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Other Models of 
Computation 
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Models of computation: 

•Turing Machines 

•Recursive Functions 

•Post Systems 

•Rewriting Systems 
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Church’s Thesis: 

 

      All models of computation are equivalent 

Turing’s Thesis: 

  

      A computation is mechanical if and only if 

      it can be performed by a Turing Machine 
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Church’s and Turing’s Thesis are similar: 

Church-Turing Thesis 
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Recursive Functions 

An example function: 

1)( 2  nnf
Domain Range 

3 1010)3( f
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We need a way to define functions 

We need a set of basic functions 
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Zero function: 0)( xz

Successor function: 1)(  xxs

Projection functions: 1211 ),( xxxp 

2212 ),( xxxp 

Basic Primitive Recursive Functions 
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Building complicated functions: 

Composition: )),(),,((),( 21 yxgyxghyxf 

Primitive Recursion: 

)),(),,(()1,( 2 yxfyxghyxf 

)()0,( 1 xgxf 
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Any function built from 

the basic primitive recursive functions 

is called: 

 

            Primitive Recursive Function  
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A Primitive Recursive Function: ),( yxadd

xxadd )0,( (projection) 

)),(()1,( yxaddsyxadd 

(successor function) 
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),( yxmult

0)0,( xmult

)),(,()1,( yxmultxaddyxmult 

Another Primitive Recursive Function: 
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Theorem: 

    The set of primitive recursive functions 

    is countable 

Proof: 

    Each primitive recursive function  

    can be encoded as a string 

 

    Enumerate all strings in proper order 

 

    Check if a string is a function 
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Theorem 

     there is a function that  

     is not primitive recursive 

Proof: 

Enumerate the primitive recursive functions 

,,, 321 fff



15 

Define function 1)()(  ifig i

g differs from every if

g is not primitive recursive 

END OF PROOF 
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A specific function that is not 

Primitive Recursive: 

Ackermann’s function: 

)),(,1()1,(

)1,1()0,(

1),0(

yxAxAyxA

xAxA

yyA







Grows very fast,  

faster than any primitive recursive function 
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 Recursive Functions 

0),(such that  smallest )),((  yxgyyxgy

Ackerman’s function is a  

 Recursive Function 
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Primitive recursive functions 

 Recursive Functions 
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Post Systems 

• Have Axioms 

 

• Have Productions 

Very similar with unrestricted grammars 
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Example:  Unary Addition 

Axiom: 1111 

Productions: 

11

11

321321

321321

VVVVVV

VVVVVV




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111111111111111111 

11 321321 VVVVVV 

11 321321 VVVVVV 

A production: 



22 

Post systems are good for  

proving mathematical statements  

from a set of Axioms 
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Theorem: 

     A language is recursively enumerable 

     if and only if  

     a Post system generates it 
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Rewriting Systems 

• Matrix Grammars 

 

• Markov Algorithms 

 

• Lindenmayer-Systems 

They convert one string to another 

Very similar to unrestricted grammars 



25 

Matrix Grammars 

Example: 

 





213

22112

211

,:

,:

:

SSP

cbSSaSSP

SSSP

A set of productions is applied simultaneously 

Derivation: 

aabbccccbbSaaScbSaSSSS  212121
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 





213

22112

211

,:

,:

:

SSP

cbSSaSSP

SSSP

}0:{  ncbaL nnn

Theorem:  

     A language is recursively enumerable 

     if and only if 

     a Matrix  grammar generates it 
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Markov Algorithms 

Grammars that produce  

Example: 

.





S

SaSb

Sab

Derivation: 

 SaSbaaSbbaaabbb
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.





S

SaSb

Sab

}0:{  nbaL nn
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In general: }:{
*
 wwL

Theorem: 

 

        A language is recursively enumerable 

        if and only if 

        a Markov algorithm generates it 
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Lindenmayer-Systems 

They are parallel rewriting systems 

Example: aaa

aaaaaaaaaaaaaaa Derivation: 

}0:{ 2  naL
n
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Lindenmayer-Systems are not general 

As recursively enumerable languages 

Extended Lindenmayer-Systems: uyax ),,(

Theorem: 

   A language is recursively enumerable 

   if and only if an 

   Extended Lindenmayer-System generates it 

context 
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Computational Complexity 
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Time Complexity: 

Space Complexity: 

The number of steps  

during a computation 

Space used  

during a computation 
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Time Complexity 

•We use a multitape Turing machine 

 

 

•We count the number of steps until 

  a string is accepted 

 

 

•We use the O(k) notation  
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Example: }0:{  nbaL nn

Algorithm to accept a string       : w

•Use a two-tape Turing machine 

 

•Copy the      on the second tape 

 

•Compare the     and   

a

a b
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|)(|wO•Copy the      on the second tape 

 

•Compare the     and   

a

a b

Time needed: 

|)(|wO

Total time: |)(|wO

}0:{  nbaL nn
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For string of length 

 

time needed for acceptance: 

}0:{  nbaL nn

n

)(nO
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Language class: )(nDTIME

