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Then with the transmission loss nor coordinated, we would have
' P+ P, — 5 X 107P? = 438.75 @

Solving (1) and (2) simultaneously yields P, = 417 MW and P, = 108.5 MW.
Comparing these results with the results of Problem 9.13, we see that the load on plant 1 is
increased from 350 MW to 417 MW hence its fuel cost increases by

17
f (0.01P, + 10) 4P, = $926.945/h
350
The load on plant 2 is decreased from 150 MW to 108.5 MW; hence its fuel cost decreases by
108.5
= f (0.02P, + 12) dP, = $605.277/h
150

The saving with loss coordination is thus 926.945 — 605.277 = $321.67/h.

For the system shown in Fig. 9-3, what is the minimum open-loop gain such that the
steady-state error Ae,, does not exceed 1 percent?

From Fig. 9-3,
Ae 1

AV 1+ GG)
Substituting (9.24) in (I) and setting s = 0 (for the steady state) yield
- (Av;d)ss (AVn:f)ss

&)

Aeg o 1+k= :
1+k r Ae (2)‘;
The condition of the problem implies that the right side of (2) is not less than 100. Hence,
1+ k=100

and k£ = 99.

Obtain the form of the dynamic response of the system of Fig. 9-3 to a step change in the
reference input voltage.

From Fig. 9-3,
G(s)
1+ G(s)

Where G(s) is given in (9.24). The response of the system will depend on the characteristic roots of the
equation :

1+G(s)=0 2
If the roots sy, 5,, and s; are real and distinct, then the response will include the transient componenté

A.e’", A,e’¥, and Ase’¥. However, if (2) has a pair of complex conjugate roots 5y, s, = ¢ + jo, then
the dynamic response will be of,the form Ae® sin (ot + ¢).

avie) = = AVuts)] )

Assume that there are no changes occurring in the reference power setting of a turbine-
governor system (that is, the system is operating in the steady state), and the frequency-power
relationship of the turbine governor is that represented graphically in Fig. 9-7. Determine the
regulation constant R,

In (9.26), we see that, with AP, = 0, R is the negative of the slope of the f versus P, curve,
plotted in per-unit values. Hence, from Fig. 9-7,
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9.18

9.19

fopu g
104k
1.03
1.02
101

1.00
0.99-
0.98
'f 1 ] 1 1
0.2 0.4 0.6 0.8
P, pu
Fig. 9-7.

For a certain turbine-generator set, R = 0.04 pu, based on the generator rating of 100 MVA
and 60HZ. The generator frequency decreases by 0.02Hz, and the system adjusts to
steady-state operation. By how much does the turbine output power increase?

The per-unit frequency change is

; Af  —0.02 o
= == — = ~333 x
Per-unit Af o 0 3.33 X 10~*pu

Then (9.26) yields
Per-unit AP, = —5%2(-3'33 X 107 = 8.33 x 102 pu

The actual increase in output power is then
AP, = (8.33 X 107*)(100) = 0.833 MW

An area includes two turbine-generator units, rated at 500 and 750 MVA and 60 Hz, for
which R; = 0.04 pu and R, = 0.05 pu based on their respective ratings. Each unit carries a
300-MVA steady-state load. The load on the system suddenly increases by 250 MVA. (a)
Calculate £ on a 1000-MVA base. (b) Determine Af on a 60-Hz base and in hertz,

(@) We can change the bases of the R values with the formula

Ruew = old'%w
base(old)
1000
Thus R{(na\v) = (0-04)?0'6 = (.08 pu
' 1000
and w = (0.05)— = ¢,
Raewy = (0.05) 75 = 0.067 pu
Now, from (9.30), .
1 1 1 1
—R-: +A'Tz =30 +O——_—.067 = 27.5pu

(b) The per-unit increase in the load is 250/1000 = 0.25 pu. From (9.29), with AP, oy = 0 for

3
3
5
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steady-state conditions,

-1 1
=—AP, = ——_025 = — 2 3
. Af g AP 27.5025 9.091 X 10~ pu
Also, Af = —9.091 X 107> x 60 = —0.545 Hz

For areas 1 and 2 in a 60-Hz power system, f; = 400 MW/Hz and B> = 250 MW/Hz. The
total power generated in each of these areas is, respectively, 1000 MW, and 750 MW. While
each area is generating power at the steady state with APy = APy, = 0, the load in area 1
suddenly increases by 50 MW. Determine the resulting Af, (a) without LFC and (b) with
LFC. Neglect all losses.

