DCV e Dietoterapia

Nutricionista Lenita Borba CRN 3 - 6733

Lenita Borba

lenitagb@yahoo.com.br

Coordenadora do Programa de Especialização do IDPC

Conselheira do CRN – 3 na Gestão 2018-2020

Administradora da Empresa Conhecer Nutrição

Professora do Curso de Especialização em Nutrição Clinica do CUSC e INSIRA

Mestre do Departamento de Nutrição em Terapia Nutricional pela UNIFESP

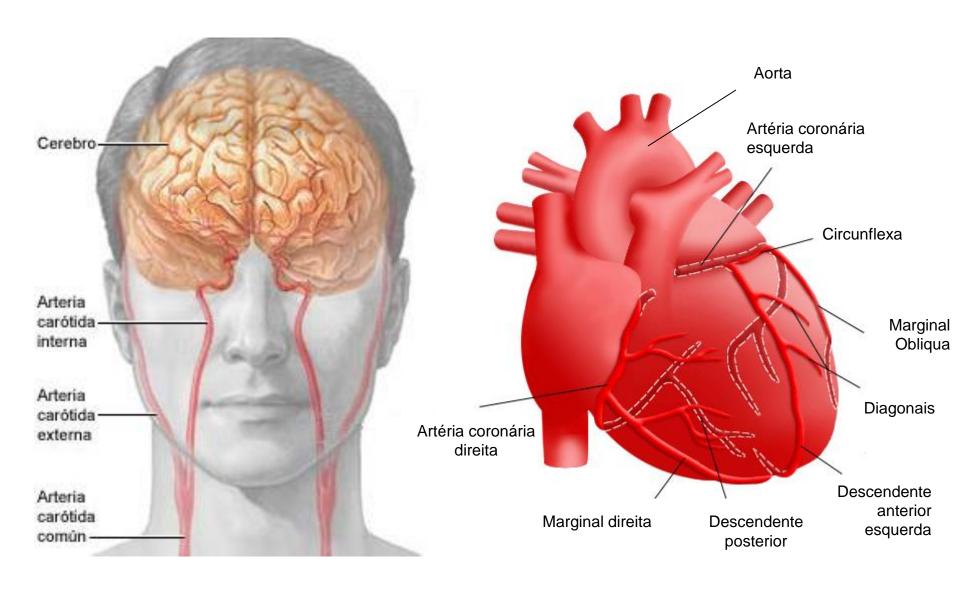
Especialização em Nutrição Clinica pelo GANEP

Especialização em Saúde Publica pela UNAERP

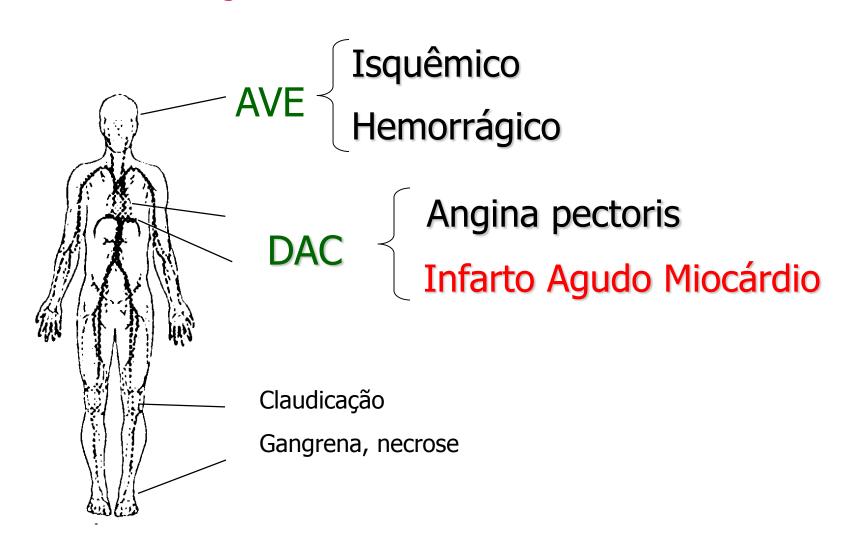
Título de Especialista em Terapia Nutricional Enteral e Parenteral pela SBNPE

Título de Especialista em Nutrição Clinica pela ASBRAN

Licenciatura Plena pela FATEC - SP


Doença cardiovascular é a primeira causa de morte em adultos no mundo - 2000/2012

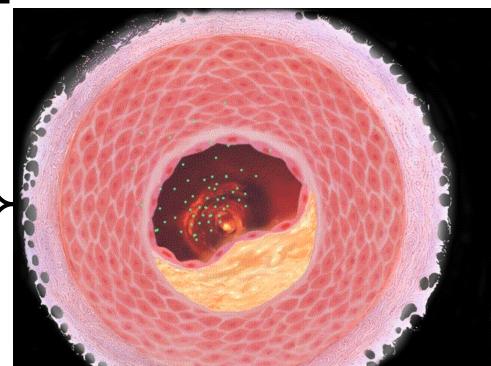
Causa	2000	2012
	(%)	(%)
DCV total	28,2	31,4
AVC	10,7	11,9
DAC	11,3	13,2
Doenças Infecciosas	16,4	11,5
Câncer	12,1	14,7
Infecção respiratória	6,6	5,5
DPOC	5,8	5,6
Diabetes	2,0	2,7
Acidente de trânsito	1,9	2,2
Doença Renal	1,3	1,5


Doença cardiovascular é a primeira causa de morte em adultos no mundo – WHO, 2014

Rank	Cause	Deaths (000s)	% deaths
0	All Causes	55859	100,0
1	Ischaemic heart disease	7356	13,2
2	Stroke	6671	11,9
3	Chronic obstructive pulmonary disease	3104	5,6
4	Lower respiratory infections	3052	5,5
5	Trachea, bronchus, lung cancers	1600	2,9
6	HIV/AIDS	1534	2,8
7	Diarrhoeal diseases	1498	2,7
8	Diabetes mellitus	1497	2,7
9	Road injury	1255	2,3
10	Hypertensive heart disease	1141	2,0
11	Preterm birth complications	1135	2,0
12	Cirrhosis of the liver	1021	1,8
13	Tuberculosis	935	1,7
14	Kidney diseases	864	1,6
15	Self-harm	804	1,4
16	Birth asphyxia and birth trauma	744	1,3
17	Liver cancer	740	1,3
18	Stomach cancer	733	1,3
19	Colon and rectum cancers	724	1,3
20	Alzheimer's disease and other dementias	701	1,3

Principais artérias envolvidas na doença cardiovascular

Manifestações da Aterosclerose



Estrutura arterial normal

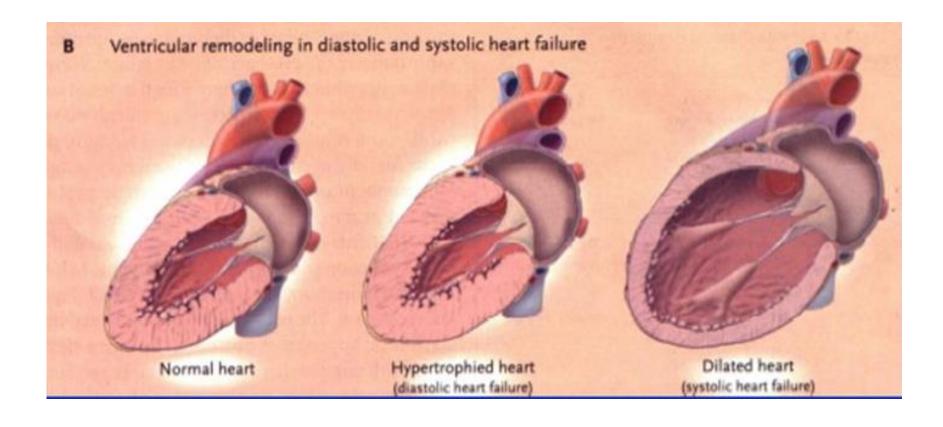
Placa aterosclerótica

Redução do lúmem arterial

Redução dos nutrientes

Doença Aterosclerótica

Doença multifatorial e sistêmica que se desenvolve a partir de dano endotelial, cursando com formação de placas gordurosas que podem ou não originar manifestações clínicas cardiovasculares


Fatores de risco → dano endotelial → placa aterosclerótica

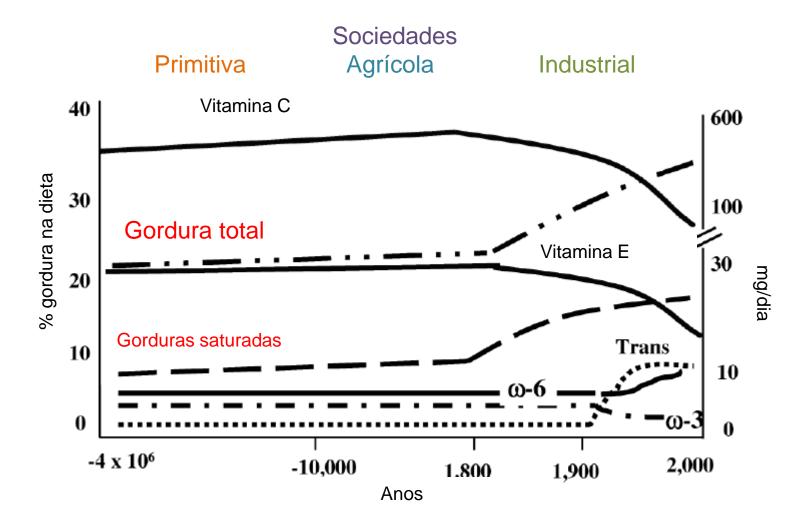
→ ruptura/ trombose vascular → Manifestação clínica CV

Dislipidemias

Remodelamento ventricular

Remodelamento ventricular: alterações ventriculares moleculares, estruturais e funcionais

Cuidado Nutricional ao paciente dislipidêmico em prevenção primária e secundária. Qual o foco de ação?



Cuidado Nutricional Integral ao paciente dislipidêmico em prevenção primária e secundária

Um alimentação saudável é capaz de prevenir DCV?

Consumo hipotético de gorduras e vitaminas ao longo das sociedades primitiva, agrícola e industrial

Simopoulos AP. Genetic variation and evolutionary aspects of diet. In:Papas A, Ed. Antioxidants in Nutrition and Health. Boca Raton: CRC Press, pp65–88, 1999.



ALERTA

Hipertensão Arterial e Nutrição

7^a Diretriz Brasileira de Hipertensão Arterial

Conceito

Hipertensão arterial (HA) é condição clínica multifatorial caracterizada por elevação sustentada dos níveis pressóricos ≥ 140 e/ou 90 mmHg.

Impacto Médico e Social da Hipertensão

Dados norte-americanos de 2015 revelaram de que a HA estava presente em:

- 4 69% dos pacientes com primeiro episódio de IAM,
- ❖ 77% de AVE,
- ❖ 75% com IC,
- ❖ 60% com DAP, A HA

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2015: update a report from the American Heart Association. Circulation. 2015;131:e29-e322. Erratum in: Circulation. 2016;133(8):e417.

Circulation. 2015;131(24):e535.

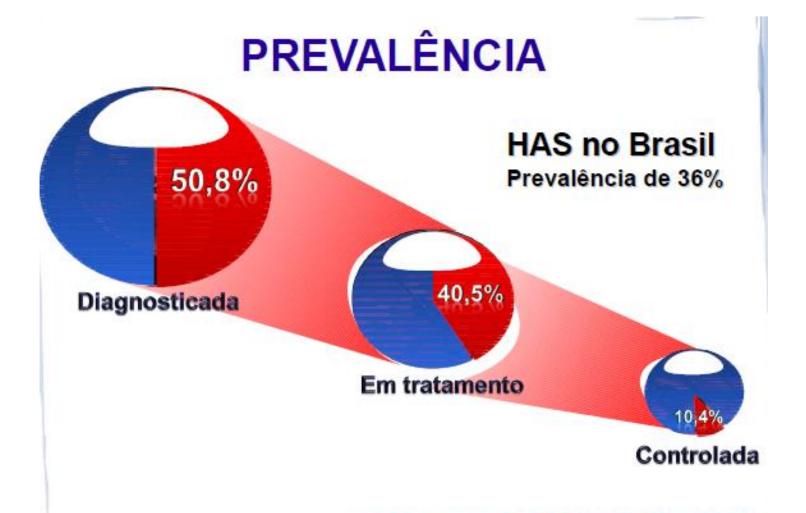
Impacto Médico e Social da Hipertensão

Dados norte-americanos de 2015 revelaram de que a HA é responsável por:

45% das mortes cardíacas

❖ 51% das mortes decorrentes de AVE

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet.* 2012;380(9859):2224-60. *Erratum in: Lancet.*


factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224-60. Erratum in: Lancet. 2013;381(9867):628.

