Parsing

Costas Busch - LSU

Program File

v=D5;

if (v»bH)
x=12 +v;

while (x 1=3) {
X=X-3;
v = 10;

Machine Code

Compiler

—

Costas Busch - LSU

Add v,v,b
cmp v,5
jmplt ELSE
THEN:

add x, 12 v
ELSE:
WHILE:
cmp Xx,3

Compiler

Lexical

analyzer

parser

Inpu%rri ng

Program
file

Costas Busch - LSU

Output

machine
code

Lexical analyzer:

* Recognizes the lexemes of the
input program file:

Keywords (if, then, else, while,...),
Integers,
Identifiers (variables), etc

It is built with DFAs (based on the
theory of reqular languages)

Costas Busch - LSU

Parser:

*Knows the grammar of the
programming language to be compiled

Constructs derivation (and derivation tree)
for input program file (input string)

-Converts derivation to machine code

Costas Busch - LSU 5

Example Parser

PROGRAM — STMT_LIST

STMT_LIST—STMT; STMT_LIST | STMT;

STMT—EXPR | IF_STMT | WHILE_STMT
| { STMT_LIST}

EXPR — EXPR + EXPR | EXPR - EXPR | ID
IF_STMT— if (EXPR) then STMT

| if (EXPR) then STMT else STMT
WHILE_STMT— while (EXPR) do STMT

Costas Busch - LSU 6

The parser finds the derivation
of a particular input file

Example derivation
Parser /E >E+E N

Input string

E->E+E ->E+E*E

E*E—— =310+ E*E
INT =>10+2*E

=>10+2*5H

- /

Costas Busch - LSU

derivation

/E:>E+E \

=>E+E*E
=> 10 + E*E
=>10+2*E
=>10+2*5H

- /

Derivation trees

a I
are used to build multa, 2,5

Machine code

deriva‘rict))n tree
/TN

- i

5 &

machine code

add b, 10, a
_ J

Costas Busch - LSU

A simple (exhaustive) parser

Costas Busch - LSU

We will build an exhaustive search parser
that examines all possible derivations

Exhaustive Parser

grammar derivation

Costas Busch - LSU

Example: Find derivation of string aabb

Exhaustive Parser
S 5SS derivation

Input string
S — aSbh
ad S — bSa

S > ¢

Costas Busch - LSU

Exhaustive Search

S >SS |aSh|bSa| e

Phase 1: S =385 Find derivation
¢ G of aabb
S = bSa
S=> ¢

All possible derivations of length 1

Costas Busch - LSU

12

Phase 1:

S —>SS|aSh|bSa|e

S =55 Find derivation

S = alSbh of aabb
S=5a
Soa

Cannot possibly produce aabb

Costas Busch - LSU

13

S —>85aSb|bSa | ¢

In Phase 2,
Phase 1 explore the next step
¢ — G of each derivation

from Phase 1
S = aSh

Costas Busch - LSU 14

Phase 2| S — SS'| aSh|bSa | &

S =855 =855
S =85 = aShS

Phase 1 /m Find derivation

S=5S5 S=85=S5 of aabb

S=aSb §—= aSh= aSSh
\ S = aSb = aaSbb
S Sab
S

ostas Busch - L 15

Phase 2
S =855 = 555

S =855 = aShs
S=8=9

S = aSh = aSSh
S = aSh = aaSbhb

S —>85aSb|bSa | ¢

Find derivation

of aabb

In Phase 3 explore
all possible derivations

Costas Busch - LSU 16

Phase. 2 S —>85aSb|bSa | ¢
S =85 = 85§

S= 85 = aShS Find derivation
of aabb

S=5885=98

S = aSh = aSSh

S = aSh = aaSbhb

A possible derivation

\ of Phase 3

S = aSh = aaSbb = aabb

Costas Busch - LSU 17

Final result of exhaustive search

Exhaustive Parser

Input S —>SS
string S 4Sh
[aablﬂ—’
S — bSa
S > ¢

derivation

[S = aSb = aaSbb = aabb}

Costas Busch - LSU 18

Time Complexity

Suppose that the grammar does not have
productions of the form

A—>> & (E-productions)
A—> B (unit productions)

Costas Busch - LSU

19

Since the are no &-productions

N

For any derivation of a
string of terminals w e L(&)

S=>x=>x 22N =x, =>w

it holds that | x, |<|w | forall ;

Costas Busch - LSU 20

Since the are no unit productions

U

1. At most | w | derivation steps are needed
to produce a string X; with at most|w |
variables

2. At most | w | derivation steps are needed
to convert the variables of X, to the
string of terminals W

Costas Busch - LSU 21

Therefore, at most 2 | w | derivation
steps are required to produce W

The exhaustive search requires at most

2| w| phases

Costas Busch - LSU

22

Suppose the grammar has kK productions

Possible derivation choices
to be examined in phase 1: at most &

Costas Busch - LSU

23

Choices for phase 2: at mostk xk = k?