(a) From (9.29), since AP, oy = 0 without LFC,
50 = —(400 + 250) Af

from which Af = —0.0769 Hz.
(b) With LFC, in the steady state, (9.27) implies that ACE, = ACE, = 0; otherwise, the LFC given by
(9.27) would be changing the reference power settings of the governors on LFC, Also, the sum of the
net tie-line flows, AP, + AP, is zero (neglecting losses). So :

ACE; + ACE, = 0 = (B, + B,) Af

and Af = 0, since B, + B, #0.

e e i

Supplementary Problems

A graph of fuel input versus power output for a certain plant is given in Fig. 9-8. Determine the fuel
requirements at (z) 120 MW and (6) 560 MW output power.

B
L]

Fuel input, 10 Btu/h

{ i ! S

200 400 CrE
Output power P, MW

Fig. 9-8.

Ans. (a) 16.67 x 10° Btu/MWh; (b) 10.71 x 10°Btu/MWh

(@) For the plant of Problem 9.21, determine the fuel requirement at the maximume-efficiency operating .
point. (b) What is the power output at that point?

Ans. (a) 10 x 10°Btu/MWh; (b) 400 MW
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If the discontinuity occurs at the middle of an interval, then for that interval
F, = P, — output during the fault (10.27)

For this cz'lse, at the beginning of the interval immediately following the clearing of the fault, P, is
given by
P, = P, — output after the fault is cleared (10.28)

Finally, if the discontinuity occurs neither at the beginning nor at the middie of an interval, P, may
still be evaluated from (10.26) through (10.28).
Algorithm for the Iterations

Returning now to (10.25), we see that 0, gives us one point on the swing curve. The algorithm
for the iterative process is as follows:

Pa(n—l) == R - I:,e(n—l) (10.29)
ETIV] .

Pe(n‘l) = X sSin (n—1) (10.30)

P,

Xy = # (10.31)

AW,y = g,y At (10.32)

Drny = Wpgnoyy + Gy At (10.33)

P
Aduy = Adg_yy + (“MQ(At)z (10.34)
Oy = O(a—r) + A, (10.35)

The use of this algorithm in conjunction with the equal-area criterion provides the critical clearing ,

angle and the corresponding critical clearing time.

Solved Problems

10.1 The inertia constant H for a 60-Hz, 100-MVA hydroelectric generator is 4.0 MJ /MVA. How
much kinetic energy is stored in the rotor at synchronous speed? If the input to the generator
is suddenly increased by 20MVA, what acceleration is imparted to the rotor?

The energy stored in the rotor at synchronous speed is given by (10.1) and is
GH = 100 X 4 = 400 MJ

The rotor acceleration d?8/dz is given by (10.7) with P, = 20 MVA of accelerating power and with M
as determined from (10.3). Thus, (10.3) yields

_GH 400

= — = —— -

1
180f 180 x 60 27
and (10.' 7) becomes

142
Hae o

$0 d*8/di?* = 20 x 27 = 540°/s%.

10.2  In Section 10.2 we noted that machinery manufacturers generally supply the value of WR2

e
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10.3

104

10.5

Derive a relationship between H and WR? for a machine whose rating is Sy, MVA.
The kinetic energy of rotation of the rotor at synchronous speed is

2 2
= %;ZRZ <%t) (in foot-pounds)

where n is the rotor speed in revolutions per minute. Since 550 ft - Ib/s = 746 W, 1ft-1b = 746/5507.
Converting foot-pounds to megajoules and dividing the last equation by the machine rating in

megavoltamperes, we obtain
(8 ) 122

550 232.2/\ 60
H = 5
mach
2.31 x 1079WR?,2
e )

A 1500-MVA, 1800-rev/min synchronous generator has WR? = 6 x 10°Ib - ft*. Find the
inertia constant H of the machine relative to a 100-MVA base.

