Equações não lineares

Alexandre Suaide

Como resolver equações não lineares? E sistemas de equações não lineares?

- Em geral mais complexo
- Equação não linear de uma única variável
 - Método de relaxação. Equações do tipo

$$x = f(x)$$

- Método:
 - 1. Chute um valor inicial para *x*
 - 2. Calcule f(x)
 - 3. Faça x = f(x)
 - 4. Volte para 2 até convergir

Exemplo

	1.80448546585
-r	1.83544089392
• $x = 2 - e^{-x}$	1.84045685534
• Chute inicial, $x = 1$	1.84125511391
• $x' = 2 - e^{-1} = 1.632$	1.84138178281
• $x'' = 2 - e^{-1.632} = 1.804$	1.84140187354
	1.84140505985
Repito a operação e vejo que o valor vai convergindo	1.84140556519
	1.84140564533

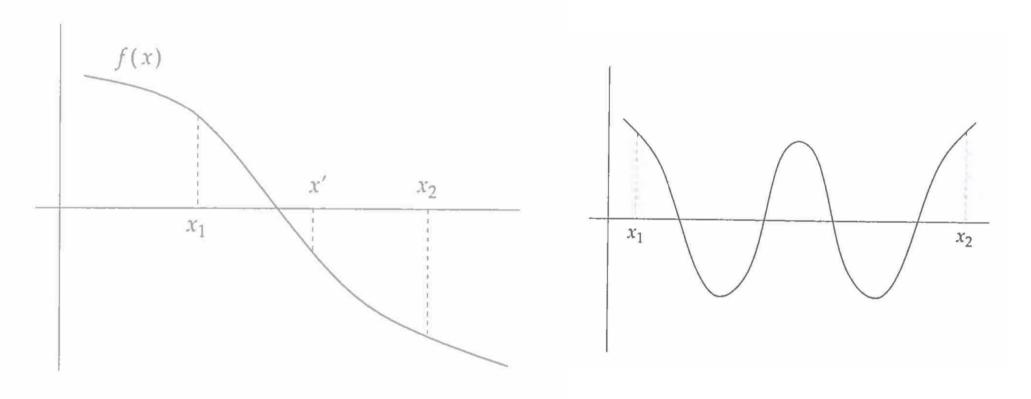
1.63212055883

- Fazer um programa em Python para resolver uma equação não linear usando o método de relaxação. Defina um limite para convergência
- Testar para

•
$$x = 2 - e^{-x}$$

$$\bullet \quad x = e^{1-x^2}$$

•
$$x = \sqrt{1 - \ln(x)}$$


Porque funciona para algumas e para outras, não?

Expansão em Taylor

•
$$x' = f(x) = f(x^*) + (x - x^*)f'(x^*) + \cdots$$

- No método, $x^* = f(x^*)$, logo
 - $x' x^* = (x x^*)f'(x^*)$
- Ou seja, a distância entre duas interações, $x x^*$, a cada interação é multiplicada pela derivada $f'(x^*)$. Se esta derivada for menor que 1, a distância vai se tornando menor, convergindo para a solução.

Busca binária f(x) = 0

Exercício

- Faça um algoritmo que resolva equações não lineares por busca binária
 - Resolva as equações apresentadas na primeira parte da aula
 - Defina um limite para convergência do resultado
 - Compare os resultados obtidos aqui com os anteriores
- Modificar o algoritmo para achar todas as soluções para sin(x) = 0 no intervalo entre 0 e 4π