Other Models of
Computation

Models of computation:

* Turing Machines
‘Recursive Functions
‘Post Systems
‘Rewriting Systems

Church's Thesis:

All models of computation are equivalent

Turing's Thesis:

A computation is mechanical if and only if
it can be performed by a Turing Machine

Church’'s and Turing's Thesis are similar:

Church-Turing Thesis

Recursive Functions

An example function:

_ 2
Domain J(n)=n"+1

3 /(3)=10 10

Range

We need a way to define functions

We need a set of basic functions

Basic Primitive Recursive Functions

Zero function: z(x)=0

Successor function: s(x)=x+1

Projection functions: pi(x],Xxp) =X

P2 (x1,x2) =x7

Building complicated functions:

Composition: f(x,y)=h(g1(x,),g2(x,»))

Primitive Recursion:

f (x,0) = g1(x)

S, y+1)=h(gr(x,), f(x,y))

Any function built from
the basic primitive recursive functions
is called:

Primitive Recursive Function

A Primitive Recursive Function: add(x,y)

add(x,0)=x (projection)

add(x,y+1)=s(add(x,y))

(successor function)

10

add(3,2) =s(add(3,1))
=s(s(add(3,0)))
=5(s(3))
=5(4)
=5

Another Primitive Recursive Function:
mult(x,y)

mult(x,0)=0

mult(x,y +1) = add(x,mult(x,y))

12

Theorem:
The set of primitive recursive functions
is countable

Proof:
Each primitive recursive function
can be encoded as a string

Enumerate all strings in proper order

Check if a string is a function

13

Theorem
there is a function that
IS hot primitive recursive

Proof:
Enumerate the primitive recursive functions

fla f29 f39K

14

Define function g@) = f;(@)+1

g differs from every f;

g 1s not primitive recursive

END OF PROOF

15

A specific function that is not
Primitive Recursive:

Ackermann's function:

A0, y)=y+1
A(x,0) = A(x—11)
A(x,y+1)=A(x—1,A4(x,))

Grows very fast,
faster than any primitive recursive function

16

U —Recursive Functions

uy(g(x,y))=smallest y such that g(x,y)=0

Ackerman's function is a

1 —Recursive Function

17

U —Recursive Functions

Primitive recursive functions

18

Post Systems

- Have Axioms

- Have Productions

Very similar with unrestricted grammars

19

Example: Unary Addition

Axiom: 1+1=11

Productions:

N+Vy=V; — Ni+Vy,=I;l
Vj_+V2=V3 —> V_+V21=V31

20

A production:

N+Vy =V — Ni+V,=7r3;l

|/

1+1=11 = 11+1=111 = 11+11=1111

VN

N+Vy=V; — N+rl=IJjsl

21

Post systems are good for
proving mathematical statements
from a set of Axioms

22

Theorem:
A language is recursively enumerable
if and only if
a Post system generates it

23

Rewriting Systems

They convert one string to another

* Matrix Grammars
* Markov Algorithms

» Lindenmayer-Systems

Very similar to unrestricted grammars

24

Matrix Grammars
Example: p. §-5.9,

P2: Sj_—>aS1, S2 —)szC
P3I Sj_—)ﬂ, Sz—)ﬁ

Derivation:

S = 818 = a$1bSH>c = aaS1bbSHrcc = aabbcc

A set of productions is applied simultaneously

25

Pll S—)SlSz
Pz) Sl —> aSl, S2 —)szc
P3I Sl—)/l, S2 —> A

L={a"b"c" :n>0}

Theorem:
A language is recursively enumerable
if and only if
a Matrix grammar generates it

26

Markov Algorithms

Grammars that produce 4

Example: ab — S
aSb > S
S—> A

Derivation:

aaabbb = aaSbb = aSb = S = 1

27

ab —> S
aSb — S
S—>.A

L={a"b" :n>0

28

%k

Ingeneral: L={w: w=A1}

Theorem:

A language is recursively enumerable
if and only if
a Markov algorithm generates it

29

Lindenmayer-Systems

They are parallel rewriting systems

Example: a—aa

Derivation: a — aa — aaaa — aaaaaaad

271
L=4{a" :n=0}

30

Lindenmayer-Systems are not general
As recursively enumerable languages

Extended Lindenmayer-Systems: (x,a,y) —>u

|]

context

Theorem:
A language is recursively enumerable
if and only if an
Extended Lindenmayer-System generates it

31

Computational Complexity

32

Time Complexity:

Space Complexity:

The number of steps
during a computation

Space used
during a computation

33

Time Complexity

*We use a multitape Turing machine

*We count the number of steps until
a string is accepted

*We use the O(k) notation

34

Example: L={a"b":n>0}

Algorithm to accept a string w

*Use a two-tape Turing machine
*Copy the a on the second tape

‘Compare the a and b

35

L={a"b" :n>0}

Time needed:

-Copy the g on the second tape ~ O(w|)

‘Compare the a and p O(|w])

Total time: O(|w])

36

L={a"b" :n>0}

For string of length 7

time needed for acceptance: O(n)

37

Language class: DTIME(n)

A Deterministic Turing Machine
accepts each string of length =
in time O(n)

38

DTIME (n)

W

In a similar way we define the class

DTIME(T (n))

for any time function: T(n)

Examples: DTIME(n?), DTIME(n°),...