From (1) of Problem 10.2,

5 < (231 X 107°)(6 x 10°)(1800)*

1500 = 2.994 MJ/MVA

Relative to a 100-MVA base, then,

H = 2.994 x %) = 44.91 MI/MVA

A 500-MVA synchronous machine has H, = 4.6 MIJ/MVA, and a 1500-MVA machine has
H; = 3.0MJ/MVA. The two machines operate in parallel in a power station. What is the
equivalent H constant for the two, relative to a 100-MVA base?

The total kinetic energy of the two machines is
KE = 4.6 X 600 + 3 x 1500 = 6800 MJ
Thus, the equivalent H relative to a 100-MVA base is

H= 6500 _
100 68 MI/MVA

For a certain lagging-power-factor load, the sending-end and receiving-end voltages of a short
transmission line of impedance R + jX are equal. Determine the ratio X/R so that maximum
power is transmitted over the line under steady-state conditions.

From the phasor diagram of Fig. 10-6, we may write
Vs = Vg + I(cos ¢ — jsin ¢)(R + jX)
= (Ve + IRcos ¢ + IXsin ¢) + jX cos ¢ — IR sin ¢)
R(Vscos 8) = (Vk + IR cos ¢ + IX sin p)R
X(Vssind) = (IX cos ¢ — IR sin )X
Combining these equations and letting Z> = R* + X2, we get
Vs(Rcos 6 + Xsin 6) = RV, + IZ*cos ¢

Vi RV,
or Icosqb:Z—j(Rcosé-f-Xsind)—— ZZR
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Vi Ve 4 :
¢=——§7§(Rcosé+Xsin5)—}—giz5 ) :;;

Hence, we have
P = Vgl cos

Now let tan B = X/R; then (1) becomes
Ve Vs RV
P, = —-—Z-‘SCOS (ﬂ = 5) - ZZR

For maximum power § = 8, and so
Ve Vs RV%
Prows =JRex X0 K+ X @
dP R(max)
and S =0
: ax

Thus (%,/5)"(1{2 + X?) = 4R
R

= Vg, we have X/R = V3.

and since Vs
nsmission line at a 100-MW load are equ

ing-end voltages of a tra
ne impedance is (4 + j7) Q. Calculate the maximum steady-sta

d over the line.

10.6 The sending-end and receiv
at 115 kV. The per-phase li
power that can be transmitte

Since Ve = Vs = 115,000//3 = 66,400, we hav
Ve Vs RV%

Paown = JREx X R+ X
(66.4)° 4(66.4)3] 5
= —_—_— T = 275.5 MW
{\/4—2—-{-_:1’7 T 10° = 275.5 /phase

= 826.5 MW total

¢, from (2) of Problem 10.5,

er, operates at a power 2

ng 500 MW of pow
nly without loss of stabi

capable of developi
be increased sudde

10.7 A synchronous generator,
he input shaft power

of 8. By how much can t
lectromagnetic power being developed is

sin 8, = 500sin & = 69.6 MW

efore losing synchronism. The
replacing §,). From Fig.

Initially, at 8¢ = 8°, the e

P, 0 = P, max
angle to which the rotor can swing b
hat (10.12) be satisfied (with 6,

Let §,, (Fig. 10-7) be the power
equal-area criterion requires t
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0n = m — 6, so (10.12) yields
(m— 6, — 8,)sin 8, + cos (o — 8,) — cos 8 =
or ( — 6, — 8y)sin 8, — cos &, — cos 6 =0 €))
Substituting 6, = 8° = 0.13885 rad in (1) gives
(3—6)siné;, —cos S, —0.99 =0 .-
This yields 8; = 50°, for which the corresponding after-the-fault electromagnetic power is
Py = Puacsin 6, = 500sin 50° = 383.02 MW
The initial power developed by the machine was 69.6 MW. Hence, without loss of stability, the system
can accommodate a sudden increase of
Py — Py =383.02 — 69.6 = 313.42 MW

P)
Pmax
Pif:Pef [ e
b
f ) |
! |
Po=P.o— ]
50 5; 5,,, T >5

Fig. 10-7.