Prevalência de hipertensão arterial no Brasil

Tabela 1 - Prevalência de HA de acordo com diferentes métodos de abordagem

Fonte	PA	n	Geral (%)	Homens	Mulheres
Picon et al. ^{10*}	Aferida	17.085	28,7 (26,2–31,4)	27,3 (22,5-32,8)	27,7 (23,7-32,0)
Scala et al.7	Aferida		21,9-46,6	-	-
VIGITEL, 2014**	Autorreferida, por telefone	40.853	25,0		
PNS, 2013**	Autorreferida	62.986	21,4	18,1	21,0
PNS, 2014**	Aferida	59.402	22,3	25,3	19,5

PA: pressão arterial. *Meta-análise; estudos da década de 2000. **Nota: as pesquisas VIGITEL e PNS não consideram hipertensos aqueles que se declararam hipertensos sob tratamento.

http://departamentos.cardiol.br/dha/vdiretriz/03-epidemiologia.pdf

Conhecimento sobre a HAS traz melhora do controle dos níveis pressóricos?

Tabela 2 – Conhecimento, tratamento e controle da PA em 14 estudos populacionais

Autor/ano por região	Local	Número de indivíduos	Conhecimento	Tratamento	Controle
Sul					
Fuchs et al. 1995	Porto Alegre (RS)	1.091	42,3	11,4	35,5
Gus et al. 2004	Rio Grande Sul	1.063	50,8	40,5	10,4
Oliveira e Nogueira, 2003	Cianorte (PR)	411	63,2	29,9	20,9
Trindade, 1998	Passo Fundo (RS)	206	82,2	53,3	20
Pereira et al. 2007	Tubarão (SC)	707	55,6	50,0	10,1
Sudeste					
Freitas et al. 2001	Catanduva (SP)	688	77	61,8	27,6
Souza et al. 2003	Campos dos Goytacazes (RJ)	1.029	29,9	77,5	35,2
Barreto et al. 2001	Bambuí (MG)	2.314	76,6	62,9	27
Castro et al. 2007	Formiga (MG)	285	85,3	67,3	14,7
Mill et al. 2004	Vitória (ES)	1.656	27,0		
Centro-Oeste					
Jardim et al. 2007	Goiânia (GO)	1.739	64,3	43,4	12,9
Cassanelli, 2005	Cuiabá (MT)	1.699	68,3	68,5	16,6
Rosário et al. 2009	Nobres (MT)	1.003	73,5	61,9	24,2
Souza et al. 2007	Campo Grande (MS)	892	69,1	57,3	-

Sexo e etnia

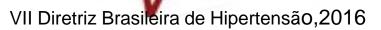
- ✓ Na PNS de 2013, a prevalência de HA autorreferida foi estatisticamente diferente entre os sexos, sendo maior entre mulheres (24,2%);
- ✓ Pessoas de raça negra/cor preta (24,2%) comparada a adultos pardos (20,0%), mas não nos brancos (22,1%).
- ✓ O estudo Corações do Brasil observou a seguinte distribuição: 11,1% na população indígena, 10% na amarela, 26,3% na parda/mulata; 29,4% na branca e 34,8% na negra.21
- ✓ O estudo ELSA-Brasil mostrou prevalências de 30,3% em brancos, 38,2% em pardos e 49,3% em negros.

Chor D, Ribeiro AL, Carvalho MS, Duncan BB, Lotufo PA, Nobre AA, et al. Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: results of the ELSA-Brasil Study. PLOS One. 2015;10(6):e0127382.

Excesso de peso e obesidade

- ✓ No Brasil, dados do VIGITEL de 2014 revelaram, entre 2006 e 2014, aumento da prevalência de excesso de peso (IMC ≥ 25 kg/m2), 52,5% vs 43%.
- ✓ No mesmo período, obesidade (IMC ≥ 30 kg/m2) aumentou de 11,9% para 17,9%, com predomínio em indivíduos de 35 a 64 anos e mulheres (18,2% vs 17,9%), mas estável entre 2012 e 2014.

Ingestão de sal


- O consumo excessivo de sódio, um dos principais FR para HA, associa-se a eventos CV e renais.
- No Brasil, dados da Pesquisa de Orçamentos Familiares (POF), obtidos em 55.970 domicílios, mostraram disponibilidade domiciliar de 4,7 g de sódio /pessoa/dia (ajustado para consumo de 2.000 Kcal), excedendo em mais de duas vezes o consumo máximo recomendado (2 g/dia), menor na área urbana da região Sudeste, e maior nos domicílios rurais da região Norte.
- O impacto da dieta rica em sódio estimada na pesquisa do VIGITEL de 2014 indica que apenas 15,5% das pessoas entrevistadas reconhecem conteúdo alto ou muito alto de sal nos alimentos.

Ingestão de álcool

- Consumo crônico e elevado de bebidas alcoólicas aumenta a PA de forma consistente.
- Meta-análise de 2012, incluindo 16 estudos com 33.904 homens e 19.372 mulheres comparou a intensidade de consumo entre abstêmios e bebedores. Em mulheres, houve efeito protetor com dose inferior a 10g de álcool/dia e risco de HA com consumo de 30-40g de álcool/dia. Em homens, o risco aumentado de HA tornou-se consistente a partir de 31g de álcool/dia.
- Dados do VIGITEL, 2006 a 2013, mostram que consumo abusivo de álcool ingestão de quatro ou mais doses, para mulheres, ou cinco ou mais doses, para homens, de bebidas alcoólicas em uma mesma ocasião, dentro dos últimos 30 dias tem se mantido estável na população adulta, cerca de 16,4%, sendo 24,2% em homens e 9,7% em mulheres. Em ambos os sexos, o consumo abusivo de bebidas alcoólicas foi mais frequente entre os mais jovens e aumentou com o nível de escolaridade.

Andrade SSA, Stopa SR, Brito AS, Chueri PS, Szwarcwald CL, Malta DC. Prevalência de hipertensão arterial autorreferida na população brasileira: análise da Pesquisa Nacional de Saúde, 2013. Epidemiol Serv Saúde.

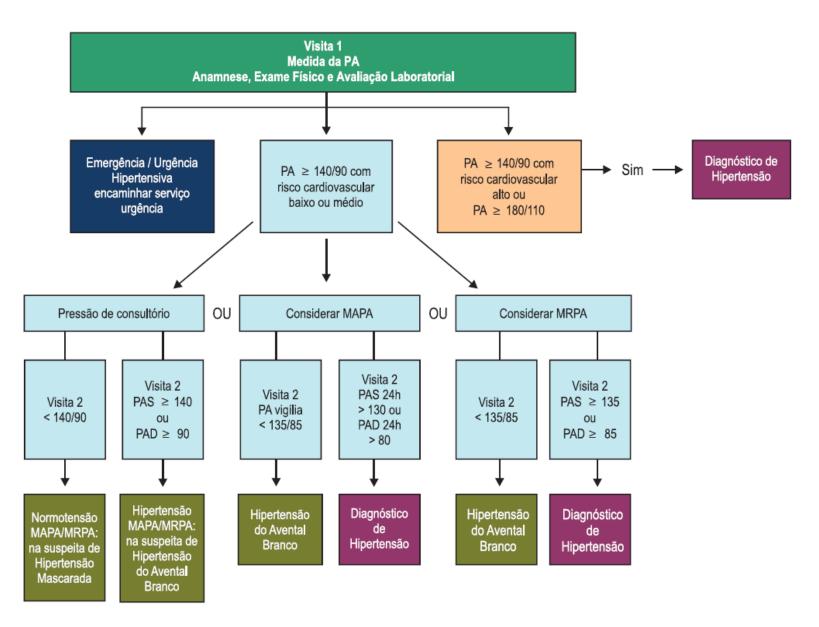
2015;24(2):297-304.

Sedentarismo

- Dados da PNS apontam que indivíduos insuficientemente ativos (adultos que não atingiram pelo menos 150 minutos semanais de atividade física considerando o lazer, o trabalho e o deslocamento) representaram 46,0% dos adultos, sendo o percentual significantemente maior entre as mulheres (51,5%).
- Houve diferença nas frequências de insuficientemente ativos entre faixas etárias, com destaque para idosos (62,7%) e para adultos sem instrução e com nível de escolaridade fundamental incompleto (50,6%).

Malta DC, Andrade SS, Stopa SR, Pereira CA, Szwarcwald CL, Silva Jr JB, et al. [Brazilian lifestyles: National Health Survey results, 2013]. Epidemiol Serv Saúde. 2015;24(2):217-26.

Fatores socioeconômicos


- Adultos com menor nível de escolaridade (sem instrução ou fundamental incompleto) apresentaram a maior prevalência de HA autorreferida (31,1%).
- A proporção diminuiu naqueles que completam o ensino fundamental (16,7%), mas, em relação às pessoas com superior completo, o índice foi 18,2%.26
- No entanto, dados do estudo ELSA Brasil, realizado com funcionários de seis universidades e hospitais universitários do Brasil com maior nível de escolaridade, apresentaram uma prevalência de HA de 35,8%, sendo maior entre homens.

Chor D, Ribeiro AL, Carvalho MS, Duncan BB, Lotufo PA, Nobre AA, et al. Prevalence, awareness, treatment and influence of socioeconomic variables on control of high blood pressure: results of the ELSA-Brasil Study. PLOS One. 2015;10(6):e0127382.

Genética

- Estudos brasileiros que avaliaram o impacto de polimorfismos genéticos na população de quilombolas não conseguiram identificar um padrão mais prevalente.
- Mostraram forte impacto da miscigenação, dificultando ainda mais a identificação de um padrão genético para a elevação dos níveis pressóricos.

Diagnóstico e Classificação

Diagnóstico e Classificação

Quadro 6 - Classificação da PA de acordo com a medição casual ou no consultório a partir de 18 anos de idade

Classificação	PAS (mm Hg)	PAD (mm Hg)
Normal	≤ 120	≤ 80
Pré-hipertensão	121-139	81-89
Hipertensão estágio 1	140 – 159	90 - 99
Hipertensão estágio 2	160 – 179	100 - 109
Hipertensão estágio 3	≥ 180	≥ 110
Quando a PAS e a PAD situam-se em categorias diferentes, a maior deve ser utilizada para classificação	da PA.	

Considera-se hipertensão sistólica isolada se PAS ≥ 140 mm Hg e PAD < 90 mm Hg, devendo a mesma ser classificada em estágios 1, 2 e 3.

Tratamento

Medicamentoso

Objetivo

- ↓ pressão arterial
- ↓ Morbidade e mortalidade por DCV
- · Prevenir eventos das DCV fatais e não fatais

Tratamento

Medicamentoso

Tipos

- Betabloqueadores ↓ do débito cardíaco, secreção de renina e catecolaminas, juntamente com vasodilatação
- Inibidores da enzima conversora de angiotensina IECA bloqueia a transformação de angiotensina 1 em 2 no sangue e nos tecidos
- Bloqueadores do receptor AT da angiotensina BRA II antagonizam a ação da angiotensina 2 por bloqueio dos receptores AT
- Antagonistas dos canais de Ca ACC ↓ resistência vascular periférica por redução do Ca nas células musculares lisas

Tratamento Não medicamentoso

Peso corporal

- O aumento de peso está diretamente relacionado ao aumento da PA tanto em adultos quanto em crianças.
- A relação entre sobrepeso e alteração da PA já pode ser observada a partir dos 8 anos.
- O aumento da gordura visceral também é considerado um fator de risco para HÁ.
- Reduções de peso e de CA correlacionam-se com reduções da PA e melhora metabólica.

Se um padrão alimentar específico levar a melhora da HAS ele deve ser recomendado?

Padrão alimentar

- O sucesso do tratamento da HA com medidas nutricionais depende da adoção de um plano alimentar saudável e sustentável.5
- A utilização de dietas radicais resulta em abandono do tratamento.
- O foco em apenas um único nutriente ou alimento tem perdido espaço para a análise do padrão alimentar total, que permite avaliar o sinergismo entre os nutrientes/alimentos.
- A dieta DASH (Dietary Approaches to Stop Hypertension) enfatiza o consumo de frutas, hortaliças e laticínios com baixo teor de gordura; inclui a ingestão de cereais integrais, frango, peixe e frutas oleaginosas; preconiza a redução da ingestão de carne vermelha, doces e bebidas com açúcar. Ela é rica em potássio, cálcio, magnésio e fibras, e contém quantidades reduzidas de colesterol, gordura total e saturada. A adoção desse padrão alimentar reduz a PA.
- A dieta do Mediterrâneo também é rica em frutas, hortaliças e cereais integrais, porém possui quantidades generosas de azeite de oliva (fonte de gorduras monoinsaturadas) e inclui o consumo de peixes e oleaginosas, além da ingestão moderada de vinho. Apesar da limitação de estudos, a adoção dessa dieta parece ter efeito hipotensor.

Redução do consumo de sódio

- O aumento do consumo de sódio está relacionado com o aumento da PA.
- No entanto, o impacto do consumo de sódio na saúde CV é controverso.
- Alguns estudos sugerem que o consumo muito baixo eleva o risco de DCV, enquanto outros sustentam que a diminuição de sódio diminui o risco CV.
- As dietas vegetarianas preconizam o consumo de alimentos de origem vegetal, em especial frutas, hortaliças, grãos e leguminosas; excluem ou raramente incluem carnes; e algumas incluem laticínios, ovos e peixes. Essas dietas têm sido associadas com valores mais baixos de PA.

