Medição do campo magnético da Terra pelo método da tangente

Bruno Alexandre Machado Almeida

Instituto Tecnológico de Aeronáutica – ITA, São José dos Campos, SP, Brasil Bolsista PIBIC-CNPq

Bruno.ita@gmail.com

Inácio Malmonge Martin

Instituto Tecnologico de Aeronáutica - ITA/IEF, São José dos Campos, SP, Brasil *martin@ita.br*

Resumo. O projeto proposto inicialmente tratava da montagem de um experimento simples, de baixo custo e com boa precisão para medir o campo magnético terrestre. Além de fornecer a medida de um fenômeno importante e muito conhecido o projeto se realmente válido, propõe a fazer parte dos experimentos de ensino do curso de laboratório de física do 2º ano fundamental do Instituto Tecnológico de Aeronáutica e de outras instituições de ensino que assim desejarem. Trata-se de um experimento simples, de grande valor formativo e de fácil implementação, diferente dos utilizados atualmente.

Dessa forma tinha-se o objetivo de comparar o método proposto com o método utilizado nas escolas, inclusive no ITA, para a medida do campo magnético da Terra e verificar se o primeiro fornece resultados mais precisos, para quem sabe propor a substituição do método antigo pelo proposto, para ajudar na melhoria da qualidade de ensino e do aprendizado. Para isso devería-se encontrar um valor da componente norte-sul horizontal entre 0,15 e 0,30 Gauss (Anomalia Magnética Brasileira) para a magnitude do campo magnético da Terra.

Palavras chave: campo magnético, anomalia magnética, magnitude.

1. Introdução

No interior da Terra existe altas temperaturas e materiais metálicos derretidos que circulam provocando altas correntes elétricas e por consequência campo magnético. Então o sistema de corrente interna a Terra é considerado como um dipolo colocado no interior dando um campo magnético quase constante no tempo. O valor do campo nos polos chegam ao valor de 0,7 Gauss e na região equatorial a 0,3 Gauss. Um Gauss equivale a 10⁻⁴ Tesla que é a medida internacional da intensidade de campo magnético. No entanto na região de São José dos Campos, SP, o campo magnético na superfície da Terra é um dos mais fracos do mundo, devido a anomalia magnética brasileira. Essa anomalia é provocada pela posição do dipolo no interior da Terra que não esta localizado exatamente no seu interior geométrico, e sim deslocado dele. Devido ao movimento das partículas carregadas em torno da Terra devido a influência da força magnética, a anomalia magnética brasileira permite a penetração de partículas carregadas mais próximas da Terra, interagindo com átomos de ar. Este fenômeno é visto por tripulantes de satélites que cruzam essa região, informando sobre luminosidade provocada pelas interações partículas com a atmosfera da região. A radiação X provocada por essas interações foram medidas pela primeira vez com experimentos colocados a bordo de balões estratosféricos, lançados de São José dos Campos (Martin et al., 1973). Existem diversos processos para medir o campo magnético da Terra, sendo o campo estático e o campo variável no tempo. Aparelhos "fluxgates" compostos com bobinas colocados em tres eixos é um processo facil mais não preciso para medir o campo total magnético do local. Magnetômetros baseados na precessão de prótons sobre influência das variações magnéticas locais constituem os aparelhos mais sensíveis e precisos para medir o campo magnético e suas variações de um local. São aparelhos com alto custo e de dificil e delicada operação. Para ensino existem vários métodos de construir um aparelho para medir o campo magnético, sendo o método da tangente um processo de maior visualização e confiabilidade.

2. Resumo das atividades realizadas

Definido o trabalho a ser feito, foi realizada uma avaliação de como proceder na montagem do experimento, pois, como se tinha que montar um circuito RL (esquematizado na página seguinte), devería-se verificar se o equipamento disponível inicialmente seria capaz de suportar a corrente gerada no circuito. Tinham-se disponíveis, então, uma bobina com e 28 espiras e 16 cm de diâmetro, resistores com resistência da ordem de 10^2 ohms. Para essa verificação, também foi utilizado um valor para a intensidade do campo magnético próximo ao máximo esperado em nosso experimento, em torno de 0,30 gauss. Com isso em mãos e utilizando-se a lei de Biot Savart

$$B(z) = \frac{\mu_0 \cdot N \cdot I}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}}$$

onde chega-se a um valor em torno de 200mA para a corrente do circuito, valor próximo ao máximo suportável pelos fios utilizados, mas que ainda sim permitia que se fizesse o experimento sem maiores problemas, tendo em vista que o

valor de 0,30 Gauss era limite máximo(nunca alcançado em nosso experimento, que foi sempre menos que 0,20 Gauss) e logo o valor máximo de corrente também seria menor. Resolvido esse passo partiu-se para as medidas.