10.8 Determine the maximum additional load that could suddenly be taken on by the transmission
line of Problem 10.6 without losing stability.

If we neglect the resistance, then the initial (maximum) power P, is

Vi
F= ;:,/R $in 8o = Pgrmay Sin &
From (I) of Problem 10.7,
(r — 6, = 8y)sin 6, — cos 8, — cos 05 =0 (1)
We have
P, = 1(100) = 33.33 MW
2
and Prmany = %1? 10° = 629.76 MW
33.33
6o = sin™! = 3° = 0.052 rad
so o = Sin §29.76 ra

Then (I) becomes
(m ~ &, — 0.052) sin 8, — cos 8, —cos3° =0
which yields 6; = 47.8°. Hence the system will remain stable for an increase in load of up to .
Prmaxy Sin 8; — Py = 629.76 5in 47.8° — 33.33 = 433.2 MW/phase

= 1299.6 MW total
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10.9 A synchronous generator is operating at an infinite bus and supplying 0.45 pu of its maximum

power capacity. A fault occurs, and the reactance between the generator and the line
becomes four times its value before the fault. The maximum power that can be delivered after
the fault is cleared is 70 percent of the original maximum value. Determine the critical

clearing angle.

Let
v = Py during the fault
ol P,.ox before the fault
P, .. after the fault
X, =

" P, before the fault

J¢ = power angle at the time of the fault
8. = power angle when fault is cleared
6, = maximum angle of swing

Then the equal-area criterion, A4, = A4, in Fig. 10-8, gives us

8, Sy
P(6, — 6o) - j X1PrexSin 8dé = f X3P sin 6dé — P(6,, — 8.)
S

S0

~~
LY
S’

Hence, cos 6, = [ E (6 = 8o) + x,c088,, — x, cos 60}

Pmax

Xz — X%

PA

/Before fault

During fault
After fault

}
i
[

f f
& 5 %
Fig. 10-8.

o)

Initially, the generator is supplying 0.45 pu of P, .. Thus,
P, = 0.45P,x = Poaxsin 8,
from which 8, = sin™'0.45 = 26.74°. Now Prx = EV/X. When the fault occurs, X becomes 4X, so tha

- y v . -
2P sind, = X Sin 8,, = $Pp.sin 0,
so that x; = 0.25.

After the fault, with x, = 0.70, we have

P, = x,P,..sin 6.,

from which
. 1 0A45P. .. =

B
'— = gin

400

8. = sin P 0.70P,.,

L

N A i
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Then 6,, = 90° + 6., = 130° (see Fig. 10-8), and
0 — 8o = 130° — 26.74° = 103.26° or  1.8019 rad
Hence, from (1),

1 il Ll
€08 8 = o575 [0.45(1.8019) + 0.70 cos 130° — 0.25 cos 26.74°] = 0.3059

so that 6. = cos™10.3059 = 72.2°.

A 100-MVA, two-pole, 60-Hz generator has a moment of inertia of 50 X 10°kg - m?. What is
the energy stored in the rotor at the rated speed? What is the corresponding angular
momentum? Determine the inertia constant A,

The stored energy is

b
KE(stored) = 2 2, = 2 (50 x 103)(2”—"3—6-09) = 3553 M7
2 2 %0
Then g TCond B o MI/MVA

MVA 100
_ GH _ (100)(35.53)

1807~ (180)(60) = 0.329 MJ - rad/s

The input to the generator of Problem 10.10 is suddenly increased by 25 MW. Determine the
rotor acceleration.