Ácidos graxos insaturados

- Os ácidos graxos ômega-3 provenientes dos óleos de peixe (eicosapentaenoico – EPA e docosaexaenoico - DHA) estão associados com redução modesta da PA.
- Estudos recentes indicam que a ingestão ≥ 2g/dia de EPA+DHA reduz a PA e que doses menores (1 a 2 g/dia) reduzem apenas a PAS.
- O consumo de ácidos graxos monoinsaturados também tem sido associado à redução da PA.

Fibras

- As fibras solúveis são representadas pelo farelo de aveia, pectina (frutas) e pelas gomas (aveia, cevada e leguminosas: feijão, grãode-bico, lentilha e ervilha),
- As fibras insolúveis pela celulose (trigo), hemicelulose (grãos) e lignina (hortaliças).
- A ingestão de fibras promove discreta diminuição da PA, destacando-se o beta glucano proveniente da aveia e da cevada.

Oleaginosas

- O consumo de oleaginosas auxilia no controle de vários FRCV, mas poucos estudos relacionam esse consumo com a diminuição da PA.
- Uma meta-análise concluiu que o consumo de diferentes tipos de castanha foi eficiente em diminuir a PA.

Laticínios e vitamina D

- Existem evidências que a ingestão de laticínios, em especial os com baixo teor de gordura, reduz a PA. O leite contém vários componentes como cálcio, potássio e peptídeos bioativos que podem diminuir a PA.
- Em alguns estudos, níveis séricos baixos de vitamina D se associaram com maior incidência de HA. Entretanto, em estudos com suplementação dessa vitamina, não se observou redução da PA.

Alho

- O alho possui inúmeros componentes bioativos, como a alicina (encontrada no alho cru) e a s-alil-cisteína (encontrada no alho processado).
- Discreta diminuição da PA tem sido relatada com a suplementação de várias formas do alho.

Café e chá verde

- O café, apesar de rico em cafeína, substância com efeito pressor agudo, possui polifenóis que podem favorecer a redução da PA.
- Estudos recentes sugerem que o consumo de café em doses habituais não está associado com maior incidência de HA nem com elevação da PA.
- Recomenda-se que o consumo n\u00e3o exceda quantidades baixas a moderadas.
- O chá verde, além de ser rico em polifenóis, em especial as catequinas, possui cafeína. Ainda não há consenso, mas alguns estudos sugerem que esse chá possa reduzir a PA quando consumido em doses baixas, pois doses elevadas contêm maior teor de cafeína e podem elevar a PA.
- Recomenda-se o consumo em doses baixas.

Chocolate amargo

• O chocolate com pelo menos 70% de cacau pode promover discreta redução da PA, devido às altas concentrações de polifenóis.

O consumo de álcool pode ser prescrito já que existe indicação para o tratamento da HAS?

Álcool

 O consumo habitual de álcool eleva a PA de forma linear e o consumo excessivo associa-se com aumento na incidência de HA.Estima-se que um aumento de 10 g/dia na ingestão de álcool eleve a PA em 1 mmHg, sendo que a diminuição nesse consumo reduz a PA. Recomenda-se moderação no consumo de álcool.

VI Diretriz Brasileira de Hipertensão, 2010

Tabela 1 - Características das principais bebidas alcoólicas e teor de etanol por quantidade definida

Bebida	% de etanol (°GL Gay Lussac)	Quantidade de etanol (g)	Volume para 30 g de etanol	Volume aproximado
Cerveja	~ 6% (3–8)	6 g/100 ml x 0,8* = 4,8 g	625 ml	~ 2 latas (350 x 2 = 700 ml) ou 1 garrafa (650 ml)
Vinho	~ 12% (5–13)	12 g/100 ml x 0,8* = 9,6 g	312,5 ml	~ 2 taças de 150 ml ou 1 taça de 300 ml
Uísque, vodka, aguardente	~ 40% (30–50)	40 g/100 ml x 0,8* = 32 g	93,7 ml	~ 2 doses de 50 ml ou 3 doses de 30 ml

^{*} Densidade do etanol.

Atividade Física

- Atividade física refere-se a qualquer movimento corporal que aumente o gasto energético, o que inclui andar na rua, subir escada, fazer trabalhos físicos domésticos, fazer práticas físicas de lazer.
- O termo exercício físico refere-se à atividade física realizada de forma estruturada, organizada e com objetivo específico. Além disso, o comportamento sedentário, medido pelo tempo sentado, também tem implicações na saúde CV.
- A inatividade física tem sido considerada "o maior problema de saúde pública" por ser o mais prevalente dos FR e a segunda causa de morte no mundo.
- A prática regular de atividade física pode ser benéfica tanto na prevenção quanto no tratamento da HA, reduzindo ainda a morbimortalidade CV.

Tabela 1 – Modificações no peso corporal e na ingestão alimentar e seus efeitos sobre a PA

Medida	Redução aproximada da PAS/PAD	Recomendação	
Controle do peso	20-30% de diminuição da PA para cada 5% de perda ponderal ¹	Manter IMC < 25 kg/m² até 65 anos. Manter IMC < 27 kg/m² após 65 anos. Manter CA < 80 cm nas mulheres e < 94 cm nos homens	
Padrão alimentar	Redução de 6,7/3,5 mmHg ³⁵	Adotar a dieta DASH	
Restrição do consumo de sódio	Redução de 2 a 7 mmHg na PAS e de 1 a 3 mmHg na PAD com redução progressiva de 2,4 a 1,5 g sódio/dia, respectivamente ¹²	Restringir o consumo diário de sódio para 2,0 g, ou seja, 5 g de cloreto de sódio	
Moderação no consumo de álcool	Redução de 3,31/2,04 mmHg com a redução de 3-6 para 1-2 doses/dia ³⁴	Limitar o consumo diário de álcool a 1 dose nas mulheres e pessoas com baixo peso e 2 doses nos homens	

IMC: índice de massa corporal; CA: circunferência abdominal; PAS: pressão artrerial sistólica; PAD: pressão artrerial diastólica.

^{*}Uma dose contém cerca de 14g de etanol e equivale a 350 ml de cerveja, 150 ml de vinho e 45 ml de bebida destilada.36

Tratamento Não medicamentoso Cessação do tabagismo

- O tabagismo aumenta o risco para mais de 25 doenças, incluindo a DCV.
- O hábito de fumar é apontado como fator negativo no controle de hipertensos, no desconhecimento da HAS e na interrupção do uso de medicamentos anti-hipertensivos.
- No entanto, não há evidências que a cessação do tabagismo reduza a PA.

Respiração lenta

 A respiração lenta ou guiada requer a redução da frequência respiratória para menos de 6 a 10 respirações/ minuto durante 15-20 minutos/dia; após 8 semanas de tratamento.

Controle do estresse

- Estudos sobre as práticas de gerenciamento de estresse apontam a importância das psicoterapias comportamentais e das práticas de técnicas de meditação, biofeedback e relaxamento no tratamento da HA.
- Apesar de incoerências metodológicas, as indicações clínicas revelam forte tendência de redução da PA quando essas técnicas são realizadas separadamente ou em conjunto.

Equipe multiprofissional

- A atenção numa abordagem multiprofissional tem como objetivo principal o controle da HA, que não é satisfatório em nosso meio.
- Estudos de base epidemiológica demonstraram variação de 10% a 57,6%5 nesse controle.
- A atuação da equipe multiprofissional promove melhor controle da HA, o que está diretamente relacionado à adesão ao tratamento medicamentoso e não medicamentoso.
- Pode ser constituída por todos os profissionais que lidem com pacientes hipertensos: médicos, enfermeiros, técnicos e auxiliares de enfermagem, nutricionistas, psicólogos, assistentes sociais, fisioterapeutas, professores de educação física, musicoterapeutas, farmacêuticos, educadores, comunicadores, funcionários administrativos e agentes comunitários de saúde.

Tabela 2 - Algumas modificações de estilo de vida e redução aproximada da pressão arterial sistólica*

Modificação	Recomendação	Redução aproximada na PAS**
Controle de peso	Manter o peso corporal na faixa normal (índice de massa corporal entre 18,5 a 24,9 kg/m²)	5 a 20 mmHg para cada 10 kg de peso reduzido
Padrão alimentar	Consumir dieta rica em frutas e vegetais e alimentos com baixa densidade calórica e baixo teor de gorduras saturadas e totais. Adotar dieta DASH	8 a 14 mmHg
Redução do consumo de sal	Reduzir a ingestão de sódio para não mais que 2 g (5 g de sal/dia) = no máximo 3 colheres de café rasas de sal = 3 g + 2 g de sal dos próprios alimentos	2 a 8 mmHg
Moderação no consumo de álcool	Limitar o consumo a 30 g/dia de etanol para os homens e 15 g/dia para mulheres	2 a 4 mmHg
Exercício físico	Habituar-se à prática regular de atividade física aeróbica, como caminhadas por, pelo menos, 30 minutos por dia, 3 vezes/semana, para prevenção e diariamente para tratamento	4 a 9 mmHg

^{*}Associar abandono do tabagismo para reduzir o risco cardiovascular. **Pode haver efeito aditivo para algumas das medidas adotadas.

Podemos recomendar dieta hipossódica no tratamento da HAS?

DRI, 2004

Necessidades mínimas de Na

Estágio da Vida	Na (mg)	
0 - 5 meses	120	Até 5 gr NaCl / dia
6 - 11 meses	200	ou
12 meses	225	2000 mg Na / dia
2 - 5 anos	300	ou
6 - 9 anos	400	208 mEq Na / dia
9 - 50 anos	1500	ou
50 - 70 anos	1300	3 colheres de café rasas de sal
> 71 anos	1200	

MS, 2006

75% Na ingerido é proveniente de alimentos industrializados

Interpretação dos rótulos de alimentos

Tipos de sal lights

Sal	Sódio (mg/g)	Potássio (mg/g)
Neve Light ®	196	260
Light Natus ®	196	260
Cisne Light ®	196	241
Lite Sal ®	131	346
Sal comum	392	

ANÁLISE DO TEOR DE Na					
CARDÁPIO 1			CARDÁPIO 2		
LANCHE	QTD		LANCHE	QTD	
VITAMINA DE BANANA COM AÇÚCAR	250 ml		LEITE COM ACHOCOLATADO	250 ml	
MAMÃO PAPAYA	1/2 unid		MAMÃO PAPAYA	1/2 unid	
PÃO FRANCÊS	50 gr		PÃO INTEGRAL	2 fatias	
QUEIJO FRESCAL	1 fatia peq		QUEIJO MUZZARELA	1 fatia	
ALMOÇO	QTD		ALMOÇO	QTD	
ARROZ INTEGRAL	3 C/S		ARROZ BRANCO	3 C/S	
FEIJÃO	1 concha		FEIJÃO EM CONSERVA	1 concha	
FILÉ DE FRANGO GRELHADO	1 unid		NUGGETS ASSADO	4 unid	
SALADA DE ALFACE COM TOMATE	1 pires		SALADA DE ALFACE COM TOMATE	1 pires	
MACARRÃO AO SUGO NATURAL	2 peg		MACARRÃO AO SUGO (EM CONSERVA)	2 peg	
SUCO DE LIMÃO COM AÇÚCAR	250 ml		GUARANÁ	250 ml	
ABACAXÍ	1 fatia		SORVETE DE CREME	1 bola	

LANCHE + ALMOÇO				
NUTRIENTE	U.M.	RECOMENDAÇÃO	CARDÁPIO 1	CARDÁPIO 2
CALORIAS	Kcal			
PROTEÍNA	gr / %	até 15 %		
CARBOIDRATO	gr / %	50 a 60 %		
GORDURA	gr / %	25 a 30 %		
SÓDIO	mg	2400		
POTÁSSIO	mg	6000		
MAGNÉSIO	mg	240		
FERRO	mg	8		
CÁLCIO	mg	1300		
COLESTEROL	mg	até 200		
GORDURA SATURADA	%	< 7		
GORDURA POLIINSATURADA	%	< 10		
GORDURA MONOINSATURADA	%	< 20		
FIBRAS	gr	20 a 30		

Bibliografia Recomendada

- VII Diretriz Brasileira de Hipertensão, 2016
- VI Diretriz Brasileira de Hipertensão, 2010
- Sousa AGMR. Ciências da Saúde do Instituto Dante Pazzanese de Cardiologia: Volume Nutrição, São Paulo, editora Atheneu, 2013.
- Magnoni CD et al. Nutrição ambulatorial em Cardiologia. Editora Sarvier, São Paulo, 2007.
- Waitzberg DL. Ét al Insuficiência cardíaca aguda e crônica-Nutrição oral enteral e parenteral na prática clinica. Editora Atheneu- 2009.
- Knobel E. Nutrição em terapia intensiva, SP, Ed. Atheneu, 2005.
- Projeto Diretrizes, volume IX, São Paulo, AMB, Conselho Federal de Medicina, Brasilia, DF, 2011.
- Isosaki M. Manual de dietoterapia e avaliação nutricional: serviço de nutrição e dietética do Instituto do Coração, 2º edição, São Paulo: editora Atheneu, 2009.

