01. Introduction to the PIC simulation

Particle-in-Cell (PIC) kinetic simulations 02. Random number generation and its application

Chun-Sung Jao (饒駿頌)

Assistant Research Scholar, Institute of Space Science and Engineering, National Central University, Taiwan

University of São Paulo, 2019.11.25-12.06

www.slido.com code: #P320

RAND

Return a real random number within the range $0 \le x \le 1$.

RANDOM_NUMBER

Return a single random number or an array of random numbers within the range $0 \le x \le 1$.

Example: 02_01_random.f90

Random number generator

 \mathbf{N}_{total} : the total number of spots randomly distributed within the 2r x 2r square

 N_{circle} : the total number of spots *luckily* located in the circle with the radius r.

While $\mathbf{N}_{\text{total}} \rightarrow \infty$,

 $N_{circle} / N_{total} \rightarrow ?$

 \mathbf{N}_{total} : the total number of spots randomly distributed within the 2r x 2r square

N_{lucky}: the total number of spots *luckily* located in the circle with the radius r.

While $\mathbf{N}_{\mathrm{total}} \rightarrow \infty$,

$$N_{lucky} / N_{total} \rightarrow \pi r^2 / 4r^2$$

= $\pi / 4$
= 0.785398.....

If we never know the area of a circle is πr^2 ...

1. Assume the area of a circle is **A x r x r**

2. We randomly distribute \mathbf{N}_{total} spots in the within the 2r x 2r square.

3. We calculate the number of spots, \mathbf{N}_{lucky} , which are located in the circle.

4. While
$$N_{total} \rightarrow \infty$$
,
we will find $N_{lucky} / N_{total} \rightarrow 0.785398...$

5. Then we can conclude the area of a circle is

 $S = 4r^2 \times 0.785398$ = 3.141592 r²

If we never know the area of a circle is πr^2 ...

1. Assume the area of a circle is **A x r x r**

2. We randomly distribute \mathbf{N}_{total} spots in the within the 2r x 2r square.

3. We calculate the number of spots, \mathbf{N}_{lucky} , which are located in the circle.

4. While
$$N_{total} \rightarrow \infty$$
,
we will find $N_{lucky} / N_{total} \rightarrow 0.785398...$

5. Then we can conclude the area of a circle is

 $S = 4r^2 \times 0.785398$ $= 3.141592 r^2$

Example: 02_02_circle.f90

The volume of a sphere

V = A r³ ?? A = ?? The volume of a cone

V = A r² h A = ??

An uniform-uniform spatial distribution

A random-uniform spatial distribution

An uniform-uniform spatial distribution

A random-uniform spatial distribution

 $Px_i = \Delta x x I$

 $\Delta x = L / NP$

Px_i = RANDOM_NUMBER_i x L

L: Length of the system

NP: number of particles

C.-S. Jao | PIC simulations: 02. Random number generation and its application | University of São Paulo | 2019.11.25-12.06

1. For each particle, we pick a random number as the location of the particle.

2. Based on the location of the particle, read the *flag-number* from the density distribution function.

3. Pick another random number as a *lottery*.

4. For the particles that with the lottery-number smaller than the flag-number, we keep them. And we give up the other particles that with the lottery-number larger than the flag-number.

For each particle, we

1. Pick a random number as the location of the particle.

2. Based on the location of the particle, read the *flag-number* from the density distribution function.

3. Pick another random number as a *lottery*, if the lottery-number is smaller than the flag-number. We set down the particle. If not, we go back to step 1 and pick a new location for the same particle.

Easier to control the total number of particles

We adjust the density distribution function first.

For each particle, we

1. Pick a random number as the location of the particle.

2. Based on the location of the particle, read the *flag-number* from the density distribution function.

3. Pick another random number as a *lottery*, if the lottery-number is smaller than the flag-number. We set down the particle. If not, we go back to step 1 and pick a new location for the same particle.

More efficient!!

Example: 02_03_spatialdis.f90

Example: 02_04_spatialdis_n.f90

Example: 02_04_spatialdis_n.f90

Later we will come back to talk about "Particle weighting and normalization"

Velocity distribution

C.-S. Jao | PIC simulations: 02. Random number generation and its application | University of São Paulo | 2019.11.25-12.06

Velocity distribution

Any idea?

How large of the velocity range we should set?

Velocity distribution

Any idea?

Or any kind of velocity distribution functions?

C.-S. Jao | PIC simulations: 02. Random number generation and its application | University of São Paulo | 2019.11.25-12.06

C.-S. Jao | PIC simulations: 02. Random number generation and its application | University of São Paulo | 2019.11.25-12.06

Sums of the random number [-0.5,0.5]

For each particle, we

1. Pick six random numbers and adjust the the range as [-0.5,0.5]

2. Sum the six picked numbers as the particle velocity.

3. The central velocity and thermal velocity can be also defined with the varied range of random numbers.

1. Based on the assumption that the volume of a sphere is $V = A r^3$, and use the random number generator to find that $A = \pi * (4/3)$.

2. Setup 1,000,000 particles in the spatial space X = 0-10 with the uniform distribution.

- 3. Setup 1,000,000 particles with the velocity distribution F(v) = exp(-v²)
- 4. Setup 1,000,000 particles with the velocity distribution $F(v) = exp(-v^2/4)$
- 5. Setup 1,000,000 particles with the velocity distribution $F(v) = exp(-(v-3)^2)$

1. Based on the assumption that the volume of a cone is $V = A hr^2$, use the random number generator to find that $A = \pi / 3$.

2. Setup 1,000,000 particles in the spatial space X = 0-10 with the uniform distribution. And, in these particles, setup 100,000 particles with the velocity distribution $F(v) = exp(-v^2/9)$ and 900,000 particles with the velocity distribution $F(v) = exp(-(v-1)^2)$.