From Problems 10.10 and 10.1,

0.3298 = 25
L
Thus, b= e 76°/s

Assuming the acceleration calculated in Problem 10.11 remains constant for twelve cycles,
calculate the change in the power angle and the speed that occurs during those twelve cycles.

Twelve cycles are equivalent to 12/60 = 0.25s. During that time, 8 changes by 3(471.25)(0.2)* =
9.425 electrical degrees, Now 47125

360
so the rotor speed at the end of the twelve cycles is 3600 + 78.5 = 3678.5 rev/min,

8 =60 x

= 78.5 rev/min/s

A 60-Hz generator, connected directly to an infinite bus operating at a voltage of 1/0° pu, has
a synchronous reactance of 1.35pu. The generator no-load voltage is 1.1 pu, and ifs inertia
constant A is 4 MI/MVA. The generator is suddenly loaded to 60 percent of its maximum
power limit; determine the frequency of the resulting natural oscillations of the generator

rotor.
We find &, using sin 6, = F,/P = 0.6, which gives &y = 36.87°. Then

8P, _LIxd e
%8 w135 36.87 = 0.6518 pu/rad

Also, we have

M

pu §*/rad

_H 4
nf 7w x 60
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Frequency of oscillation = (ﬂy_;%ﬁ
‘ X 60 x 0.6518
L

10.14 Derive (10.19).
Since § = §, — 6,,

From (1), (10.17), and (10.18), we have
5—5—i(P—P)-i(P—P =4 2
1 2 Ml i1 e1 Mz 2 ez) = ( )

Multiplying both sides of (2) by M, Mo/ (M, + M) yields

MM, . 1
M+ 050 = 57z [Py~ MiPo) — (MP ~ MP)]

_ MyF — M, P, _ MyF, — MyF,,
MI + M2 M1 + MZ
or M8=P —P

which is the same as (10.19).

10.15 The kinetic energy stored in the rotor of a 50-MVA, six-pole, 60-Hz synchronous machine is
200 MJ. The input to the machine is 25 MW at a developed power of 22.5 MW. Calculate the
accelerating power and the acceleration.

The accelerating power is
F, =P —P =25-225=25MW
Now, also,

KE(stored) 200

= —= 4
machine rating in MVA 50

H=

and, from (10.3),
H 50 x
M= L .

— =" _ 001 s
180f = 180 x 60 0.0185 M7 - s/degree

= 1.06 MJ - s/rad
Finally, from (10.7),
S O3S ;
6= 106 2.356 rad/s

10.16 If the acceleration of the machine of Problem 10.15 remains constant for ten cycles, what is
the power angle at the end of the ten cycles?

From Problem 10-15, § = 2.356. Integration with respect to ¢ yields

8 =235t + C,

Since 6 =0atz =0, C, = 0. A second integration now gives
6 =11782 + ¢,
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Att =0, let 6 = §, (the initial power angle). Then
& = 1.178* + &,
At 60 Hz, the time required for ten cycles is # = Ls. For this value of t,
8 = L.178(2)* + 8, = (0.0327 + &,) rad

10.17 The generator of Problem 10.15 has an internal voltage of 1.2 pu and is connected to an

10.18

infinite bus operating at a voltage of 1.0 pu through a 0.3-pu reactance. A three-phase short
circuit occurs on the line. Subsequently, circuit breakers operate and the reactance between
the generator and the bus becomes 0.4 pu. Calculate the critical clearing angle.

Before the fault,

1.2 X 1.0
P = o3 = 4.0pu
During the fault,
Pmaxz = 0
and k; = 0 for use in (10.14). After the fault is cleared,
1.2 X 1.0
Py = ——— =3,
max3 0.4 Opu

and k, = 3.0/4.0 = 0.75 for use in (10.14).
The initial power angle &, is given by 4sind, = 1.0, from which 8o = 0.2527rad. Define

6, = & — O, (see Fig. 10-4). The angle §,, in (10.14) is obtained from
X
3.0
from which &,, = 2.8 rad. Substituting &,, k,, 8, and §,, in (10.14) yields

sin 8., = and S, =m - 8.,

cos &, = 0—%[(2.8 - 0.2527)0.25 — 0 + 0.75 cos 2.8] = —0.093

from which 8§, = 95.34°.