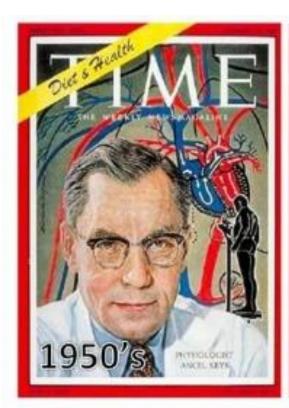
Bibliografia Recomendada

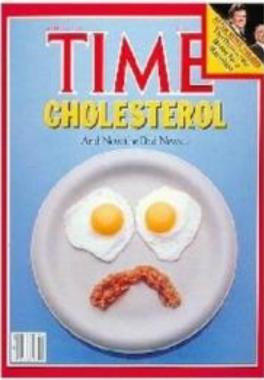
- Food and nutrition board IOM DRI. The National Academics Press, 2004.
- Ministério da Saúde MS, Guia Alimentar da população Brasileira, 2006.
- Isosaki M et al, Manual de dietoterapia e avaliação nutricional: serviço de nutrição e dietética do instituto do coração.2ª ed, São Paulo, editora Atheneu, 2009.
- Stefanini E et al, Cardiologia EPM, São Paulo, editora Manole, 2004.

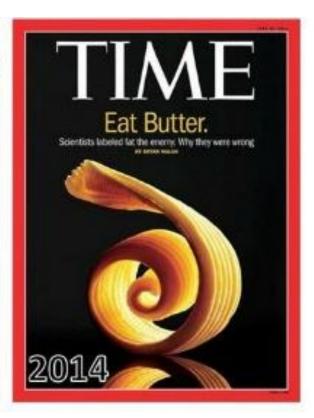
Dislipidemia

Nutricionista Lenita Borba CRN 3 - 6733

Dislipidemia


Sociedade Brasileira de Cardiologia:


- I Diretriz de Gorduras 2013
- I Diretriz de Consumo de Gorduras 2013
- V Diretriz de Dislipidemia 2013
- Atualização da Diretriz de Dislipidemia e Prevenção de Aterosclerose - 2017


Cuidado Nutricional Integral ao paciente dislipidêmico em prevenção primária e secundária

- Avaliação do tipo de dislipidemia (primária, secundária, mista, isolada)
- Presença de doenças associadas (Diabetes/ Obesidade/ Hipotireoidismo)
- Uso de medicamentos hiperlipemiantes (corticóides/antiretrovirais/anabolizantes)
- Idade (crianças tem abordagem terapêutica diferente da de adultos)
- Estilo de vida (tabagismo, etilismo, sedentarismo)
- Prevenção primária ou secundária

Abordagem Dietoterápica na Dislipidemia

MASCULINISMO

A revolta dos homens que se dizem dominados pelas mulheres

EXCLUSIVO

Os empregos fantasmas para familiares de petistas

ISRAEL X HAMAS

O festival de besteiras que assola as redes sociais

Tendência de consumo de gorduras

Alimentos fonte de gorduras visíveis

- Óleo de soja
- · Creme de leite
 - Manteiga
 - Maionese
- Molhos para salada a base de óleos vegetais
 - Margarina

- Biscoitos
- Excesso de carne
- Tortas e massas doces
- Produtos lácteos integrais (iogurte e queijo)

Classificação da DLP - 2017

- Hipercolesterolemia Isolada: elevação isolada do LDL-C (≥ 160 mg/dl);
- Hipertrigliceridemia Isolada: elevação isolada dos TGs (≥ 150 mg/dl ou ≥ 175 mg/dl se a amostra for colhida em jejum) que reflete o aumento do número e/ou do volume de partículas ricas em TG, como VLDL, IDL e quilomícrons.;
- Hiperlipidemia Mista: valores aumentados de LDL-C (≥ 160 mg/dl) e TG (≥ 150 mg/dl ou ≥ 175 mg/dl se a amostra for colhida em jejum);
- HDL-C baixo: redução do HDL-C (homens < 40 mg/ dl e mulheres < 50 mg/dl) isolada ou em associação a aumento de LDL-C ou de TG.

Valores de Referência - 2017

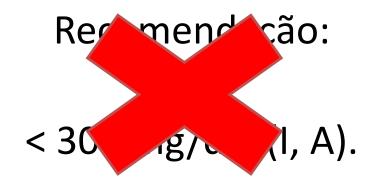
Tabela 2 - Valores referenciais e de alvo terapêutico* do perfil lipídico (adultos > 20 anos)

Lípides	Com jejum (mg/dL)	Sem jejum (mg/dL)	Categoria referencial
Colesterol total†	< 190	< 190	Desejável
HDL-c	> 40	> 40	Desejável
Triglicérides	< 150	< 175‡	Desejável
	Categoria c	de risco	
	< 130	< 130	Baixo
LDL-c	< 100	< 100	Intermediário
	< 70	< 70	Alto
	< 50	< 50	Muito alto
Não HDL-c	< 160	< 160	Baixo
	< 130	< 130	Intermediário
	< 100	< 100	Alto
	< 80	< 80	Muito alto

^{*} Conforme avaliação de risco cardiovascular estimado pelo médico solicitante; † colesterol total > 310 mg/dL há probabilidade de hipercolesterolemia familiar; ‡ Quando os níveis de triglicérides estiverem acima de 440 mg/dL (sem jejum) o médico solicitante faz outra prescrição para a avaliação de triglicérides com jejum de 12 horas e deve ser considerado um novo exame de triglicérides pelo laboratório clínico.

Fonte: http://publicacoes.cardiol.br/consenso/2017/ Atualização Diretriz Brasileira de Dislipidemias. pdf

Recomendações Dietéticas - 2017


Tabela 6 - Recomendações dietéticas para o tratamento das dislipidemias

	LDL-	LDL-c acima da	Triglicerídeos		
Recomendações	LDL-c dentro da meta e sem comorbidades* (%)	meta ou presença de comorbidades* (%)	Limítrofe 150-199 mg/dL (%)	Elevado 200-499 mg/dL (%)	Muito elevado† > 500 mg/dL (%)
Perda de peso	Manter peso saudável	5-10	Até 5	5-10	5-10
Carboidrato (%VCT)	50-60	45-60	50-60	50-55	45-50
Açúcares de adição (%VCT)	< 10	< 10	< 10	5-10	< 5
Proteína (%VCT)	15	15	15	15-20	20
Gordura (%VCT)	25-35	25-35	25-35	30-35	30-35
Ácidos graxos trans (%VCT)			Excluir da dieta		
Ácidos graxos saturados (%VCT)	< 10	< 7	< 7	< 5	< 5
Ácidos graxos monoinsaturados (%VCT)	15	15	10-20	10-20	10-20
Ácidos graxos poli-insaturados (%VCT)	5-10	5-10	10-20	10-20	10-20
Ácido linolenico, g/dia	1,1-1,6				
EPA e DHA, g	-	-	0,5-1	1-2	> 2
Fibras	25 g, sendo δ g de fibra solúvel				

Alimentos ricos em colesterol devem ser controlados no tratamento da DLPs?

Colesterol

Magnitude das intervenções nutricionais nas dislipidemias

Tabela XVI. Impacto de mudanças alimentares e de estilo de vida sobre a hipercolesterolemia (CT e LDL-C)

Intervenção não medicamentosa	Magnitude	Nível de evidência
Redução de peso	+	В
Reduzir a ingestão de AG saturados	+++	Α
Reduzir a ingestão de AG trans	+++	Α
Ingestão de fitoesteróis	+++	Α
Ingestão de fibras solúveis	++	Α
Ingestão de proteínas da soja	+	В
Aumento da atividade física	+	Α

Tabela XVIII. Impacto de mudanças alimentares e de estilo de vida sobre os níveis de HDL-C

Intervenção não medicamentosa	Magnitude	Nível de evidência
Redução de peso	++	Α
Reduzir a ingestão de AGs saturados	+++	Α
Reduzir a ingestão de AG trans	+++	Α
Ingestão moderada de bebidas alcoólicas	++	В
Aumento da atividade física	+++	Α
Cessar tabagismo	++	В

Tabela XVII. Impacto de mudanças alimentares e de estilo de vida sobre a trigliceridemia

Intervenção não medicamentosa	Magnitude	Nível de evidência
Redução de peso	+++	Α
Reduzir a ingestão de bebidas alcoólicas	+++	Α
Reduzir a ingestão de açúcares simples	+++	Α
Reduzir a ingestão de carboidratos	++	Α
Substituir os AGs saturados pelos mono e poli-insaturados.	++	В
Aumento da atividade física	++	Α

Tipos de Gorduras

Gorduras Saturadas

- Ác. láurico, mirístico, palmítico e esteárico
- Manteiga, banha, gordura do leite e derivados, azeite de Dendê, coco.
- Recomendação:
 - sem risco < 10% VCT
 - com FR < 7% do VCT

Gorduras Poliinsaturadas

- Omega 3 ácidos eicosapentaenoico (EPA) e docosaexaenoico (DHA)
- Omega 6 Linoleico, gama-linoleico e araquidônico
- 6 ↓ o colesterol e o LDL
- 3 ↓ os triglicérides e viscosidade do sangue.
- 6 = Óleos vegetais de milho,soja e girassol
- 3 = óleo de soja, canola e linhaça e peixes de águas frias (cavala, sardinha, salmão e arenque)
- Recomendação: Quantidade de EPA e DHA variável. (5:1 a 10:1)
 2 a 4 g/dia para ↑TG > 500 mg/dL
- ≤ 10% do VCT

Gorduras Monoinsaturadas

- Omega 9 Ácido oléico
- ↓CT, ↓LDL (oxidação lipídica) e ↓TG, ↑HDL
- Metabolismo glicídico: ↓SM e resistência à insulina (IIa, B).
- PA:
 ↓ em normotensos e hipertensos (IIa, B).
- Oleaginosas óleo de oliva, canola, azeite, abacate.
- Recomendação: ≤ 20% do VCT

Fonte: http://publicacoes.cardiol.br/consenso/2013/Diretriz_Gorduras.pdf

Ácidos Graxos Saturados

Todo ácido graxo saturado influencia nos níveis de lípides séricos?

Ácidos Graxos Saturados

Láurico (C12:0) ↑ LDL-C
Mirístico (C14:0) ↑ risco de diabetes

Palmítico (C16:0) ↓ controle da pressão alta

Esteárico (C18:0) Efeito neutro

си_з-си_з

Ácidos Graxos Saturados de Cadeia Média

(AGCM – 6 a 12 carbonos)

Nome comum	Nome sistemático	N° de carbonos	Fonte
Capróico	Hexanóico	6	Gordura do leite e produto final da fermentação de carboidratos por bactérias no cólon
Caprílico	Octanólico	8	Óleo de coco
Cáprico	Decanóico	10	Óleo de coco
Láurico	Dodecanóico	12	Óleo de coco, óleo de cerne de palmeira, canela e manteiga

MAHAN, LK; ESCOTT – STUMP, S. Krause: Alimentos, nutrição e dietoterapia, 10 ed, São Paulo: Roca, 2002.

