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Linear Grammars

Grammars with 

at most one variable at the right side

of a production

Examples:







A

aAbA

AbS





S

aSbS
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A Non-Linear Grammar

bSaS

aSbS

S

SSS











Grammar      :G

)}()(:{)( wnwnwGL ba 

Number of      in stringa w
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Another Linear Grammar

Grammar       : 

AbB

aBA

AS







|

}0:{)(  nbaGL nn

G
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Right-Linear Grammars

All productions have form:

Example:

xBA

xA

or

aS

abSS



 string of 

terminals
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Left-Linear Grammars

All productions have form:

Example:

BxA

aB

BAabA

AabS







|

xA

or

string of 

terminals
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Regular Grammars
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Regular Grammars

A regular grammar is any 

right-linear or left-linear grammar

Examples:

aS

abSS





aB

BAabA

AabS







|

1G 2G
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Observation

Regular grammars generate regular languages

Examples:

aS

abSS





aabGL *)()( 1 

aB

BAabA

AabS







|

*)()( 2 abaabGL 

1G

2G
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Regular Grammars 
Generate

Regular Languages
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Theorem

Languages

Generated by

Regular Grammars

Regular

Languages
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Theorem - Part 1

Languages

Generated by

Regular Grammars

Regular

Languages


Any regular grammar generates

a regular language
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Theorem - Part 2

Languages

Generated by

Regular Grammars

Regular

Languages


Any regular language is generated 

by a regular grammar
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Proof – Part 1

Languages

Generated by

Regular Grammars

Regular

Languages


The language              generated by 

any regular grammar        is regular

)(GL

G
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The case of Right-Linear Grammars

Let      be a right-linear grammar

We will prove:             is regular

Proof idea:    We will construct NFA

with 

G

)(GL

M
)()( GLML 
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Grammar       is right-linearG

Example:

aBbB

BaaA

BaAS

|

|






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Construct NFA         such that

every state is a grammar variable:

M

aBbB

BaaA

BaAS

|

|







S
FV

A

B

special

final state
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Add edges for each production:

S
FV

A

B

a

aAS 
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S
FV

A

B

a

BaAS |


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S
FV

A

B

a



BaaA

BaAS



 |

a

a
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S
FV

A

B

a



bBB

BaaA

BaAS





 |

a

a

b
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S
FV

A

B

a



abBB

BaaA

BaAS

|

|







a

a

b

a
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aaabaaaabBaaaBaAS 

S
FV

A

B

a



a

a

b

a
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S
FV

A

B

a



a

a

b

a
abBB

BaaA

BaAS

|

|







G

M GrammarNFA

abaaaab

GLML

**

)()(




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In General

A right-linear grammar

has variables:

and productions: 

G

,,, 210 VVV

jmi VaaaV 21

mi aaaV 21

or
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We construct the NFA         such that:

each  variable         corresponds to a node: 

M

iV

0V

FV

1V

2V

3V

4V special

final state



Costas Busch - LSU 26

For each production:

we add transitions and intermediate nodes

jmi VaaaV 21

iV jV………1a 2a ma
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For each production:

we add transitions and intermediate nodes

mi aaaV 21

iV FV………1a 2a ma
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Resulting NFA       looks like this:M

0V

FV

1V

2V

3V

4V

1a

3a

3a

4a

8a

2a 4a

5a

9a
5a

9a

)()( MLGL It holds that:
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The case of Left-Linear Grammars

Let        be a left-linear grammar

We will prove:                is regular

Proof idea:

We will construct a right-linear

grammar        with  

G

)(GL

G RGLGL )()( 
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Since       is left-linear grammar

the productions look like: 

G

kaaBaA 21

kaaaA 21
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Construct right-linear grammar G

Left

linear
G kaaBaA 21

G BaaaA k 12

BvA→

BvA R

Right

linear
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Construct right-linear grammar G

G kaaaA 21

G 12aaaA k

vA

RvA

Left

linear

Right

linear
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It is easy to see that:

Since         is right-linear, we have:

RGLGL )()( 

)(GL  RGL )( 

G

)(GL

Regular

Language
Regular

Language

Regular

Language
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Proof - Part 2

Languages

Generated by

Regular Grammars

Regular

Languages


Any regular language         is generated 

by some regular grammar

L

G
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Proof idea:

Let         be the NFA with                  . 

Construct from        a regular grammar 

such that

Any regular language         is generated 

by some regular grammar

L

G

M )(MLL 

M G
)()( GLML 
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Since        is regular

there is an NFA         such that  

L

M )(MLL 

Example:
a

b

a

b

*)*(* abbababL 

)(MLL 

M

1q 2q

3q

0q
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Convert         to a right-linear  grammarM

a

b

a

b

M

0q 1q 2q

3q
10 aqq 
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a

b

a

b

M

0q 1q 2q

3q

21

11

10

aqq

bqq

aqq






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a

b

a

b

M

0q 1q 2q

3q

32

21

11

10

bqq

aqq

bqq

aqq








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a

b

a

b

M

0q 1q 2q

3q













3

13

32

21

11

10

q

qq

bqq

aqq

bqq

aqq

G

LMLGL  )()(
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In General

For any transition:
a

q p

Add production: apq 

variable terminal variable
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For any final state: fq

Add production: fq
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Since          is right-linear grammar

is also a regular grammar

with 

G

G

LMLGL  )()(