Using the step-by-step algorithm, plot the swing curve for the machine of Problem 10.17.

The per-unit value of the angular momentum, based on the machine rating, is

1.0x4 =
T 3.7 x 107 pu
From (10.26), we have
P(0+) = 1.0 ; 0.0 = b5
From (10.21),
0.5 s
a(0+) = m = 1351°/s

From (10.22) with At = 0.05s,

From (10.23), :
W,y = 0 + 67.55 = 67.55%s

From (10.24),
Adyy = 67.55 x 0.05 = 3.3775°
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Finally, from (10.25), with 8, = 14.4775° as determined in Problem 10. 17,
Sy = 14.4775 + 3.3775 = 17. 855°
For the second interval, (10.29) and (10.31) to (10.35) give us
Py=10-00=10

1.0
gy = TX I 2702°/s
2702 x 0.05 = 135.1°
w,(z) = CU,-(U + Aw,(z) = 67.55 + 135.1 = 202.650/5
Aé(z) D2y Atr = 202, 65 %X 0.05 = 10.1325°
8 = 8y + Ad, = 17.855 + 10.1325 = 27.9875°

Since @ and Aw, do not change during succeeding intervals, we have

A (0,(2)

@r3) = Wy2) + A,y = 337.75%s
Ad) = w,) At = 337.75 x 0.05 = 16.8875°
O = Sy + Ady = 44.875°
and so on. In this way we obtain the following table of values, from which Fig. 10-9 is plotted:

Ls 8, degrees
0.0 14.48
0.05 17.85
0.10 27.99
0.15 44.88
0.20 68.52
0.25 98,92
IL §=95.34°

80°~

60° = /
= / t=0,245

20°= ./ ’

1 ! 1 1 | e

0 0.05 0.10 0.15 0.20 0.25 ﬂ
Fig. 10-9,

10.19 From the results of Problems 10.17 and 10, 18, find the critical clearing time in cycles for an
appropriately set circuit breaker.
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10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

10.28

From Problem 10.17, 8, = 95.34°. For this critical clearing angle, Fig. 10-9 gives ¢ = 0.245 s. Hence
the fault must be cleared within 60 X 0.245 = 14.7 cycles.

Supplementary Problems
The inertia constant H of a 150-MVA, six-pole, 60-Hz synchronous machine is 4.2 MI/MVA.
Determine the value of WR? in 1b - ft%.

Ans. 1,893,9391b - ft*

The generator of Problem 10.20 is running at synchronous speed in the steady state. (@) What kinetic
energy is stored in the rotor? (b) If the accelerating power due to a transient change is 28 MW, calculate

the rotor acceleration.

Ans. (a) 630 MJ; (b) 480°/s?

A 300-MVA, 1200-rpm synchronous machine has WR® = 3.6 X 10°1b - ft*. Calculate H for the machine
(a) on its own base and (b) on a 100-MVA base.

Ans. (a) 3.99 MI/MVA; (b) 11.97 MI/MVA

A 100-MVA generator has H = 42MJ/MVA, and 250-MVA machine, operating in parallel with the
first, has H = 3.6 MJ/MVA. Calculate the equivalent inertia constant H for the two machines on a

50-MVA base.
Ans. 26.4MI/MVA

The moment of inertia of a 50-MVA, six-pole, 60-Hz generator is 20 X 10° kg - m®. Determine / and M
for the machine.

Ans. 3.15MI/MVA; 0.0146 MJ  s/degree

A synchronous motor develops 30 percent of its rated power for a certain load. The load on the motor is
suddenly increased by 150 percent of the original value. Neglecting all losses, calculate the maximum
power angle on the swing curve.