Ácidos Graxos Saturados

Láurico (C12:0) ↑ LDL-C
Mirístico (C14:0) ↑ risco de diabetes

Palmítico (C16:0) ↓ controle da pressão alta

Esteárico (C18:0) Efeito neutro

сн_у-сн_у

Ácidos Graxos Saturados de Cadeia Longa

(AGCM – mais de12 carbonos)

Nome comum	Nome sistemático	N° de carbonos	Fonte
Mirístico	Tetradecanóico	14	Noz moscada, cerne de palmeira, óleo de coco, gordura de leite
Palmítico	Hexadecanóico	16	Óleo de palmeira e gordura animal (peixe, carne e aves)
Esteárico	Octadecanóico	18	Manteiga de cacau e gorduras animais (leite, peixe, carne e aves)
Araquídico	Eicosanóico	20	Óleo de amendoim
Beênico	Docosanóico	22	Óleo de amendoim
Lignocérico	Tetracosanóico	24	Óleo de castanhas

Ácidos Graxos Saturados

Láurico (C12:0) ↑ LDL-C
Mirístico (C14:0) ↑ risco de diabetes

Palmítico (C16:0) ↓ controle da pressão alta

Esteárico (C18:0) Efeito neutro

сн_у-сн_у

Ácidos Graxos Saturados de Cadeia Longa

(AGCM – mais de12 carbonos)

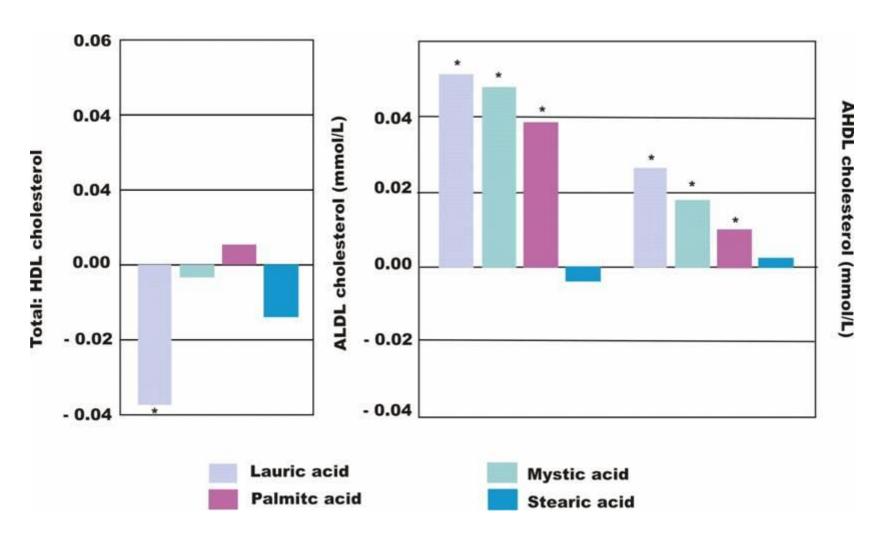
Nome comum	Nome sistemático	N° de carbonos	Fonte
Mirístico	Tetradecanóico	14	Noz moscada, cerne de palmeira, óleo de coco, gordura de leite
Palmítico	Hexadecanóico	16	Óleo de palmeira e gordura animal (peixe, carne e aves)
Esteárico	Octadecanóico	18	Manteiga de cacau e gorduras animais (leite, peixe, carne e aves)
Araquídico	Eicosanóico	20	Óleo de amendoim
Beênico	Docosanóico	22	Óleo de amendoim
Lignocérico	Tetracosanóico	24	Óleo de castanhas

Ácidos Graxos Saturados

Láurico (C12:0) ↑ LDL-C
Mirístico (C14:0) ↑ risco de diabetes

Palmítico (C16:0) ↓ controle da pressão alta

Esteárico (C18:0) Efeito neutro


сн_у-сн_у

Ácidos Graxos Saturados de Cadeia Longa

(AGCM – mais de12 carbonos)

Nome comum	Nome sistemático	N° de carbonos	Fonte
Mirístico	Tetradecanóico	14	Noz moscada, cerne de palmeira, óleo de coco, gordura de leite
Palmítico	Hexadecanóico	16	Óleo de palmeira e gordura animal (peixe, carne e aves)
Esteárico	Octadecanóico	18	Manteiga de cacau e gorduras animais (leite, peixe, carne e aves)
Araquídico	Eicosanóico	20	Óleo de amendoim
Beênico	Docosanóico	22	Óleo de amendoim
Lignocérico	Tetracosanóico	24	Óleo de castanhas

Efeitos do tipo de gordura saturada sobre LDL-colesterol e HDL-colesterol

Como obter o melhor desempenho na redução do risco cardiovascular

Substituição de SAFA por PUFA CONTRIBUTION DCV DCV DCV

- ✓ Redução salina
- ✓ Inclusão de frutas e vegetais
- ✓ Eliminação da gordura trans
 - ✓ Presença de ômega 3

Lipídeos de origem vegetal são mais saudáveis comparados ao de origem animal?

COCO (Cocos nucifera)

Ácido graxo	1 /0//4/00~1	do Óleo de coco (1 co a – 15 ml)		1 colher
C 6:0 (capróico)	-		, 	l
C 8:0 (caprílico)	7,0		Quantidade	
	6.0		127	
C 10:0 (cáprico)	6,0		0	
C 12: (láurico)	48,0		0	90%
C14:0 (mirístico)	19,0		14	font
C 16:0 (palmítico)	9,0		13	lipídica ácido
C 18:0 (esteárico)	3,0		0,2	graxo
C 18:1 (oléico)	8,0		0,8	satura
C 10.1 (Oleico)	8,0		0	
Fibra alimentar, g			0	
Sódio, mg			0	

90% da fonte lipídica são ácidos graxos saturados

Ácido caprílico Ácido cáprico

(13% óleo de coco)

95% absorvido diretamente para a circulação portal

Ácido láurico

(48% óleo de coco)

70-75%
absorvido via
Quilomicron
(passagem hepática)

PALMA (Elaeis guineensis)

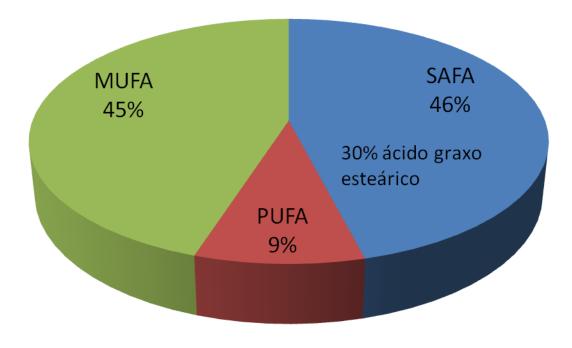
- Óleo tropical
- Composição aproximada:

50% ácido palmítico

40% ácido oléico

10% ácido linoléico

Impacto cardiovascular


Weggemans RM, et al. Am J Clin Nutr. 2001;73:885-91.

Carnes branca x Carne vermelha

O conteúdo de ferro determina a cor da carne

Carne Bovina – Perfil de ácidos graxos:

Fonte: Paulino, P. DZO - UFV

Conteúdo de lipídeos e colesterol em cortes suínos e no peixe branco, na sobrecoxa de frango e no contra-filé bovino por 100g

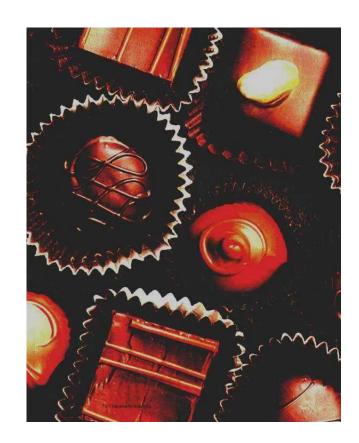
	Lombo	Pernil	Costela	Peixe branco	Sobrecoxa de frango	Contra-filé bovino
Lipídeos totais (g)	5.4	15.6	23.5	5.8	15.2	17.9
SAFA (g)	1.87	5.44	8.73	0.90	4.3	7.29
MUFA (g)	2.42	6.98	10.65	1.99	6.5	7.78
PUFA (g)	0.58	1.68	1.65	2.14	3.3	0.64
Colesterol (mg)	66	66	81	60	84	67

Fonte: USDA Nutrient Database for Standard Reference, Release 14 (Julho 2001)

Manteiga x Margarina e Creme Vegetal

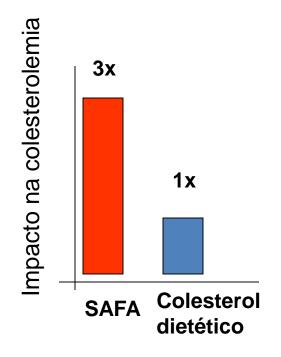
- Manteiga: derivado lácteo
- Margarina/ Creme vegetal: produzida com óleos vegetais – método de produção industrial:

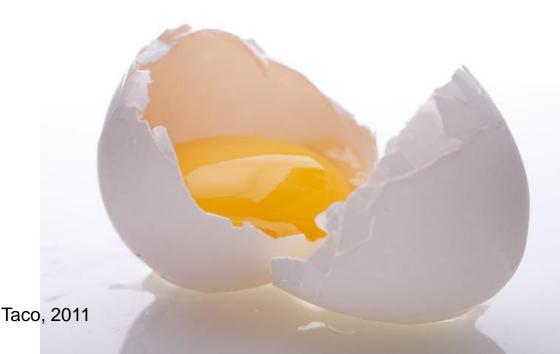
Hidrogenação ou Interesterificação


Presença de ácidos graxos trans

Ausência de ácidos graxos trans

Manteiga de cacau

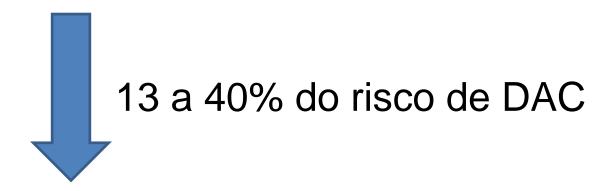

- Composição:
- 33% de ácido oléico (18:1)
- 25% de ácido palmítico (16:0)
- 33% de ácido esteárico (18:0)



USDA National Nutrient Database [http://www.nal.usda.gov/fnic/foodcomp/search/]

Ovo

- Importante fonte de colesterol: aprox. 200mg/ 50g
- Teor médio de gorduras: 1,3g SAFA; 1,8g MUFA, 0,6g MUFA
- Presença de colina



Ácidos Graxos Monoinsaturados

cis-MUFA e Eventos Cardiovasculares

Substituição de 5% de gorduras saturadas ou ácidos graxos trans por cis-MUFA:

J Am Coll Cardiol. 2015;66:1538–48.

Am J Clin Nutr. 2015;102:1563-73.

Br J Nutr. 2013;110:1704–11.

Clin Nutr. 2015 Aug 28. pii: S0261-5614(15)00224-1.

cis-MUFA e Eventos Cardiovasculares

EPIC-NL

Substituição de 5% de gorduras saturadas por cis-MUFA:

30% do risco de DAC

Fator de confusão residual = introdução de estatinas, sem mudança dietética

Benefícios do Ácido Oléico

Principais fontes: azeite de oliva extra-virgem, abacate, castanhas

- ↓ colesterol total
- ↓ LDL c
- ↓ glicemia de jejum
- ↓ níveis de insulina sanguínea
- ↓ resistência a insulina
- ↑ GLP-1

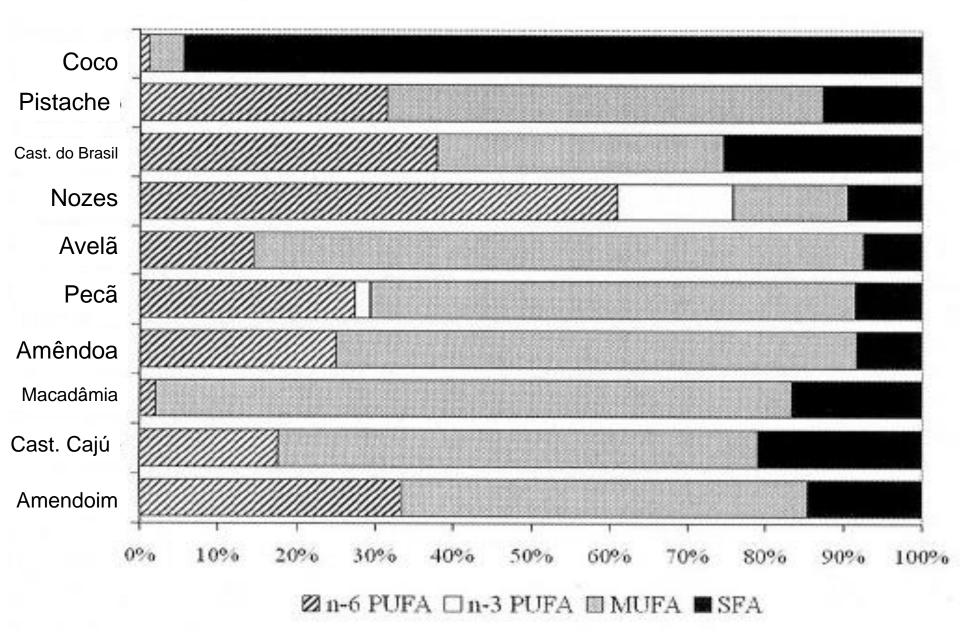
FDA, 2003: Claim para Azeite de oliva

23g de azeite virgem por dia (17.5g de MUFA) - Aproximadamente 2 colheres de sopa

Franz M.J. et al, Diabetes Care, v.25(1), 2002 Rocca, A., et al. Endocrinology 142:1148-1155, 2001

GORDURAS MONOINSATURADAS

Alimento	MUFA (g)	calorias(Kcal)
Alcatra crua (150g)	2.3	186.0
Peito de frango crú (150g)	0.58	171.0
Abadejo crú (150g)	traços	132.0
Leite integral (250ml)	2.4	150.0
Abacate (50g)	4.8	80.0
Azeite de oliva (10g)	7.4	90.0
Castanha do Brasil (30g)	7.0	186.0
Amêndoa (30g)	9.1	164.0


Fonte: U.S. Department of Agriculture, Agricultural Research Service. 2001. USDA;

Castanhas

Os frutos oleaginosos conhecidos popularmente como castanhas tem composição nutricional parecida?