Após a montagem do circuito, devería-se posicionar a bobina de tal forma que a resultante do campo magnético terrestre ficasse perpendicular ao campo gerado pela bobina. Assim, com o circuito ainda aberto, bastava alinhar a agulha da bússola com a vista superior da bobina. Dessa forma, com o circuito fechado obtínha-se vários valores para o campo magnético da bobina gerado pela bobina variando-se a ddp do circuito. Medíu-se então a deflexão da bússola para assim gerar gráficos, do campo gerado pela bobina versus a tangente da deflexão medida pela bússola, que deveriam fornecer retas. Como essa deflexão da bússola é gerada pela resultante dos campos magnéticos terrestre e da bobina, pode-se tirar diretamente o valor do campo magnético terrestre através do coeficiente angular (tangente) das curvas, daí o nome do nosso método.

As primeiras tentativas foram frustrantes pois estavam totalmente fora do esperado. Depois de analisar possíveis problemas, verificou-se que se tratava de interferência magnética que curiosamente encontrou-se em alguns pontos do laboratório. Depois de encontrado um lugar ideal para as medições, longe de aparelhos e objetos que pudessem causar tal interferência, novas medições foram feitas regularmente, e que agora, aparentemente sem problemas de interferência ou do equipamento forneceram os resultados mostrados posteriormente no relatório.

3. Descrição do problema

Nesse experimento uma instalação de baixo custo foi efetuada. Utilizou-se uma bússola comercial, uma fonte de tensão contínua 0-10 V, um amperímetro e fios. Montou-se, então, um circuito RL simples, como o esquematizado abaixo que é baseado numa bússola e um jogo de dispositivos elétricos simples (fonte de tensão continua de 0-10 V, Amperímetro e fios), para se medir o campo magnético da Terra.

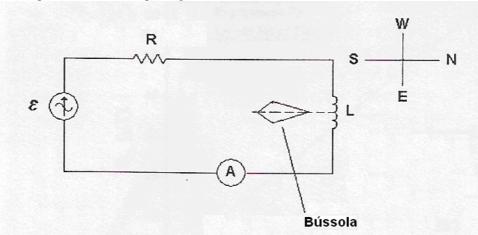


Figura 1. Esquema do experimento a ser montado.

Finalmente, os resultados foram comparados com os obtidos usando-se um magnetômetro comercial do tipo precessão de prótons ou fluxgate realizado pelo grupo de pesquisas do (Nalin B. Trivedi)¹ do INPE, responsável pela medição do campo magnético da Terra e suas variações no tempo, naquela Instituição. Restava, então, comparar o método proposto com o método utilizado no laboratório do 2º ano fundamental do Instituto Tecnológico de Aeronáutica para verificar qual dos métodos apresentava resultados mais precisos.

4. Resultados obtidos

Como descrito anteriormente, no início do trabalho foram obteve-se resultados totalmente fora do esperado, resultados estes que não serão mostrados aqui não pelo fato de estarem fora do esperado, mas sim porque estavam errados, já que após a análise dos resultados e do experimento pôde-se perceber que o aparato experimental estava em um ponto do laboratório onde havia forte interferência magnética. Aparentemente longe de lugares com interferência magnética pôde-se, finalmente, realizar medidas confiáveis e então obtivemos os seguintes resultados, tabelados abaixo, para a primeira medida da intensidade do campo magnético terrestre, utilizando-se um resistor de 100 ohms e variando-se sempre a ddp de 0V a 10V (que será mostrado através da variação da corrente elétrica).

Tabela 1. Primeira medição para o cálculo do campo magnético da Terra:

3 1		8	
Deflexão θ (graus)	Corrente(mA)	$Tan(\theta)$	B-bobina(x10 ⁻⁶ T)
14	20	0,25	4,40
21	35	0,38	7,69
26	40	0,49	8,79

31	50	0,60	10,99
38	60	0,78	13,19
42	70	0,90	15,39
46	80	1,03	17,58
49	90	1,19	19,78
50	100	1,19	21,98
52	110	1,28	24,18

Com os resultados dessa tabela plotou-se o Gráfico a seguir:

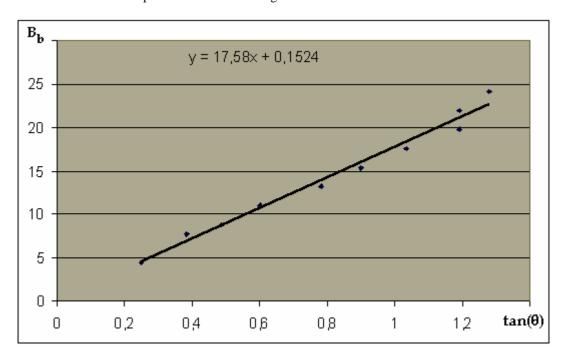


Figura 2. Primeiro gráfico que fornece o valor do campo magnético da Terra.

