Um Método Alternativo e Inteligente para o Monitoramento Remoto das Variações de Tensão de Curta Duração em um Sistema de Distribuição de Energia

SEL0409 – Qualidade da Energia Elétrica

Aluno: Fernando Bambozzi Bottura Orientador: Prof. Dr. Mário Oleskovicz

Departamento de Engenharia Elétrica e de Computação, EESC – USP Laboratório de Sistemas de Energia Elétrica - LSEE

Organização da Apresentação

- Introdução
- Redes Neurais Artificiais (RNAs)
- Sistema Elétrico de Distribuição
- Obtenção da Base de Treinamento para as RNAs
- Treinamento e Definição da Topologia das RNAs
- Resultados
- Conclusões

• **Objetivo do Trabalho:**

- Obter o monitoramento remoto dos níveis de tensão eficaz em pontos de interesse num SD de energia;
- Complementar o processo convencional de medição das variações de tensão;
- Utilizar Redes Neurais Artificiais (RNA) para realizar o monitoramento.

• Motivação:

- Crescente exigência pela QEE;
- Consolidação de normatizações no âmbito nacional e internacional;
- Manter níveis aceitáveis de QEE requer o *monitoramento dos distúrbios*.
 - Problema de alta complexidade e investimento financeiro relativamente alto;
 - Ocorrência dos distúrbios de QEE possui caráter estocástico;

Introdução

• Estudos e Pesquisas Atuais:

- Ferramentas de inteligência artificial como: RNAs, Lógica Fuzzy, Sistemas Neuro-Fuzzy, Algoritmos Genéticos;
- Permitem mapear processos de difícil solução analítica;
- Propiciam soluções eficientes ao monitoramento dos distúrbios de QEE;

• Monitoramento Remoto Proposto:

- Com o medidor de QEE presente na subestação do sistema, estima-se os níveis de tensões eficazes em um (ou mais) ponto(s) do mesmo;
- RNAs quantificam os níveis de tensões eficazes nos pontos remotos;
- Necessária a obtenção da base de treinamento para as RNAs (simulação computacional do SD).

• Aspectos Gerais

- Primeiros trabalhos publicados há mais de 50 anos;
- Inspiração neurobiológica;
- Modelar matematicamente a maneira como o cérebro humano resolve problemas de alta especificidade e complexidade → Processamento paralelo

• Aplicações diversas:

- Classificação de padrões e reconhecimento de padrões (*Perceptron Multicamadas, Kohonen*);
- Aproximação de funções (PMC, RBF);
- Ação preditiva (*TDNN Time Delay Neural Network*);
- Memórias associativas (Hopfield);
- Reconhecimento e avaliação de distúrbios de QEE

- **o** Conceito Fundamental: Conhecimento Adquirido
 - RNAs armazenam conhecimento adquirido, interagindo com o ambiente via um algoritmo de aprendizagem;
 - Modificação da matriz de pesos sinápticos;
 - Aprendizagem supervisionada requer apresentar pares de entradasaída às redes;
 - Generalização de respostas para entradas desconhecidas.

o Modelo Matemático do Neurônio Artificial

- Unidade fundamental de processamento
- 3 elementos básicos → <u>pesos</u> <u>sinápticos</u>, <u>somador</u> e <u>função de</u> <u>ativação</u>

o Perceptron de Rosemblatt

- Classificador de padrões;
- Padrões linearmente separáveis.

 x_2

X

х

х

х

х

• Redes Perceptron de Múltiplas Camadas

Única Camada

Múltiplas Camadas

- **o** Algoritmos de Treinamento para Redes *Perceptron* Multicamadas
 - Backpropagation:
 - Pesos ajustados na direção oposta do gradiente da função de erro quadrático (Descida do Gradiente).
 - Levenberg-Marquardt:
 - Função de ajuste dos pesos que combina o método da Descida do Gradiente com o Método de Newton (convergência mais rápida).