Composição de ácidos graxos de castanhas

Fonte: U.S. Department of Agriculture, Agricultural Research Service. 2001. USDA;

Abacate

Composição Química do Abacate (100g)

Calorias 160 Kcal

Proteínas 2.0g

Lipídeos 14.6g

Carboidratos 8.5g

Fibras 6.7g

SAFA 2.1g

MUFA 9.8g

PUFA 1.8g

Fonte: USDA Nutrient Database for Standard Reference, Release 14 (Julho 2001)

Efeitos metabólicos do MUFA do abacate

- ↓ CT
- ↓ LDL C
- ↑ HDL C
- ↓ TG

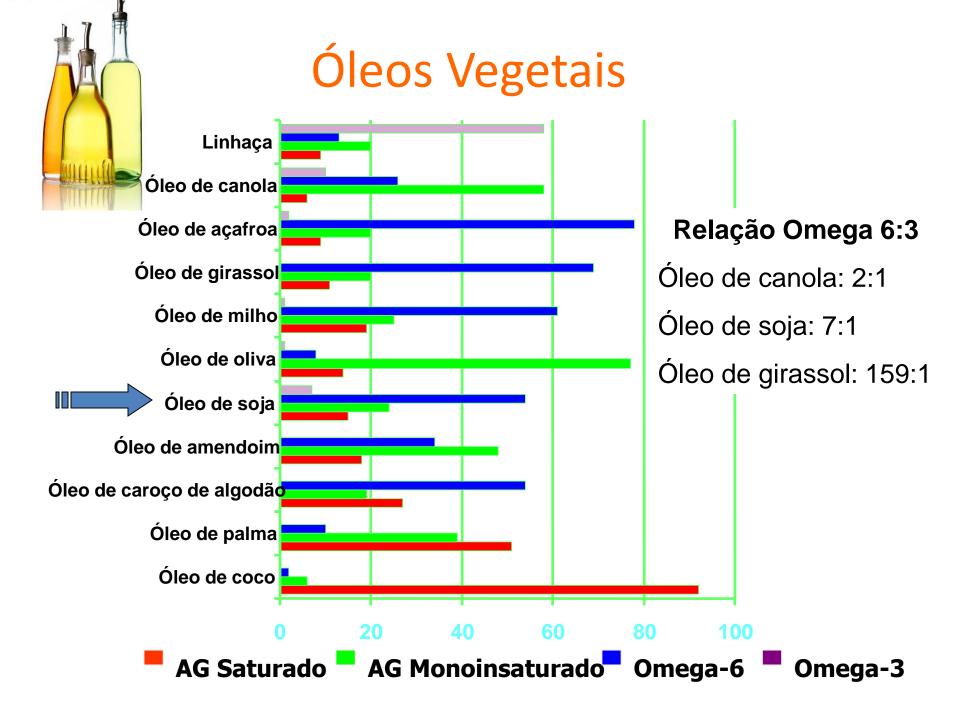
- Substituição de 30g de óleos por 200g de abacate em dietas para redução de peso não compromete a redução ponderal

Azeite de oliva

Azeite de Oliva

Composição de ácidos graxos

Ácido graxo	Nomenclatura	g/100g
C 14:0	Mirístico	≤0,05
C 16:0	Palmítico	7,5 - 20,0
C 16:1	Palmitoléico	0,3 - 3,5
C 17:0	Margárico	< 0,3
C 17:1	Heptadecenóico	< 0,6
C 18:0	Esteárico	0,5 - 5,0
C18:1	oléico	55,0 - 83,0
C18:2	linoléico	3,5 - 21,0
C18:3	linolênico	≤0,9
C20:0	araquídico	≤0,6
C20:1	eicosenóico	≤0,4
C22:0	behênico	≤0,2
C24:0	Lignocérico	≤0,2


Aquecimento e propriedades terapêuticas do azeite

Polifenóis:

Frituras → ↓ 50 a 60% o conteúdo de polifenóis

Cocção em microondas → efeito parecido com o da fritura

Cocção com água → fenóis se difundem na água de cocção

Ácidos Graxos Monoinsaturados

Ácidos graxos (15

Ácidos graxos TRANS

Ácido Oleico (C18:1)

 Melhora do perfil lipídico e do controle dos fatores de risco cardiovasculares Ácido Elaídico (C18:1)

Piora do perfil lipídico (↑ LDL-C e ↓
 HDL-c) e piora do controle dos fatores de risco cardiovasculares

Ácidos Graxos Poli-insaturados

Ácidos Graxos Poli-insaturados

Omega 3

Omega 6

Ácido Linolênico (C18:2) Ácido Eicosapentaenóico (EPA – C20:5) Ácido Docosahexaenóico (DHA – C22:6)

- Cascata anti-inflamatória
- Protege contra DCV
- Anti-arrítmico
- Reduz trigliceridemia

Ácido Linoléico (C18:2)

- Cascata inflamatória
- Reduz LDL-C e CT
- Efeito benéfico nos fatores de risco da Síndrome Metabólica

Ácidos Graxos Poli-insaturados (PUFA) Essencialidade

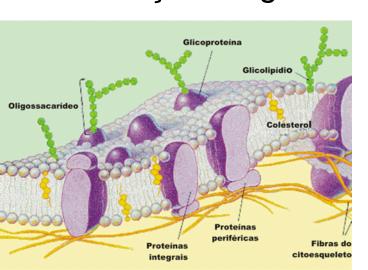
Série Omega 6

- Ácido linoléico (18:2) - cremes vegetais, maionese, margarina, óleo de soja, óleo de milho, óleo de girassol

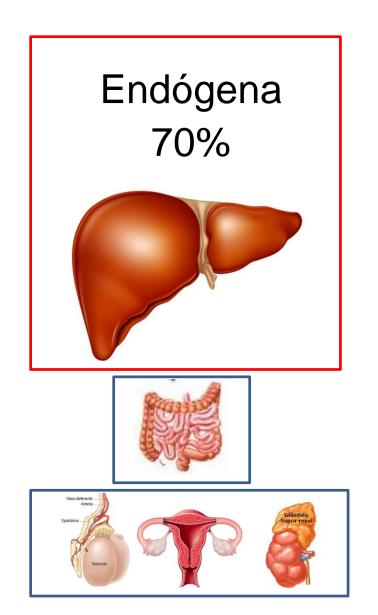
Série Omega 3

- Ácido linolênico (18:3) linhaça, nozes, óleo de canola, óleo de soja
- Ácido EPA (20:5) peixes e óleos de peixes
- Ácido DHA (20:6) peixes e óleos de peixes

Colesterol, DCV e Longevidade



Metabolismo lipídico saudável relaciona-se a longevidade



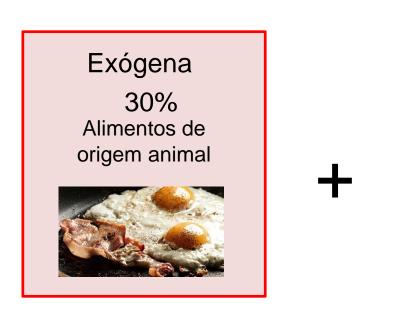
Importância biológica do colesterol

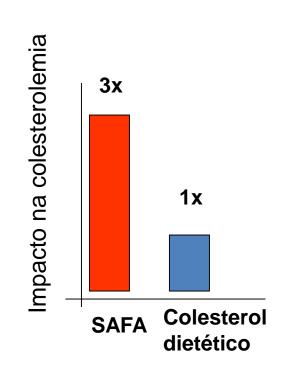
- Constituinte— chave das membranas celulares
- Precursor de hormônios esteróides, corticóides e vitamina D
- Precursor de sais biliares, influenciando na digestão e absorção de gorduras, vitaminas e colesterol

Origem do Colesterol

Morgan AE, et al. Ageing Res Rev. 2016;27:108-24.

Fonte Alimentar de Colesterol (mg/100g)


Peixes e frutos do mar	
Abadejo grelhado	136
Atum em conserva	53
Camarão cozido	241
Cação cozido	83
Merluza assada	91
Salmão s/pele grelhado	73
Sardinha frita	103

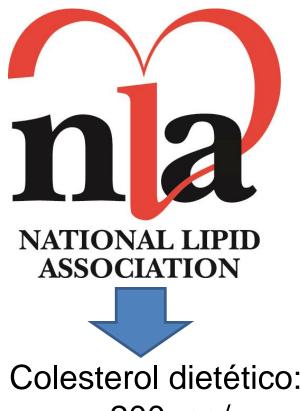

Carne bovina		
Acém cozido	103	
Contra-filé s/gord grelh.	80	
Lagarto cozido	56	
Miolo alcatra grelh.	92	
Fígado grelhado	601	

Aves	
Peito de frango s/pele grelh.	89
Coxa de frango c/pele assada	145
Sobrecoxa s/pele assada	145
Ovo inteiro	356

Lácteos	
Creme de leite	66
Leite integral	10
Queijo muçarela	80
Queijo minas frescal	62

Carne Suína	
Pernil suíno assado	110
Lombo assado	103
Linguiça suína frita	75
Toucinho frito	89

O controle no consumo de colesterol alimentar é importante na prevenção e tratamento das doenças cardiovasculares?



Aboliram o limite de recomendação de consumo alimentar de colesterol

National Lipid Association. NLA Recommendations for Patient-Centered Management of Dyslipidemia, 2015.

Jacobson, T.A, et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 1-Full Report, J. Clip. Lipidol. 2015, 9, 129–169.

Patient-Centered Management of Dyslipidemia: Part 1-Full Report. J. Clin. Lipidol. 2015, 9, 129–169. US Department of Health and Human Services. Dietary Guidelines for Americans; US Department of Health and Human Services: Washington, DC, USA, 2015.

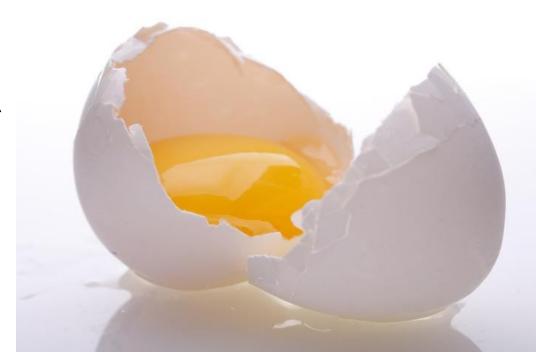
Colesterol dietético: < 200 mg/

Colesterol dietético: < 300 mg/ dia

Presença de dislipidemia

Presença de diabetes

Evert, A.B, et al. Nutrition Therapy Recommendations for the Management of Adults With Diabetes. Diabetes Care 2013, 36, 3821–3842.


National Lipid Association (NLA). National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia 2015.

Ovo

Teor de gorduras/ unidade:
 1,3g SAFA; 1,8g PUFA, 0,6g MUFA

- Carotenóides (luteína e zeaxantina)
- Arginina
- Folato

Presença de colina

Maionese industrializada

Fonte: rótulo de produto/ fabricante

Maionese industrializada

Composição Nutricional por 12g (1 colher de sopa)

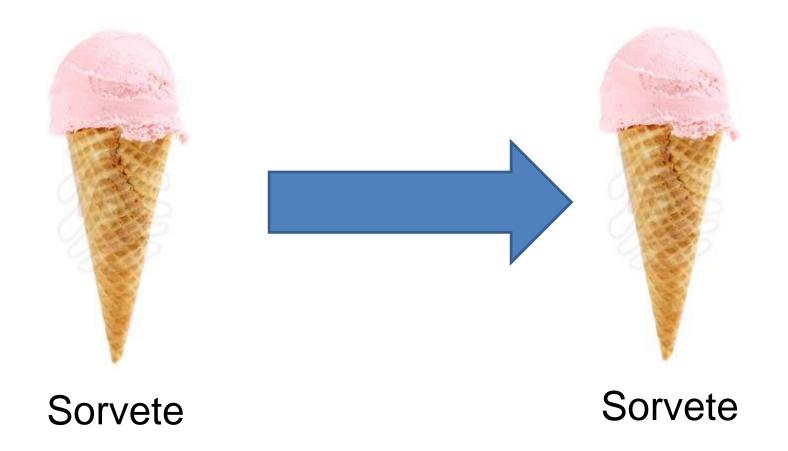
		_
Valor energético	40 Kcal = 168KJ	
Carboidratos	0,9 g	
Proteínas	0g	
Gorduras totais	4,0 g	
Gorduras Saturadas	0,6 g	
Gorduras Trans	0g	
Gordura monoinsaturada	1,0 g	
Gordura poli- insaturada	2,3 g	
Ácido linolênico (Ômega-3)	0,3 g	
Colesterol	2,2 mg	
Fibra Alimentar	0 g	
Sódio	126 mg	
Vitamina E	0,32 mg	

Fonte: rótulo de produto/ fabricante

Fibras Alimentares

Fibra solúvel 5g

 \downarrow


↓ transporte e absorção de lipídeos (colesterol)

 \downarrow

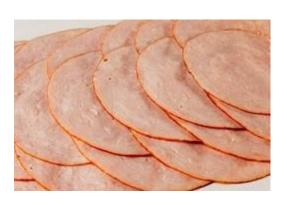
↓ níveis séricos de CT e frações, exceto HDL-c (-10%)

Fibra Solúvel

- Exemplos e fontes principais
- Beta-glucana: aveia e cevada
- Pectina: frutas e hortaliças
- Psyllium: casca da semente de psyllium (plantago ovata)
- ✓ Recomendação da FDA: consumo 3g/dia de betaglucana de aveia

Análise de ingredientes

Estronogofe



Embutidos

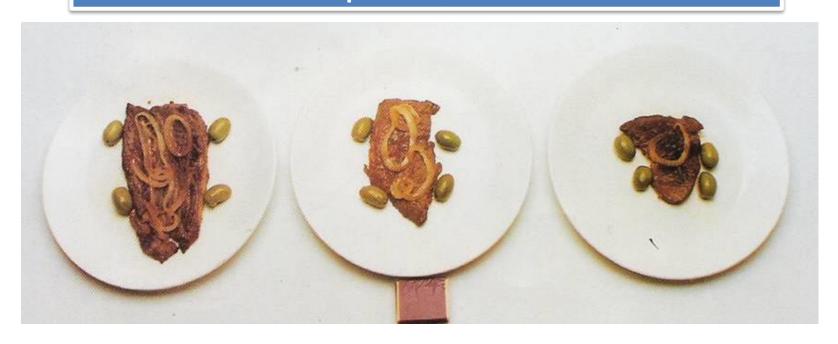
Substituição de ingredientes/ alimentos

Adequação do padrão alimentar

Fonte: arquivo pessoal

Análise comprometida da quantidade de alimento ingerido

Conceito: MUITO ou POUCO?