Como esperado segundo Biot Savart, foi obtida uma reta. Como o nome do trabalho sugere, tomou-se a tangente dessa reta (coeficiente angular da equação) como o valor do campo magnético da Terra, ou seja, chegou-se a $17,58x10^{-6}$ T, ou seja, B_{Terra} = 0,18 Gauss.

Para a segunda medida, utilizou-se um resistor de 80 ohms. Os resultados obtidos foram:

Tabela 2. Segunda medição para o cálculo do campo magnético da Terra:

Deflexão θ (graus)	Corrente(mA)	$Tan(\theta)$	B-bobina(x10 ⁻⁶ T)
12	18,1	0,21	3,99
26	61,6	0,49	6,95
32	43,7	0,62	9,60
37	55,4	0,75	12,18
42	70,0	0,90	15,39
46	81,5	1,03	17,91
49	93,2	1,15	20,48
52	105,3	1,28	23,14
58	130,0	1,60	28,58

Obteve-se então o gráfico a seguir.

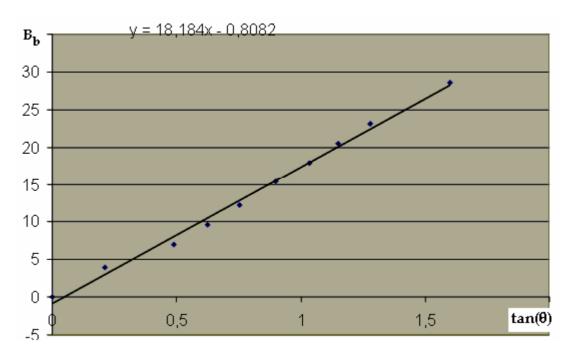


Figura 3. Segundo gráfico que fornece o valor do campo magnético da Terra

Novamente através do método da tangente obteve-se o valor para o campo magnético da Terra de $18,18x10^{-6}\,T$, ou seja, B_{Terra} = $0,18\,Gauss$.

Uma terceira medida foi feita ainda, e nos forneceu os seguintes resultados.

Tabela 3. Terceira medição para o cálculo do campo magnético da Terra:

Deflexão θ (graus)	Corrente(mA)	$Tan(\theta)$	B-bobina(x10 ⁻⁶ T)
12	11,5	0,21	39,78
26	22,4	0,49	69,45
32	33,7	0,62	96,05
37	43,5	0,75	121,76
42	55	0,90	153,86
46	68,3	1,03	179,13
49	82	1,15	204,85
52	94,7	1,28	231,45
58	107,8	1,60	285,74

Da mesma forma que antes, obteve-se o gráfico a seguir.

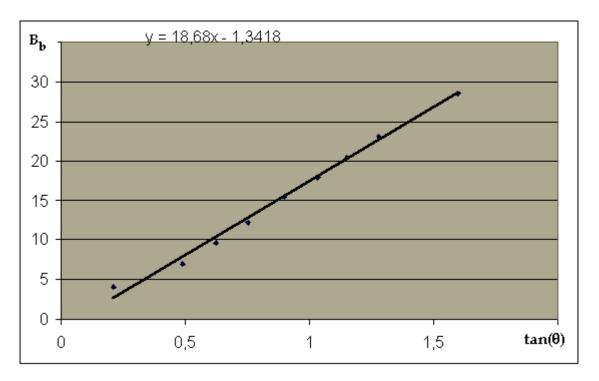


Figura 4. Terceiro gráfico que fornece o valor do campo magnético da Terra.

Dessa vez, através do coeficiente angular da melhor reta encontrada, obteve-se um valor para o campo magnético da Terra de $18,68 \times 10^{-6}$ T, ou seja, $\mathbf{B}_{\text{Terra}} = \mathbf{0,19}$ Gauss.

Uma quarta medida ainda foi feita. Os resultados seguem abaixo.

Tabela 4. Quarta medição para o cálculo do campo magnético da Terra:

Deflexão θ (graus)	Corrente(mA)	$Tan(\theta)$	B-bobina(x10 ⁻⁶ T)
8	11,5	0,14	2,5
13	22,4	0,23	4,9
28	33,7	0,53	7,4
32	43,5	0,62	9,6
36	55	0,73	12,1
42	68,3	0,90	15,0
48	82	1,11	18,0
50	94,7	1,19	20,8
54	107,8	1,38	23,7
58	117,3	1,60	25,8

Outra vez pôde-se confeccionar o seguinte gráfico.

