
1

Other Models of
Computation

2

Models of computation:

•Turing Machines

•Recursive Functions

•Post Systems

•Rewriting Systems

3

Church’s Thesis:

 All models of computation are equivalent

Turing’s Thesis:

 A computation is mechanical if and only if

 it can be performed by a Turing Machine

4

Church’s and Turing’s Thesis are similar:

Church-Turing Thesis

5

Recursive Functions

An example function:

1)(2  nnf
Domain Range

3 1010)3(f

6

We need a way to define functions

We need a set of basic functions

7

Zero function: 0)(xz

Successor function: 1)( xxs

Projection functions: 1211),(xxxp 

2212),(xxxp 

Basic Primitive Recursive Functions

8

Building complicated functions:

Composition:)),(),,((),(21 yxgyxghyxf 

Primitive Recursion:

)),(),,(()1,(2 yxfyxghyxf 

)()0,(1 xgxf 

9

Any function built from

the basic primitive recursive functions

is called:

 Primitive Recursive Function

10

A Primitive Recursive Function:),(yxadd

xxadd )0,((projection)

)),(()1,(yxaddsyxadd 

(successor function)

11

5

)4(

))3((

)))0,3(((

))1,3(()2,3(











s

ss

addss

addsadd

12

),(yxmult

0)0,(xmult

)),(,()1,(yxmultxaddyxmult 

Another Primitive Recursive Function:

13

Theorem:

 The set of primitive recursive functions

 is countable

Proof:

 Each primitive recursive function

 can be encoded as a string

 Enumerate all strings in proper order

 Check if a string is a function

14

Theorem

 there is a function that

 is not primitive recursive

Proof:

Enumerate the primitive recursive functions

,,, 321 fff

15

Define function 1)()( ifig i

g differs from every if

g is not primitive recursive

END OF PROOF

16

A specific function that is not

Primitive Recursive:

Ackermann’s function:

)),(,1()1,(

)1,1()0,(

1),0(

yxAxAyxA

xAxA

yyA







Grows very fast,

faster than any primitive recursive function

17

 Recursive Functions

0),(such that smallest)),(( yxgyyxgy

Ackerman’s function is a

 Recursive Function

18

Primitive recursive functions

 Recursive Functions

19

Post Systems

• Have Axioms

• Have Productions

Very similar with unrestricted grammars

20

Example: Unary Addition

Axiom: 1111 

Productions:

11

11

321321

321321

VVVVVV

VVVVVV





21

111111111111111111 

11 321321 VVVVVV 

11 321321 VVVVVV 

A production:

22

Post systems are good for

proving mathematical statements

from a set of Axioms

23

Theorem:

 A language is recursively enumerable

 if and only if

 a Post system generates it

24

Rewriting Systems

• Matrix Grammars

• Markov Algorithms

• Lindenmayer-Systems

They convert one string to another

Very similar to unrestricted grammars

25

Matrix Grammars

Example:

 





213

22112

211

,:

,:

:

SSP

cbSSaSSP

SSSP

A set of productions is applied simultaneously

Derivation:

aabbccccbbSaaScbSaSSSS  212121

26

 





213

22112

211

,:

,:

:

SSP

cbSSaSSP

SSSP

}0:{  ncbaL nnn

Theorem:

 A language is recursively enumerable

 if and only if

 a Matrix grammar generates it

27

Markov Algorithms

Grammars that produce 

Example:

.





S

SaSb

Sab

Derivation:

 SaSbaaSbbaaabbb

28

.





S

SaSb

Sab

}0:{  nbaL nn

29

In general: }:{
*
 wwL

Theorem:

 A language is recursively enumerable

 if and only if

 a Markov algorithm generates it

30

Lindenmayer-Systems

They are parallel rewriting systems

Example: aaa

aaaaaaaaaaaaaaa Derivation:

}0:{ 2  naL
n

31

Lindenmayer-Systems are not general

As recursively enumerable languages

Extended Lindenmayer-Systems: uyax ),,(

Theorem:

 A language is recursively enumerable

 if and only if an

 Extended Lindenmayer-System generates it

context

32

Computational Complexity

33

Time Complexity:

Space Complexity:

The number of steps

during a computation

Space used

during a computation

34

Time Complexity

•We use a multitape Turing machine

•We count the number of steps until

 a string is accepted

•We use the O(k) notation

35

Example: }0:{  nbaL nn

Algorithm to accept a string : w

•Use a two-tape Turing machine

•Copy the on the second tape

•Compare the and

a

a b

36

|)(|wO•Copy the on the second tape

•Compare the and

a

a b

Time needed:

|)(|wO

Total time: |)(|wO

}0:{  nbaL nn

37

For string of length

time needed for acceptance:

}0:{  nbaL nn

n

)(nO

38

Language class:)(nDTIME

A Deterministic Turing Machine

accepts each string of length

in time

)(nDTIME

1L
2L

3L

)(nO

n

39

)(nDTIME

}0:{ nba nn

}{ww

40

In a similar way we define the class

))((nTDTIME

)(nTfor any time function:

Examples:),...(),(32 nDTIMEnDTIME

41

Example: The membership problem

 for context free languages

}grammar by generated is :{ GwwL 

)(3nDTIMEL (CYK - algorithm)

Polynomial time

42

Theorem:

)(knDTIME

)(1knDTIME

)()(1 kk nDTIMEnDTIME 

43

Polynomial time algorithms:)(knDTIME

Represent tractable algorithms:

For small we can compute the

result fast

k

44

)(knDTIMEP  for all k

The class P

•All tractable problems

•Polynomial time

45

P

CYK-algorithm
}{ nnba

 }{ww

46

Exponential time algorithms:)2(nDTIME

Represent intractable algorithms:

Some problem instances

may take centuries to solve

47

Example: the Traveling Salesperson Problem

Question: what is the shortest route that

 connects all cities?

5
3

2
1

8 10

2 4

3

6

48

Question: what is the shortest route that

 connects all cities?

5
3

2
1

8 10

2 4

3

6

49

)2()!(nDTIMEnDTIMEL 

Exponential time

Intractable problem

A solution: search exhuastively all

 hamiltonian paths

L = {shortest hamiltonian paths}

50

Example: The Satisfiability Problem

Boolean expressions in

Conjunctive Normal Form:

ktttt  321

pi xxxxt  321

Variables

Question: is expression satisfiable?

51

)()(3121 xxxx 

Satisfiable: 1,1,0 321  xxx

1)()(3121  xxxx

Example:

52

2121)(xxxx 

Not satisfiable

Example:

53

e}satisfiabl is expression :{ wwL 

)2(nDTIMELFor variables: n

Algorithm:

 search exhaustively all the possible

 binary values of the variables

exponential

54

Non-Determinism

Language class:)(nNTIME

A Non-Deterministic Turing Machine

accepts each string of length

in time

)(nNTIME

1L
2L

3L

)(nO

n

55

Example: }{wwL 

Non-Deterministic Algorithm

to accept a string : ww

•Use a two-tape Turing machine

•Guess the middle of the string

 and copy on the second tape

•Compare the two tapes

w

56

|)(|wO

Time needed:

|)(|wO

Total time: |)(|wO

}{wwL 

•Use a two-tape Turing machine

•Guess the middle of the string

 and copy on the second tape

•Compare the two tapes

w

57

)(nNTIME

}{wwL 

58

In a similar way we define the class

))((nTNTIME

)(nTfor any time function:

Examples:),...(),(32 nNTIMEnNTIME

59

Non-Deterministic Polynomial time algorithms:

)(knNTIMEL

60

)(knNTIMEP  for all k

The class NP

Non-Deterministic Polynomial time

61

Example: The satisfiability problem

Non-Deterministic algorithm:

•Guess an assignment of the variables

e}satisfiabl is expression :{ wwL 

•Check if this is a satisfying assignment

62

Time for variables: n

)(nO

e}satisfiabl is expression :{ wwL 

Total time:

•Guess an assignment of the variables

•Check if this is a satisfying assignment)(nO

)(nO

63

e}satisfiabl is expression :{ wwL 

NPL

The satisfiability problem is an - Problem NP

64

Observation:

NPP 

Deterministic

Polynomial
Non-Deterministic

Polynomial

65

Open Problem: ?NPP 

WE DO NOT KNOW THE ANSWER

66

Example: Does the Satisfiability problem

 have a polynomial time

 deterministic algorithm?

WE DO NOT KNOW THE ANSWER

Open Problem: ?NPP 

67

NP-Completeness

A problem is NP-complete if:

•It is in NP

•Every NP problem is reduced to it

(in polynomial time)

68

Observation:

If we can solve any NP-complete problem

in Deterministic Polynomial Time (P time)

then we know:

NPP 

69

Observation:

If we prove that

we cannot solve an NP-complete problem

in Deterministic Polynomial Time (P time)

then we know:

NPP 

70

Cook’s Theorem:

 The satisfiability problem is NP-complete

Proof:

Convert a Non-Deterministic Turing Machine

to a Boolean expression

in conjunctive normal form

71

Other NP-Complete Problems:

•The Traveling Salesperson Problem

•Vertex cover

•Hamiltonian Path

All the above are reduced

to the satisfiability problem

72

Observations:

 It is unlikely that NP-complete

 problems are in P

 The NP-complete problems have

 exponential time algorithms

 Approximations of these problems

 are in P