A Deterministic Turing Machine  

accepts each string of length    

in time 

)(nDTIME

1L
2L

3L

)(nO

n
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)(nDTIME

}0:{ nba nn

}{ww
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In a similar way we define the class 

))(( nTDTIME

)(nTfor any time function: 

Examples: ),...(),( 32 nDTIMEnDTIME
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Example: The membership problem  

                for context free languages 

}grammar by  generated is :{ GwwL 

)( 3nDTIMEL (CYK - algorithm) 

Polynomial time 
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Theorem: 

)( knDTIME

)( 1knDTIME

)()( 1 kk nDTIMEnDTIME 
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Polynomial time algorithms: )( knDTIME

Represent tractable algorithms: 

For small      we can compute the 

result fast  

k
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)( knDTIMEP  for all  k

The class  P

•All tractable problems 

•Polynomial time 
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P

CYK-algorithm 
}{ nnba

 }{ww
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Exponential time algorithms: )2( nDTIME

Represent intractable algorithms: 

Some problem instances 

may take centuries to solve 
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Example: the Traveling Salesperson Problem 

Question: what is the shortest route that 

                connects all cities? 

5 
3 

2 
1 

8 10 

2 4 

3 

6 
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Question: what is the shortest route that 

                connects all cities? 

5 
3 

2 
1 

8 10 

2 4 

3 

6 
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)2()!( nDTIMEnDTIMEL 

Exponential time 

Intractable problem 

A solution: search exhuastively all 

                 hamiltonian paths 

L = {shortest hamiltonian paths} 
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Example: The Satisfiability Problem 

Boolean expressions in 

Conjunctive Normal Form: 

ktttt  321

pi xxxxt  321

Variables 

Question:   is expression satisfiable? 
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)()( 3121 xxxx 

Satisfiable: 1,1,0 321  xxx

1)()( 3121  xxxx

Example: 
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2121 )( xxxx 

Not satisfiable 

Example: 
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e}satisfiabl is  expression :{ wwL 

)2( nDTIMELFor       variables:  n

Algorithm: 

        search exhaustively all the possible 

        binary values of the variables 

exponential 
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Non-Determinism 

Language class: )(nNTIME

A Non-Deterministic Turing Machine  

accepts each string of length    

in time 

)(nNTIME

1L
2L

3L

)(nO

n
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Example: }{wwL 

Non-Deterministic Algorithm 

to accept a string        : ww

•Use a two-tape Turing machine 

 

•Guess the middle of the string  

 and copy      on the second tape 

 

•Compare the two tapes   

w
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|)(|wO

Time needed: 

|)(|wO

Total time: |)(|wO

}{wwL 

•Use a two-tape Turing machine 

 

•Guess the middle of the string  

 and copy      on the second tape 

 

•Compare the two tapes   

w
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)(nNTIME

}{wwL 
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In a similar way we define the class 

))(( nTNTIME

)(nTfor any time function: 

Examples: ),...(),( 32 nNTIMEnNTIME
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Non-Deterministic Polynomial time algorithms: 

)( knNTIMEL
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)( knNTIMEP  for all  k

The class  NP

Non-Deterministic Polynomial time 
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Example: The satisfiability problem 

Non-Deterministic algorithm: 

•Guess an assignment of the variables 

e}satisfiabl is  expression :{ wwL 

•Check if this is a satisfying assignment 
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Time for      variables:  n

)(nO

e}satisfiabl is  expression :{ wwL 

Total time: 

•Guess an assignment of the variables 

•Check if this is a satisfying assignment )(nO

)(nO
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e}satisfiabl is  expression :{ wwL 

NPL

The satisfiability problem is an       - Problem NP
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Observation: 

NPP 

Deterministic 

Polynomial 
Non-Deterministic 

Polynomial 
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Open Problem: ?NPP 

WE DO NOT KNOW THE ANSWER 
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Example:  Does the Satisfiability problem 

                have a polynomial time 

                deterministic algorithm? 

WE DO NOT KNOW THE ANSWER 

Open Problem: ?NPP 
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NP-Completeness 

A problem is  NP-complete if:  

•It is in NP 

 

•Every NP problem is reduced to it 

(in polynomial time) 
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Observation: 

If we can solve any NP-complete problem 

in Deterministic Polynomial Time (P time) 

then we know: 

NPP 
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Observation: 

If we prove that 

we cannot solve an NP-complete problem 

in Deterministic Polynomial Time (P time) 

then we know: 

NPP 
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Cook’s Theorem: 

        

       The satisfiability problem is NP-complete 

Proof: 

Convert a Non-Deterministic Turing Machine 

to a Boolean expression 

in conjunctive normal form 
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Other NP-Complete Problems: 

•The Traveling Salesperson Problem 

 

•Vertex cover 

 

•Hamiltonian Path 

All the above are reduced 

to the satisfiability problem 
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Observations: 

 

        It is unlikely that  NP-complete 

        problems are in P 

 

        The NP-complete problems have  

         exponential time algorithms  

 

        Approximations of these problems 

        are in P 