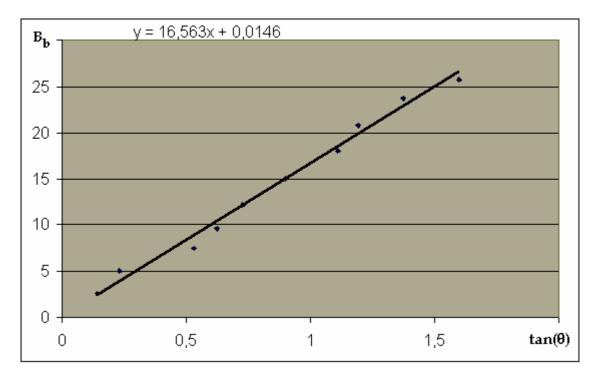


Figura 5. Quarto gráfico que fornece o valor do campo magnético da Terra.

Dessa vez, obteve-se um valor para o campo magnético da Terra de 16,56x10⁻⁶ T, ou seja, \mathbf{B}_{Terra} = **0,17 Gauss.** Para se fazer a avaliação da eficácia de nosso aparelho, realizou-se também a medição do campo magnético da Terra através de método que usava de um circuito eletromagnético semelhante ao nosso, mas, no entanto, a bobina usada era a de Helmotz além de uma barra imantada no centro entre as bobinas onde devería-se colocar paralela e anti paralelamente o campo magnético da Terra e o campo gerado pela bobina e, em ambos os casos, devería-se medir o período das oscilações da barra e através disso obteria-se o valor da intensidade do campo magnético terrestre através da seguinte relação.

$$\frac{1}{T^2} = \left(\frac{\mu}{I}\right) \left(\frac{\phi + 1}{4 \pi^2}\right) B_T + \left(\frac{\mu}{I}\right) \left(\frac{2 \mu_0 N}{5 \pi^2 \sqrt{5} R}\right) i$$

Tal método é realizado no laboratório do 2º ano fundamental do Instituto Tecnológico de Aeronáutica. Através desse método encontrou-se valores da intensidade do campo magnético que variaram de 0,13 Gauss a 0,19 Gauss.

5. Conclusões

Ao final deste trabalho, viu-se que o valor encontrado pelo método da tangente para a intensidade do campo magnético da Terra ficou em torno de 0,18 Gauss, o que está muito próximo do valor esperado para a nossa região que é de 0,20 Gauss. O método utilizado no laboratório do 2º ano fundamental do Instituto Tecnológico de Aeronáutica forneceu valores que variaram de 0,13 Gauss a 0,19 Gauss. Dessa forma, vemos que o método proposto nesse trabalho além de se aproximar mais do valor real, dispersa menos do valor real já que para seu cálculo diminui-se a propagação de erros decorrente no menor número de operações realizadas para a sua determinação.

Percebeu-se também que o método utilizado pelos alunos do Instituto Tecnológico de Aeronáutica era de difícil compreensão e execução o que nos anima a propor que o nosso trabalho seja implementado como forma de substituir o método utilizado pelo laboratório de Física do ITA e de outras instituições que assim o desejarem, já que o método da tangente se mostra de fácil execução e de fácil entendimento o que é muito importante para que se entenda melhor um fenômeno tão importante como o do campo magnético terrestre.

6. Agradecimentos

Agradeço pelo apoio, incentivo e paciência do meu professor e orientador Inácio Malmonge Martin que sempre esteve disposto a me ajudar nas dúvidas que surgiam ao longo do trabalho. Não posso deixar de agradecer ao Departamento de Física do ITA que sempre deixou disponível o seu laboratório e os equipamentos necessários à

confecção deste experimento. Também não poderia deixar de lado o CNPq, que me deu a oportunidade de estar realizando tal trabalho, contribuindo de forma decisiva para minha formação acadêmica.

7. Referências

E. Chaisson, e S. McMillan 2000 *Astronomy Today*, Media update edition (3ª ed. Prentice Hall, New York, NY, 2000). Curso F32 Laboratório de Fisica 2º ano fundamental do ITA, 2006.

H. Karttunen, P. Kröger, H. Oja, M. Poutanen, e K. Donner, J 2000 Fundamental Astronomy, (3ª ed. Springer-Verlag, Berlin, 2000).

Nalin B. Trivedi (comunicação privada), 2007-02-28.

MARTIN, I. M.; RAI, D. B.; COSTA, J. M.; PALMEIRA, R. A. R.; TRIVEDI, N. B.. Enhanced Electron Precipitation In Brazilian Magnetic Anomaly In Association With Sudden Commencement.. Nature, London, England, v. 240, n. 100, p. 84-86, 1973.