contents of  

M

State of  M

Three tapes 

Tape 2 

Tape 3 

Tape 1 



Costas Busch - LSU 6 

We describe Turing machine  

as a string of symbols: 

 

We encode        as a string of symbols 

M

M

Description of  M

Tape 1 
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Alphabet Encoding 

Symbols: a b c d 

Encoding: 1 11 111 1111
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State Encoding 

States: 1q 2q 3q 4q 

Encoding: 1 11 111 1111

Head Move Encoding 

Move: 

Encoding: 

L R

1 11



Costas Busch - LSU 9 

Transition Encoding 

Transition: ),,(),( 21 Lbqaq 

Encoding: 10110110101

separator 
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Turing Machine Encoding 

Transitions: 

),,(),( 21 Lbqaq 

Encoding: 

10110110101

),,(),( 32 Rcqbq 

110111011110101100

separator 
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Tape 1 contents of Universal Turing Machine: 

 

    binary encoding  

    of the simulated machine M

1100011101111010100110110110101

Tape 1 
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A Turing Machine is described  

with a binary string of 0’s and 1’s 

The set of Turing machines  

forms a language: 

each string of this language is 

the binary encoding of a Turing Machine 

Therefore: 
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Language of Turing Machines 

L = { 1010110101, 

 

        101011101011, 

 

        11101011110101111, 

        

        …… } 

(Turing Machine 1) 

(Turing Machine 2) 

…… 
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Countable Sets 
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Infinite sets are either:  Countable 

 

        or 

 

 Uncountable 
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Countable set: 

There is a one to one correspondence (injection) 

of 

elements of the set 

to  

Positive integers (1,2,3,…) 

Every element of the set is mapped to a positive number  

such that no two elements are mapped to same number 
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Example: 

Even integers: 
(positive) 

,6,4,2,0

The set of even integers  

is countable 

Positive integers: 

Correspondence: 

,4,3,2,1

n2 corresponds to 1n
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Example: The set of rational numbers 

is countable 

Rational numbers: ,
8

7
,

4

3
,

2

1
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Naïve Approach 

Rational numbers: ,
3

1
,

2

1
,

1

1

Positive integers: 

Correspondence: 

,3,2,1

Doesn’t work: 

we will never count  

numbers with nominator 2: 
,

3

2
,

2

2
,

1

2

Nominator 1 
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Better Approach 

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4








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Rational Numbers: ,
2

2
,

3

1
,

1

2
,

2

1
,

1

1

Correspondence: 

Positive Integers: ,5,4,3,2,1
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We proved: 

 

     the set of rational numbers is countable 

     by describing an enumeration procedure 

                               (enumerator)  

     for the correspondence to natural numbers 
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Definition 

An enumerator for       is a Turing Machine 

that generates (prints on tape) 

all the strings of       one by one 

Let        be a set of strings (Language)  S

S

S

and 

each string is generated in finite time 
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Enumerator 

Machine for  
,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings 

S

output 

(on tape) 
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Enumerator Machine 
Configuration 

Time 0  

0q

Time 

sq

1x 1s#1t

prints 1s
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Time 

sq

3x 3s#3t

Time 

sq

2x 2s#2t

prints 2s

prints 3s
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If for a set      there is an enumerator,  

then the set is countable 

Observation: 

The enumerator describes the  

correspondence of     to natural numbers 

S

S
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Example: The set of strings 

is countable  

 },,{ cbaS

We will describe an enumerator for 

Approach: 

S
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Naive enumerator: 

Produce the strings in lexicographic order: 

a

aa
aaa

......

Doesn’t work: 

          strings starting with      

          will never be produced  

b

aaaa

1s

2s


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Better procedure: 

1. Produce all strings of length 1 

 

2. Produce all strings of length 2 

 

3. Produce all strings of length 3 

 

4. Produce all strings of length 4 

Proper Order 

(Canonical Order) 

…
…
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Produce strings in  

    Proper Order: 

aa

ab
ac
ba

bb

bc
ca

cb
cc

aaa
aab
aac
......

length 2 

length 3 

length 1 
a
b
c

1s

2s


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Theorem: The set of all Turing Machines 

is countable 

Proof: 

Find an enumeration procedure  

for the set of Turing Machine strings 

Any Turing Machine can be encoded 

with a binary string of 0’s and 1’s 
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1.  Generate the next binary string  

     of 0’s and 1’s in proper order 

 