Choices of Number of
phase 1 Productions

In General

Choices for phase i: at most KO0 sk =k

/N

Choices of Number of
phase i-1 Productions

Costas Busch - LSU 24

Total exploration choices for string w:

A

/k ki

phase 1 phase 2

Jo2wl O(kZIWI)

N\

phase 2|w|

Exponential to the string length

Extremely bad!l

Costas Busch - LSU 25

Faster Parsers

Costas Busch - LSU

26

There exist faster parsing algorithms
for specialized grammars

S-grammar: A— av
Symbol String of variables

Each pair of variable, terminal (X,0)

appears once in a production X —ow

(a restricted version of Greinbach Normal form)

Costas Busch - LSU 27

S-grammar example: S —>ad
S — bSS

S —>c

Each string has a unique derivation

S = aS = abSS = abcS = abcc

Costas Busch - LSU

28

For S-grammars:

In the exhaustive search parsing
there is only one choice in each phase

Steps for a phase: 1

Total steps for parsing string w

Costas Busch - LSU

W

29

For general context-free grammars:

Next, we give a parsing algorithm
that parses a string w in time O(| w|)

(this time is very close to the worst case
optimal since parsing can be used to solve
the matrix multiplication problem)

Costas Busch - LSU 30

The CYK Parsing Algorithm

Input: -+ Arbitrary Grammar G
in Chomsky Normal Form

- String w

Output: Determine if we L(G)
Number of Steps: (] W|3)

Can be easily converted to a Parser

Costas Busch - LSU

31

Basic Idea

Consider a grammar (&
In Chomsky Normal Form

Denote by F(w) the set of variables
that generate a string W

K

X eF(w) if X=>w

Costas Busch - LSU

32

Suppose that we have computed F(w)

Check if SeF(w) «
YES > wel(6) (S=w)

NO) wel(6)

Costas Busch - LSU

33

F(w) can be computed recursively:
prefix suffix

Write W=Uuy

If XeF(u) and Y e F(v)

k

(X=u) (Y =v)
and there is production H — XY
Then H e F(w)
(H=XY=uY=uv =w)

Costas Busch - LSU 34

Examine all prefix-suffix
decompositions of w

Length Set of Variables
that generate w

—1
w =0, H,
w=u, v Hjy-1

Result: F(W)=H{WHy A UHj, 4

Costas Busch - LSU

35

AT the basis of the recursion
we have strings of length 1

F (o) ={Variables that generate symbol o}

T T

symbol Y 5o

Very easy to find

Costas Busch - LSU

36

Remark:
The whole algorithm can be implemented
with dynamic programming:

First compute F(w') for smaller
substrings w' and then use this

to compute the result for larger
substrings of w

Costas Busch - LSU 37

Example:

- Grammar G: S —> AB
A— BB |a

B—> AB|b

- Determine if W= aabbb € L(G)

Costas Busch - LSU

38

Length

Decompose the string aabbb
to all possible substrings

a a b b b

aa ab bb bb

aab abb bbb
aabb abbb

aabbb

Costas Busch - LSU

39

S—>AB, A—>BB|la, B— AB|b

[a a b b b }
F(o) (A} (A} (B} (B} {B)

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

Costas Busch - LSU 40

S—>AB, A—>BB|la, B— AB|b

‘a a b b b
Flo)= {A (A {8} {8} {B)
aa ab bb bb

F()y= \{ {68} {A} {A}
aab abb bbb

aabb abbb

aabbb

Costas Busch - LSU 41

S—>AB, A—>BB|la, B— AB|b
F(aa)

prefix qga suffix
F(a)=14} | F(a)=14;

There is no production of form X — 44
Thus, F(aa)={}

F(ab) prefix ab suffix
F(a) =14y | F(b)=1B;]

There are two productions of form X — 4B
S —> AB, B— AB

Thus, F(ab)={S,B

Costas Busch - LSU 42

S—>AB, A—>BBla, B— AB|b

/a a b b b
(A} {A} (B} {B} {B}

aa ab bb bb
{} {88} {A} {A}

aab abb bbb
\{S,B} {A} {S,B} /
aabb abbb

aabbb

Costas Busch - LSU 43

S—>AB, A—>BB|la, B— AB|b

F(aab) Decomposition 1

prefix cTab suffix
Fla)={A} | F(ab)={s, B}

There is no production of form x - 4s
There are 2 productions of form X — AB

S—>AB, B— AB

H, ={5,8}

Costas Busch - LSU

S—>AB, A—>BB|la, B— AB|b

F(aab) Decomposition 2

prefix gab suffix
F(aa)={} F(b)={8}

There is no production of form X — B

H, ={}

F(aab)=H W H, ={5,B}u{}={5, 8}

Costas Busch - LSU

45

S—>AB, A—>BB|la, B—> AB|b

ﬁ a b b b
| {A} {A} (B} ({B} {B}
Since aa ab bb bb
S e F(w) {3 {SB} {A} (A}
@ aab abb bbb
{68} {A} {S.B}
aabbb € L(G) abb abbb
{A} {S.B}
aabbb

F(aabbb) ={s B}

_/

Costas Busch - LSU

Approximate time complexity:
2
O(wl* - |wh=0(wP)

Number of Number of

substrings Prefix-suffix
decompositions
for a string

Costas Busch - LSU 47