40

Example: The membership problem
for context free languages

L ={w:wis generated by grammar G}

L e DTIME(n®) (CYK - algorithm)

Polynomial time

41

Theorem: DTIME(n* "' = DTIME(n")

DTIME(n**1

42

Polynomial time algorithms: DTIME(nk)

Represent tractable algorithms:

For small £ we can compute the
result fast

43

The class P

P = UDTIME(n")

*Polynomial time

*All tractable problems

for all

k

44

P

CYK-algorithm

W

ta"b"}

45

Exponential time algorithms: DTIME(2™)

Represent intractable algorithms:

Some problem instances
may take centuries to solve

46

Example: the Traveling Salesperson Problem

Question: what is the shortest route that
connects all cities? .

Question: what is the shortest route that
connects all cities?

48

A solution: search exhuastively all
hamiltonian paths

L = {shortest hamiltonian paths}

Le DTIME(n!) ~ DTIME(2™)

Exponential tfime

Intractable problem

49

Example: The Satisfiability Problem

Boolean expressions in
Conjunctive Normal Form:

NIy N3 AN N

Li=x VX vx3vA v,

Variables

Question: is expression satisfiable?

50

Example:

Satisfiable:

(X1 v x2) A (X Vv x3)

XIZO, %%) =1, X3 =1

()_Cl VX2)/\(X1 \/X3)=1

51

Example:

(X] VX)) AX] A Xy

Not satisfiable

52

L ={w:expression wis satisfiable}

For n variables: L e DTIMER2")

exponential

Algorithm:
search exhaustively all the possible
binary values of the variables

53

Non-Determinism
Language class: NTIME(n)

A Non-Deterministic Turing Machine
accepts each string of length =
in time O(n)

54

Example: L= {ww}

Non-Deterministic Algorithm
to accept a string ww :

*Use a two-tape Turing machine

*Guess the middle of the string
and copy w on the second tape

*Compare the two tapes

55

L ={ww}
Time needed:

*Use a two-tape Turing machine

*Guess the middle of the string
and copy w on the second tape

*Compare the two tapes

Total time:

O(|wl)

O(|wl)

O(|wl)

57

In a similar way we define the class
NTIME(T(n))

for any time function: T(n)

Examples: NTIME(n®), NTIME(n),...

58

Non-Deterministic Polynomial time algorithms:

L e NTIME(n")

59

The class NP

P=UNTIME(n*) for all

Non-Deterministic Polynomial time

k

60

Example: The satisfiability problem

L ={w:expression wis satisfiable}

Non-Deterministic algorithm:

*Guess an assignment of the variables

*Check if this is a satisfying assignment

61

L ={w:expression wis satisfiable}

Time for n variables:

*Guess an assignment of the variables O(n)

Check if this is a satisfying assignment O(n)

Total time: O(n)

62

L ={w:expression wis satisfiable}

L € NP

The satisfiability problem is an NP- Problem

63

Observation:

P c NP
Deterministic Non-Deterministic

Polynomial Polynomial

64

Open Problem: P = NP ?

WE DO NOT KNOW THE ANSWER

65

Open Problem: P = NP ?

Example: Does the Satisfiability problem
have a polynomial time
deterministic algorithm?

WE DO NOT KNOW THE ANSWER

66

NP-Completeness

A problem is NP-complete if:
‘It isin NP

*Every NP problem is reduced to it

(in polynomial time)

67

Observation:

If we can solve any NP-complete problem
in Deterministic Polynomial Time (P time)
then we know:

P=NP

68

Observation:

If we prove that

we cannot solve an NP-complete problem
in Deterministic Polynomial Time (P time)
then we know:

P # NP

69

Cook's Theorem:

The satisfiability problem is NP-complete

Proof:

Convert a Non-Deterministic Turing Machine
to a Boolean expression
in conjunctive normal form

70

Other NP-Complete Problems:

*The Traveling Salesperson Problem
Vertex cover

‘Hamiltonian Path

All the above are reduced
to the satisfiability problem

71

Observations:

It is unlikely that NP-complete
problems are in P

The NP-complete problems have
exponential tfime algorithms

Approximations of these problems
are in P

72