Ans. 40°

A 100-MVA synchronous generator supplies 62.5 MVA of power at 0.8 lagging power factor. The
reactance between the load and the generator is normally 1.0 pu, but it increases to 3.0 pu because of a
sudden three-phase short circuit, The fault is subsequently cleared and the generator then supplies
43.75 MVA at 0.8 lagging power factor. Determine the critical clearing angle.

Ans. 068.58°

A synchronous generator supplies its rated power to an infinite bus at a voltage of 1.0 pu. The reactance
between the generator and the line, normally 0.825 pu, increases to 0.95 pu because of a fault. Find the
critical clearing angle.

Ans. 58.73°

For the generator of Problem 10.15, determine the rotor speed in revolutions per minute at the end of
ten cycles.

Ans, 1203.75 rev/min
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A motor delivers 0.25 pu of its rated power while operating from an infinite bus, If the load on the
motor is suddenly doubled, determine &,, based on the equal-area criterion, Neglect all losses.

Ans. 45°

The inertia constant M of a synchronous machine is 4.45 x 10~* pu. The machine operates at a
steady-state power angle of 24.7°. Because of a fault, the power angle changes to a value given by the
swing equation & = 0.314 pu. Using the step-by-step algorithm, plot the swing curve and use it to
determine the maximum value of the power angle.

Ans. 67°

The ABCD constants for the nominal-TT circuit representation of a transmission line are A=D =
0.9[0.3°, B = 82.5/76°Q, and C = 0.0005{90° S. What is the maximum power that can be transmitted
over the line without making the system unstable if |Vg| = |V,] = 110kV?

Ans.  114.09 MW

Sketch the power-angle diagram for the line of Problem 10.31 when that line is represented by (a) an
approximate series circuit and (b) a series reactance only. Determine the maximum power transmitted
in each case.

Ans. (a) 111.18 MW; (b) 151.16 MW

The per-unit reactances for a given system are shown in Fig. 10-10. Unit power is being delivered to the
receiving-end bus of the system at unity power factor and unit voltage. A three-phase short circuit
oceurs at F, the receiving end of one of the lines. Find the critical clearing angle.

- j0.25
1.0V
E— —3 LOMVA
0.2 025 v j0.2  11.0 power factor
F
Fig. 10-10.

Ans. 59°

A 50-MVA, 33-kV, three-phase, four-pole, 60-Hz synchronous generator delivers 40 MW of power to
an infinite bus through a total reactance of 0.55 pu. Because of a sudden fault, the reactance of the
transmission line changes to 0.5 pu. The inertia constant of the machine 4.806 MI/MVA. Sketch the
swing curve during the fault, assuming that the voltage at the infinite bus is 1.0 pu and that behind the
transient reactance is 1.05 pu. The transient reactance of the machine is 0.4 pu.

Ans.  Fig. 10-11

In a plant, two synchronous machines swing together. The inertia constants of the machines are H, and
H,, their MVA ratings are S, and S,, the per-unit mechanical power inputs to the two units are P, and
P,,, and P.; and P, are respectively the electrical power developed by the machines. Obtain an
equivalent swing equation for the two-machine system in terms of inertia constants referred to a
common base, the per-unit synchronous frequency w, in radians per second, the per-unit electrical
frequency in radians per second, and the given values of per-unit power.

2 .
Ans. ;(H, + H)w,,(t)0 = P, + P, — (P + P.,)
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Fig. 10-11.

10.36 During a fault lasting 0.05's, the swing equation for a 60-Hz maching was, for per-unit values,

« 5

é=—;—[ 0=t=<0.05s
The initial power angle was 0.418rad. When the fault was cleared, the developed electrical power
became 2.46sin § per unit. Determine (@) the maximum power angle and (b) whether or not the

machine remained stable.

Ans.  (a) 156°% (b) remained stable

10.37 Calculate the critical clearing time in cycles for the machine of Problem 10.37.

Ans.  11.5 cycles

16.38 Rework Problems 10.36 and 10.37 using a numerical method.