2.  Check if the string describes a  

     Turing Machine 

           if YES: print string on output tape 

           if NO:  ignore string 

Enumerator: 

Repeat 
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0
1
00
01



10110110101 10110110101
00110110101


101101001010101101



Binary strings Turing Machines 

1s

2s
101101001010101101

End of Proof 

ignore 

ignore 

ignore 
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Simpler Proof: 

Each Turing machine binary string is mapped  
to the number representing its value 
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Uncountable Sets 
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We will prove that there is a language 

which is not accepted by any Turing machine 

L

Technique: 

Turing machines are countable 

 

Languages are uncountable 

(there are more languages than Turing Machines) 
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Theorem: 

If       is an infinite countable set, then 

 

the powerset         of       is uncountable.  
S2 S

S

The powerset       contains all possible subsets of     

 

Example: 

S2 S

}},{},{},{,{2},{ bababaS S 
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Proof: 

Since       is countable, we can list its  

elements in some order  

S

},,,{ 321 sssS 

Elements of S
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Elements of the powerset         have the form: 

},{ 31 ss

},,,{ 10975 ssss

…
…

 



S2

They are subsets of S
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We encode each subset of  

with a binary string of 0’s and 1’s 

1s 2s 3s 4s 

1 0 0 0}{ 1s

Subset of  

Binary encoding 

0 1 1 0},{ 32 ss

1 0 1 1},,{ 431 sss







S

S
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Every infinite binary string corresponds 

to a subset of    : 

10 Example: 0111 0

Corresponds to: Sssss 2},,,,{ 6541 

S
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Let’s assume (for contradiction)  

that the powerset        is countable 

Then:  we can list the elements of the  

           powerset in some order 

},,,{2 321 tttS 

S2

Subsets of  S
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset  

element Binary encoding example 

1t

2t

3t

4t









 
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









Binary string: 0011

(birary complement of diagonal) 

         the binary string whose bits  

are the complement of the diagonal 

t

t



Costas Busch - LSU 51 

0011tThe binary string 

corresponds 

to a subset of     : 
Ssst 2},,{ 43  S
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









Question: 

0011

       the binary string whose bits  

are the complement of the diagonal 

t

?1tt  NO: differ in 1st bit 

t
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









Question: 

0011

       the binary string whose bits  

are the complement of the diagonal 

t

?2tt  NO: differ in 2nd bit 

t
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









Question: 

0011

       the binary string whose bits  

are the complement of the diagonal 

t

?3tt  NO: differ in 3rd bit 

t
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Thus:              for every        i

However,  

since they differ in the    th bit 

Contradiction!!! 

itt 

i

S ttt 2 for some  i

i

S2Therefore the powerset       is uncountable 

End of proof 
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An Application: Languages 

The set of all strings: 

infinite and countable 

Consider Alphabet : },{ baA 

because we can enumerate  

the strings in proper order 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 
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The set of all strings: 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable 

Any language is a subset of     : 

},,{ aababaaL 

S

Consider Alphabet : },{ baA 
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Consider Alphabet : },{ baA 

The set of all Strings: 

},,,,,,,,,{},{ ** aabaaabbbaabaababaAS 

infinite and countable 

The powerset of       contains all languages: 

}},,,{},...,,{},,{},{},{,{2 aababaabaabaaS 

uncountable 

S
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Turing machines:  1M 2M 3M 

Languages accepted 

By Turing Machines:  1L 2L 3L 

accepts 

Denote: },,,{ 321 LLLX 
countable 

Note: SX 2

countable 

countable 

 *},{ baS 

Consider Alphabet : },{ baA 
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X countable 

S2 uncountable 

Languages accepted 

by Turing machines: 

All possible languages: 

Therefore: SX 2

 SS XX 2get     we,2 since 
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There is a language        not accepted 

by any Turing Machine: 

Conclusion: 

L

SX 2 XLL S     and  2
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Turing-Acceptable  

Languages 

Non Turing-Acceptable Languages 

L
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Note that: },,,{ 321 LLLX 

is a multi-set (elements may repeat) 

since a language may be accepted  

by more than one Turing machine 

However, if we remove the repeated elements,  

the resulting set is again countable since every element  

still corresponds to a positive integer  


