Particle－in－Cell（PIC）kinetic simulations 02．Random number generation and its application

Chun－Sung Jao（䧶駿頒）

Assistant Research Scholar，
Institute of Space Science and Engineering，
National Central University，Taiwan
University of São Paulo，2019．11．25－12．06

Random number generator

RAND
Return a real random number within the range $0<=x<1$.

RANDOM_NUMBER

Return a single random number or an array of random numbers within the range $0<=x<1$.

Example: 02_01_random.f90

Random number generator

Area and volume

Area and volume

$\mathbf{N}_{\text {total }}$: the total number of spots randomly distributed within the $2 r \times 2 r$ square
$\mathbf{N}_{\text {circle }}$: the total number of spots luckily located in the circle with the radius r.

While $\mathbf{N}_{\text {total }} \rightarrow \infty$,

$$
\mathrm{N}_{\text {circle }} / \mathrm{N}_{\text {total }} \rightarrow \text { ? }
$$

Area and volume

$\mathbf{N}_{\text {total }}$: the total number of spots randomly distributed within the $2 r \times 2 r$ square
$\mathbf{N}_{\text {Iucky }}$: the total number of spots luckily located in the circle with the radius r.

While $\mathbf{N}_{\text {total }} \rightarrow \infty$,

$$
\begin{aligned}
\mathrm{N}_{\text {lucky }} / \mathrm{N}_{\text {total }} & \rightarrow \pi \mathrm{r}^{2} / 4 r^{2} \\
& =\pi / 4 \\
& =0.785398 \ldots \ldots . . .
\end{aligned}
$$

Area and volume

If we never know the area of a circle is $\pi r^{2} \ldots$

1. Assume the area of a circle is $\mathbf{A x r x r}$
2. We randomly distribute $\mathbf{N}_{\text {total }}$ spots in the within the $2 r \times 2 r$ square.
3. We calculate the number of spots, $\mathbf{N}_{\text {lucky }}$, which are located in the circle.
4. While $\mathbf{N}_{\text {total }} \rightarrow \infty$, we will find $\mathrm{N}_{\text {lucky }} / \mathrm{N}_{\text {total }} \rightarrow \mathbf{0 . 7 8 5 3 9 8 \ldots}$
5. Then we can conclude the area of a circle is

$$
\begin{aligned}
S & =4 r^{2} \times 0.785398 \\
& =3.141592 \mathrm{r}^{2}
\end{aligned}
$$

Area and volume

If we never know the area of a circle is $\pi r^{2} \ldots$

1. Assume the area of a circle is Axrx
2. We randomly distribute $\mathbf{N}_{\text {total }}$ spots in the within the $2 r \times 2 r$ square.
3. We calculate the number of spots, $\mathbf{N}_{\text {lucky }}$, which are located in the circle.
4. While $\mathbf{N}_{\text {total }} \rightarrow \infty$, we will find $\mathbf{N}_{\text {lucky }} / \mathrm{N}_{\text {total }} \rightarrow \mathbf{0 . 7 8 5 3 9 8 \ldots}$
5. Then we can conclude the area of a circle is

$$
\begin{aligned}
S & =4 r^{2} \times 0.785398 \\
& =3.141592 \mathrm{r}^{2}
\end{aligned}
$$

Example: 02_02_circle.f90

Area and volume

The volume of a sphere
The volume of a cone

$$
\mathrm{V}=\mathrm{Ar} \mathrm{r}^{3} ? ?
$$

$$
A=? ?
$$

$$
\begin{gathered}
V=A r^{2} h \\
A=? ?
\end{gathered}
$$

Spatial distribution

An uniform-uniform spatial distribution

A random-uniform spatial distribution

Spatial distribution

An uniform-uniform spatial distribution

$$
\mathrm{Px}_{\mathrm{i}}=\Delta \mathrm{xxI} \quad \Delta \mathrm{x}=\mathrm{L} / \mathrm{NP}
$$

A random-uniform spatial distribution

$$
\mathrm{Px}_{\mathrm{i}}=\text { RANDOM_NUMBER } \mathrm{x}_{\mathrm{i}} \mathrm{~L}
$$

L: Length of the system
NP: number of particles

Spaticl distribution

If you do the math, you can still get...

1. For each particle, we pick a random number as the location of the particle.
2. Based on the location of the particle, read the flag-number from the density distribution function.
3. Pick another random number as a lottery.
4. For the particles that with the lottery-number smaller than the flag-number, we keep them. And we give up the other particles that with the lotterynumber larger than the flag-number.

Spatial distribution

For each particle, we

1. Pick a random number as the location of the particle.
2. Based on the location of the particle, read the flag-number from the density distribution function.
3. Pick another random number as a lottery, if the lottery-number is smaller than the flag-number. We set down the particle. If not, we go back to step 1 and pick a new location for the same particle.

Easier to control

the total number of particles

We adjust the density distribution function first.

For each particle, we

1. Pick a random number as the location of the particle.
2. Based on the location of the particle, read the flag-number from the density distribution function.
3. Pick another random number as a lottery, if the lottery-number is smaller than the flag-number. We set down the particle. If not, we go back to step 1 and pick a new location for the same particle.

More efficient!!

Example: 02_03_spatialdis.f90

Spaticl distribution

Example: 02_04_spatialdis_n.f90

Spatial distribution

Example: 02_04_spatialdis_n.f90

Later we will come back to talk about
"Particle weighting
and normalization"

Velocity distribution

Any idea?

Velocity distribution

Any idea?
How large of the velocity range we should set?

Velocity distribution

Any idea?

Or any kind of velocity distribution functions?

Sums of independent random variables

Sums of independent random variables

Sums of independent random variables

C.-S. Jao | PIC simulations: 02. Random number generation and its application | University of São Paulo | 2019.11.25-12.06

Sums of independent random variables

Sums of independent random variables

Sums of the random number $[-0.5,0.5]$

Sums of independent random variables

For each particle, we

1. Pick six random numbers and adjust the the range as $[-0.5,0.5]$
2. Sum the six picked numbers as the particle velocity.
3. The central velocity and thermal velocity can be also defined with the varied range of random numbers.

Example: 02_05_sum6rand.f90

Random number generator: hand-on

1. Based on the assumption that the volume of a sphere is $\mathrm{V}=\mathrm{Ar}{ }^{3}$, and use the random number generator to find that $A=\pi{ }^{*}(4 / 3)$.
2. Setup $1,000,000$ particles in the spatial space $X=0-10$ with the uniform distribution.
3. Setup $1,000,000$ particles with the velocity distribution $F(v)=\exp \left(-v^{2}\right)$
4. Setup $1,000,000$ particles with the velocity distribution $\left.F(v)=\exp \left(-v^{2} / 4\right)\right)$
5. Setup $1,000,000$ particles with the velocity distribution $F(v)=\exp \left(-(v-3)^{2}\right)$

Random number generator: hand-on (advanced)

1. Based on the assumption that the volume of a cone is $\mathrm{V}=\mathrm{A} \mathrm{hr}^{2}$, use the random number generator to find that $A=\pi / 3$.
2. Setup $1,000,000$ particles in the spatial space $X=0-10$ with the uniform distribution. And, in these particles, setup 100,000 particles with the velocity distribution $\left.F(v)=\exp \left(-\mathrm{v}^{2} / 9\right)\right)$ and 900,000 particles with the velocity distribution $F(v)=\exp \left(-(v-1)^{2}\right)$.