- Vivências pessoais
- Hábito alimentar familiar
- Estilo de vida

Conceito: Pequeno, Médio e Grande

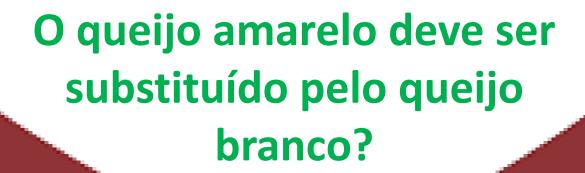
Porção: 150g

Calorias: 350Kcal

SAFA: **7,6g**

100g

240Kcal


5,1g

80g

190Kcal

4,0g

Fonte: Taco, 2011

Queijo branco x Queijo amarelo

A cor do queijo é devida a presença de gorduras e também corante natural - urucum

Queijo	30 g	Calorias (Kcal)	Gorduras totais (g)	Gorduras saturadas (g)	Colesterol (mg)
Minas frescal	1 fatia pequena	79,0	6,0	3,42	18,6
Mussarela	2 fatias médias	99,0	7,5	4,2	24,0
Parmesão	3 colheres de sopa	136,0	10,0	5,9	31,8

Queijo	60g	Calorias (Kcal)	Gorduras totais (g)	Gorduras saturadas (g)	Colesterol (mg)
Minas frescal	1 fatia média/ grande	158,0	12,0	6,8	37,2

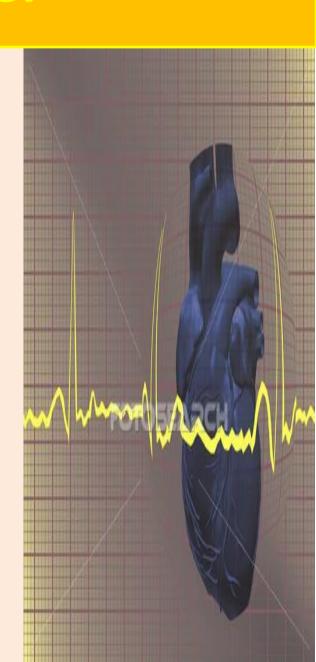
Fonte: Taco, 2011

Consumo: Quantidade x Frequência

Insuficiência Cardíaca e Nutrição

Insuficiência Cardiaca

- É uma síndrome ocasionada pela incapacidade dos ventrículos de bombear quantidades adequadas de sangue para manter as necessidade do organismo.
- A diminuição crônica do débito cardíaco leva à diminuição da pressão arterial, ativando mecanismos compensatórios, como o sistema renina-angiotensina (SRA) e o sistema nervoso simpático. Esses mecanismos causam primariamente taquicardia, vaso constrição periférica e retenção de sódio e água, elevando a pressão arterial e o débito cardíaco.


FORMAS DE IC:

IC compensada

o paciente é capaz de manter a circulação quase normal por hipertrofia ou por aceleração do pulso.

IC descompensada

o coração não é capaz de manter a circulação normal, nem tampouco suprir os tecidos de oxigênio e nutrientes.

Quadro 1.5 – Fatores de descompensação da insuficiência cardíaca aguda

Medicamentos inadequados

Dieta inadequada

Estresse emocional/físico

IAM

Miocardite

Arritmias ventriculares frequentes

Fibrilação atrial ou flutter atrial

Marca-passo DDD ou VVI

Insuficiência renal aguda

Presença de infecção

HAS não controlada

Endocardite

Embolia pulmonar

Diabetes não controlado

Anemia

Doença da tireolde

Álcool/drogas

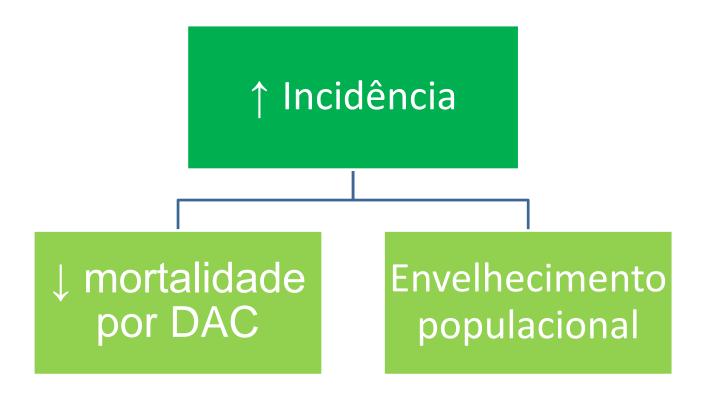
Desnutrição

Dissecção aórtica

Insuficiência mitral ou aórtica agudizada

IAM: infarto agudo do miocárdio; DDD: marca-passo dupla câmara; VVI: marcapasso unicameral; HAS: hipertensão arterial sistêmica.

Etiologia


- IC é a fase final das cardiopatias
- 80 a 90 % ↓ de função do ventrículo E
- 50 a 60 % dos hospitalizados são desnutridos
- Perda de peso
- Caquéticos pior prognóstico

IMC	% SOBREVIDA		
< 22	66		
22 a 26	70		
26 a 32	90		
< 32	100		

EPIDEMIOLOGIA

MECANISMOS COMPENSATÓRIOS:

Os mecanismos compensatórios, ao agirem cronicamente, contribuem para a evolução dos sinais clínicos observados na IC

↑ da força de contração

† do tamanho do coração

bombeamento com mais frequência – taquicardia

estímulo renal a conservação de sódio e água

Definição de insuficiência cardíaca, de acordo com a fração de ejeção de ventrículo esquerdo

ICFE r reduzida • FEVE < 40 %

ICFE i intermediária • FEVE 40 e 50 %

ICFE p preservada • FEVE ≥ 50 %

Quadro 1.2 – Classificação funcional, segundo a New York Heart Association

Classe	Definição	Descrição geral
T	Ausência de sintomas	Assintomático
II	Atividades físicas habituais causam sintomas. Limitação leve	Sintomas leves
III	Atividades físicas menos intensas que as habituais causam sintomas. Limitação importante, porém confortável no repouso	Sintomas moderados
IV	Incapacidade para realizar qualquer atividade sem apresentar desconforto. Sintomas no repouso	Sintomas graves

Fonte: Adaptado de "The Criteria Committee of the New York Heart Association. Nomenclature and Criteria for Diagnosis of Diseases of the Heart and Great Vessels. 9th Ed. Boston: Little, Brown, 1994".

Quadro 1.3 – Estágios da insuficiência cardíaca (IC), segundo American College of Cardiology/American Heart Association

Estágio	Descrição	Abordagens possíveis	
Α	Risco de desenvolver IC. Sem doença estrutural ou sintomas de IC	Controle de fatores de risco para IC: tabagismo, dislipidemia, hipertensão, etilismo, diabetes e obesidade. Monitorar cardiotoxicidade	
В	Doença estrutural cardíaca presente. Sem sintomas de IC	Considerar IECA, betabloqueador e antagonistas mineralocorticoides	
С	Doença estrutural cardíaca presente. Sintomas prévios ou atuais de IC	Tratamento clínico otimizado* Medidas adicionais * Considerar TRC, CDI e tratamento cirúrgico Considerar manejo por equipe multidisciplinar	
D	IC refratária ao tratamento clínico. Requer intervenção especializada	Todas medidas acima Considerar transplante cardíaco e dispositivos de assistência ventricular	

^{*} Ver figura 7.1 de IC Crônica para tratamento farmacológico da insuficiência cardíaca com fração de ejeção reduzida. CDI: cardiodesfibrilador implantável; IECA: inibidor da enzima conversora de angiotensina; TRC: terapia de ressincronização cardíaca. Fonte: Adaptado de "Hunt SA et al.,8 2009 focused update incorporated into the ACC/AHA 2005 quidelines. J Am Coll Cardiol. 2009:53:e1–90".

IC e estado nutricional

Anorexia

Caquexia

Caquexia cardíaca

- √ Há redução de massa muscular, tecido adiposo e densidade óssea;
- ✓ Menor resistência imunológica;
- ✓ Maior risco de ulceras por pressão em pacientes acamados
- ✓ Mais sintomas como fadiga e dispnéia

CAQUEXIA CARDÍACA:

- Tipos: clássico e nosocomial
- Síndrome de definhamento severo. É a forma grave da IC onde a maioria dos pacientes está desnutrida.
- 35 a 55% ou (1/3) dos pacientes com IC moderada a severa têm caquexia cardíaca.

CAQUEXIA CARDÍACA:

- É uma complicação séria da Insuficiência Cardíaca Crônica
- Prevalência estimada
 - □ 16% ambulatório
 - □ 61% internados

Etiologia da Caquexia Cardíaca

Mecanismo Cardíaco

- ↓ do fluxo sanguíneo para os membros
- Privação de substrato no tournover da proteína e renovação de tecidos

Mecanismo não Cardíaco

- Má alimentação
- Ansiedade e depressão
- Sintomas gastrointestinais
- Desbalanço catabólico e anabólico
- Ativação das citocinas inflamatórias
- Alteráção do metabolismo proteico, lipídico e ósseo
- Ativação neuro-hormonal e imunológica

Caquéticos:

† dos níveis de adrenalina e noradrenalina

† dos níveis de aldosterona e renina

Caquexia cardíaca

✓ Alterações gastrointestinais

Permeabilidade intestinal

Alterações absorção

Edema de alça Alteração bacteriana O quadro de caquexia cardíaca pode ser reversível?

- Não há ensaios clínicos que associem terapia nutricional em caquexia cardíaca e desfecho favorável;
- •Há necessidade de estudos prospectivos e controlados com maior número de pacientes ;
- •A presença de desnutrição constitui importante fator preditivo de redução de sobrevida independentemente de variáveis importantes como idade, classe funcional e fração de injeção.

Diagnóstico da Caquexia Cardíaca

IMC ↓ 21 ♂ ↓ 19 ♀ kg/m₂

Peso ↓ 80 % do ideal Gordura corporal:

♂: < 22 %

♀: < 15 %

Perda de peso superior a 5 % ou mais em 12 meses +

3 dos seguintes fatores

Perda de peso superior a ≥ 6 % em mais de 6 a 12 meses Redução do força muscular

Fadiga

Anorexia

Perda de massa magra

Alteração bioquímica

Aumento da IL6 ou PCR

Anemia com Hb <12 mg/dl

Hipoalbuminemia

A perda de peso é fundamental no tratamento de todas as DCVs?

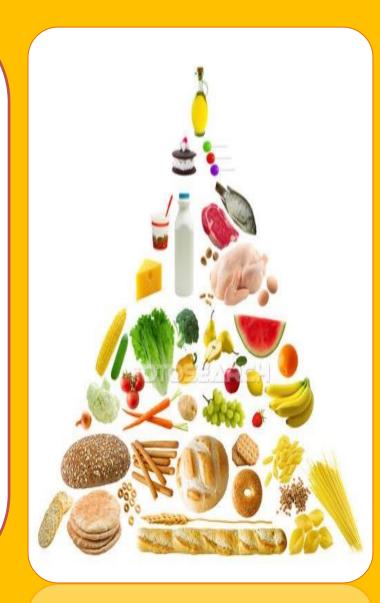
Paradoxo obesidade

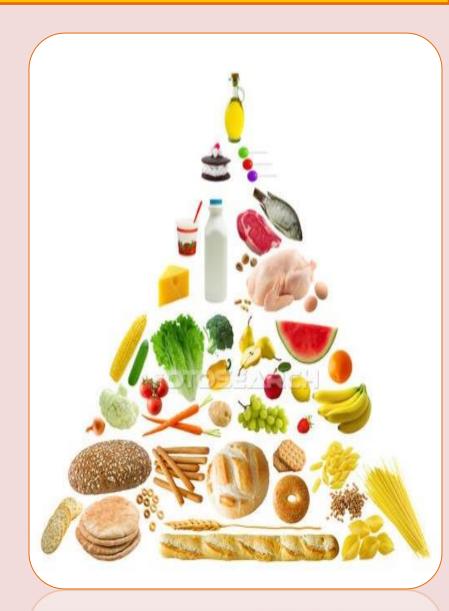
- ✓ Sobrepeso e obesidade leve e moderada --> melhor sobrevida
- √ Hipóteses:
- * Mais reserva energética
- * Aparecimento precoce sintomas
- * Uso de medicamentos mais precocemente
- * Menor resposta ao SRAA

TRATAMENTO

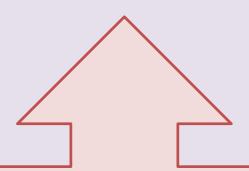
Medicamentoso

Exercícios controlados


Suporte nutricional


Objetivo da Dietoterapia

- Manutenção do peso seco adequado.
- Tratamento das condições préexistentes que geraram a doença cardíaca, como aterosclerose associada à dislipidemia, diabetes mellitus e hipertensão arterial sistêmica, ou comorbidades associadas, como insuficiência renal.
- Correção da obesidade ou recuperação de peso magro.


Nutrientes

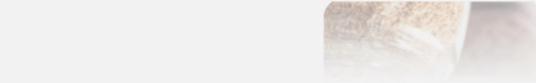
"Falta de Definição"

Regra de bolso

Desnutrição 32 cal / kg / dia

Sem desnutrição 28 cal / kg / dia

Paciente Crítico: 20 a 25 cal / kg / dia



Carboidratos

Carboidratos: Normoglicídica - 50 a 55 %

Na ausência de doenças associadas como diabetes e hipertrigliceridemia pode-se associar carboidratos simples e complexos.

Fibras: de 25 a 35 gr/dia (75 % insolúvel e 25 % solúvel ou 6 gr de fibras solúvel)

Lipídeos

Normolipídica até 30 a 35 % do VET

- Priorizar gorduras poli e monoinsaturadas;
- •Não exceder o limite de 200mg de colesterol/dia;
- •Mais importante que a quantidade é a qualidade;
- Enfatizar a série de ácidos graxo
 ômega 3 1gr/dia;
- •Se necessário suplementar com TCM (esteatorréia leve e moderada completar com ácido linoleico).

Ômega 3

Mecanismo

Regulação da expressão gênica do consumo miocárdico de Ác. graxos

↑ sérico da adiponectina plasmática

↓ citocinas séricas

Melhora do remodelamento cardíaco

Melhora do remodelamento da função cardíaca

Efeitos benéficos na Caquexia Cardíaca

Proteínas

Normo a hiperproteica 15 a 20 %

Fases iniciais da IC 0,8 a 1,0 gr/Kg/dia

Fases avançadas da IC 1,5 a 2,0 gr/Kg/dia

> Paciente Crítico 1,0 a 1,5 gr/Kg/dia

Sódio

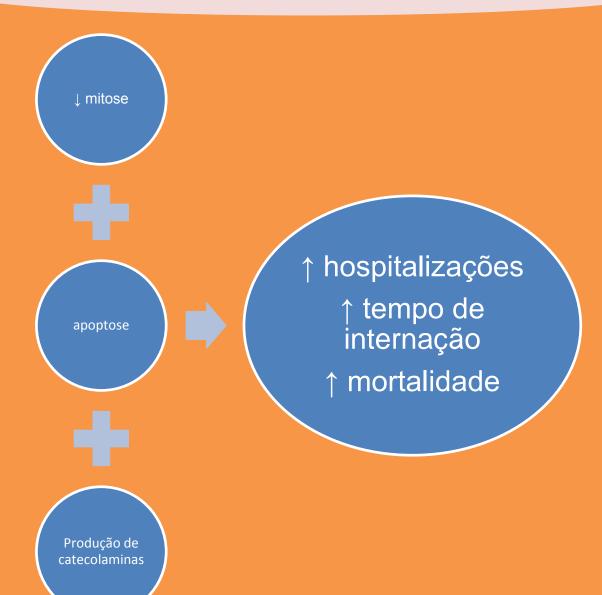
Brasil: ingestão diária de NaCl situa-se em torno de 8 a 12 gr/dia – 5 x maior que as necessidades diárias

- ≈ 7 gr de NaCl/dia
- < 5 gr de NaCl/dia" ↑ mortalidade</p>

Controle []:

↓ volume plasmático
 ↓ da pré-carga
 ↑ desempenho ventricular
 ↓ da ativação neuro
 hormonal
 ↓ mortalidade

	1.1100.000.000	10%	Laboratory and the same of the
%DV	Biotin 30 mcg	10%	Publish Street
70%	Pantothenic Acid 10 mg	100%	Test 9.5
10/0	Calcium 162 mg	10%	NACON.
100%	Iron 18 mg	100%	Goth
100%	Phosphorus 109 mg	1178	
100%	Indine 150 mcg	100%	700
31%	Magnesium 100 mg	+200	Selection
100%	Zinc 15 mg	100'8	
100%	Selenium 20 mcg	*1995	200
100%	Copper 2 mg	1905	200
	· · · · · · · · · · · · · · · · · · ·	1652	
100%	Copper 2 mg		



Mau prognóstico

Álcool

≤ 10 mL de álcool mulheres≤ 20 mL de álcool para homens

Ferro - Fe

Micronutrientes

- O consumo pode ser insuficiente;
- Medicamentos podem espoliar diuréticos;
- •Não existem pesquisas que estabeleçam a necessidade de micronutrientes no IC;
- O mais indicado é seguir a Ingestão Dietética recomendada (RDA), Ingestão dietética de Referência (DRI) e principalmente, Limite de Ingestão Máxima Tolerável (UL);
- Deficiências pioram o prognóstico.

RESTRIÇÃO HÍDRICA

Quantidade: depende da gravidade da IC, Grau da IC, bem como com o balanço hidroeletrolítico.

Recomendação geral:

- 600 700 ml/m² da superfície corporal/dia
- 0,5 ml de água/cal

Recomendação no balanço hídrico rigoroso:

Perdas insensíveis (500 ml) + débito urinário (ml) + perdas TGI (ml)

* Lembrar que também assim como as bebidas também são considerados fontes de líquidos mingaus, gelatinas, sorvetes, sopas e frutas como abacaxi, melão, melancia, entre outros.

RESTRIÇÃO HÍDRICA

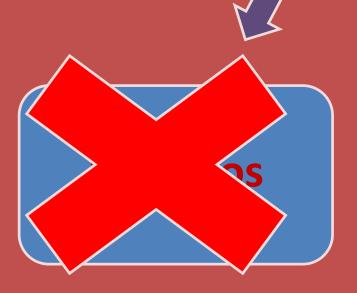
Considerações:

- Frutas até 95 % ou mais de água
- Carnes até 50 % ou mais de água
- ↑água = ↓ densidade calórica

Fracionamento e Consistência

- A dieta deve ser fracionada em 5 a 6 ref./dia
- Pequenos volumes
- Abrandada

- Reduzir o ↑ da frequência cardíaca
- Reduzir o ↑ do débito cardíaco
- ↑ a demanda de oxigênio


Suplementação Oral

Consumo alimentar abaixo das necessidades

1,5 cal/ml ↓ teor de lipídeos

Terapia Nutricional Enteral

Consumo alimentar abaixo de 1400 a 1500 cal/dia

Terapia Nutricional Enteral

- TGI íntegro em cardiopatas
- Evitar ↑ bruscos de volume: ↑ da expansão do volume sanguíneo → ↑ do débito cardíaco → ↑ da frequência cardíaca → ↑ do consumo miocárdico de O2
- Infusão : de 1/3 a ½ de volume final e a dieta gradualmente mantendo baixa velocidade de infusão (30 a 50 ml/h)

Terapia Nutricional Precoce

Ambulatório: a partir do diagnóstico

• Internação: de 24 a 48 horas

Planejamento da Terapia Nutricional

- •estimar as necessidades e ingestão alimentar habitual e atual para verificar a existência de desvios quanto a adequação dos nutrientes;
- monitorizar o consumo alimentar;
- realizar avaliação nutricional, incluindo percentual de massa de gordura e massa magra;
- avaliar os sinais e sintomas de associados a deficiência, bem como excesso de nutrientes;
- analisar exames bioquímicos que também possam guiar quanto a adequação dos nutrientes ingeridos;
- considerar os sintomas e fisiopatologias da doença, bem como as interações drogas-nutrientes.

Desta forma os erros dietéticos serão minimizados e o tratamento nãofarmacológico estará otimizado.

Atenção Primaria a Saúde

↓ 50% taxa de readmissão em 30 dias

Cuidado Multiprossional

Padrão Ouro

REFERÊNCIAS BIBLIOGRÁFICAS

;

- •Magnoni CD et al, Nutrição na insuficiência cardíaca, editora Sarvier, São Paulo, 2002.
- •Sousa AGMR. Ciências da Saúde do Instituto Dante Pazzanese de Cardiologia: Volume Nutrição, São Paulo, editora Atheneu, 2013.
- Sociedade Brasileira de Cardiologia. Diretriz Brasileira de Insuficiência Cardíaca Crônica e Aguda. Arq Bras Cardiol 2018;
- Magnoni CD et al. Nutrição ambulatorial em Cardiologia. Editora Sarvier, São Paulo, 2007.

REFERÊNCIAS BIBLIOGRÁFICAS

- Authors/Task Force Menbers et al. ESC Guidelines for de diagnosis and treatment of acut and chronic heart failure 2008 of the Europen Society of Cardiology. Developed in collaboration with the Heart association of the ESC ad endorsed the European Society of intensive care medicine (ESICM). Eur. J. Heart Fail. 2008;10:933-89;
- Heart failure Society of America (HFSA) practice Guinderlines formanagement of patients with heart failure caused by left ventricular syatolic dysfunction pharmacological approaches. J Card Fail. 1999;5:357-82;
- Magnoni D. et al. Insuficiência cardiaca congestiva. In: Lameu E, editor. Clinica Nutricional. Rio de Janeiro: Revinter; 2005.p.812-20;
- Anker SD. Et al. ESPEN guiderlines of enteral nutrition: cardiology and pulmonology. Clin Nutr.2006;25:311-8;
- Sahade V. et al. Tratamento nutricional em pacientes com insuficiência cardíaca. Revisão: Ver. Nutr. Campinas, 22(3):399-408, maio/junho,2009;
- Anquilani R. et al. Is nutritional intake adequate in chronic heart failure patients? J Am Coll Cardiol. 2003; 42(7):1218-23;
- Berry C, Clark AL. Catabolism in chronic heart failure. Eur Heart J. 2000; 21(7)21-32;
- Ross AC. Et al. Tratado de nutrição moderna na saúde e na doença. 9ª edição. São Paulo: Manole, 2003;
- Quinn T, Askanazi J. Nutrition and cardiac disease. Crit care clin. 1987: 3(1):167-84;

REFERÊNCIAS BIBLIOGRÁFICAS

- •Heymsfield SB, et al. Nutrition support in cardiac failure. Sur clin north Am. 1981: 61(6):635-52;
- Gibbs CR et al. ABC of heart failure. Non Drug management. BMJ. 2000; 320(7)231: 399-9;
- Tavazzi L. et al. Rationalle and design of the GISSI heart feilure trial: a larg trial to asses the efects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J heart Fail. 2004; 6(5)635-41;
- •Diretriz latino americana para avaliação e conduta na insuficiência cardíaca descompensada. Arq Bras Cardiol. 2005; 85(3):12-13;
- Witte KK. Et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J. 2005:26(4)2238-44;
- Brandstetter R et al. Effect of nasogastric feedings on arterial oxigen tension in patients with symptomatic chronic. 170-172, 1988;
- Strong RM et al. Equal aspiration rats fron postpylorus and intragastric placed small-bore nasoenteric feeding. Parenter enteral nutrition, 16:59,1992;
- Waitzberg DL. Et al. Insuficiência cardíaca aguda e crônica- Nutrição oral, enteral e parenteral na prática clinica. Editora Atheneu- 2009.
- •Knobel E. Nutrição em terapia intensiva, SP, Ed. Atheneu, 2005.
- •Projeto Diretrizes, volume IX, São Paulo, AMB, Conselho Federal de Medicina, Brasília, DF, 2011.
- •Isosaki M. Manual de dietoterapia e avaliação nutricional: serviço de nutrição e dietética do Instituto do Coração, 2ª edição, São Paulo: editora Atheneu, 2009.

OBRIGADA

lenitagb@yahoo.com.br