Sistema de Distribuição - SD

 Disposição geográfica dos alimentadores pertencentes à subestação da concessionária regional

• Alguns parâmetros para a modelagem computacional do sistema de distribuição:

- Equivalente do sistema;
- Dados do transformador de potência da subestação;
- Parâmetros dos condutores utilizados;
- Dados das cargas alocadas no alimentador

Sistema de Distribuição - SD

- Simulação das Situações de Falta
 - Obter boa variedade de distâncias de faltas em relação ao ponto monitorado;
 - Simuladas faltas fase A-terra;
 - 20 pontos de faltas dispostos ao longo do sistema de distribuição foram selecionados.

• Parâmetros variados para cada ponto de aplicação do defeito:

 \rightarrow Impedância: 0, 10, 20, 30 e 40 (Ω);

 \rightarrow Ângulo de falta: 0 e 90 (°);

 \rightarrow Total de 10 casos para cada ponto;

 \rightarrow Total de casos simulados: 20 x 10 = 200 casos de faltas.

- Padrão de ativação das RNA (padrões de entrada)
 - 1 caso de falta → 9 ciclos dos sinais medidos na subestação;
 - Selecionados 3 ciclos precedentes e 6 ciclos subsequentes ao instante de início de cada falta;
- Pré processamento:
 - Janela deslizante de 1 ciclo, com deslocamento de ½ ciclo;
 - A cada passo da janela \rightarrow cálculo do valor eficaz (*RMS*);

• Padrões de entrada

1 caso de falta = 9 ciclos = 17 valores RMS

200 casos = 200 x 17 = 3.400 valores de entrada para cada RNA

Padrões de saída

As saídas associadas a cada entrada foram obtidas da mesma forma, porém, medindo-se o valor eficaz da tensão no(s) ponto(s) remoto(s).

70% para o treinamento → 2.380 pares de vetores entrada /saída
30% para validação → 1.020 pares de vetores entrada /saída

- Realizado em duas Etapas:
 - **Etapa 1:** Treinamento com o algoritmo *Backpropagation*
 - **Etapa 2:** Treinamento com o algoritmo *Levenberg-Marquardt*

Etapa 1: Backpropagation

- Treinamento da rede da <u>fase A</u>, aumento gradativo do número de neurônios nas camadas ocultas;
- Análise do desempenho (Validação Cruzada):
 - Erro entre a saída desejada, <u>no ponto remoto MR1</u>, e a resposta fornecida pela RNA (conjunto de teste)

15

40

• **Critério de parada:** Erro Médio Quadrático = 10^{-6} e/ou Máximo de 6.000 épocas.

Topologia 6–10–5–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
1	3,73	8,63	9,41	21,76	0,346	
2	10,1	46,57	6,96	63,63	0,31	
3	31,47	4,02	8,14	43,63	0,314	
4	32,94	9,8	20,59	63,33	0,257	
5	40,39	9,71	15,29	65,39	0,372	
Médias	23,73	15,75	12,08	51,55	0,32	

Fase A

	Topologia 6–25–15–1							
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)			
1	44,41	16,96	11,86	73,24	0,315			
2	36,08	16,86	14,31	67,25	0,62			
3	35,59	18,92	14,8	69,31	0,401			
4	36,86	22,65	13,53	73,04	0,888			
5	43,43	14,61	14,9	72,94	0,231			
Médias	39,27	18	13,88	71,16	0,491			

Fase A

• Critério de parada: Erro Médio Quadrático = 10⁻⁶ e/ou Máximo de <u>20.000 épocas</u>.

Topologia 6–25–15–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
1	41,57	13,24	17,35	72,16	0,447	
2	43,04	22,84	7,06	72,94	0,611	
3	42,35	19,8	11,67	73,82	0,218	
4	47,55	17,94	10,1	75,59	0,578	
5	34,9	24,12	16,47	75,49	0,666	
Médias	41,88	19,59	12,53	74	0,504	

Fase A

Topologia 6–25–15–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
1	42,75	24,22	9,9	76,86	0,184	
2	45,39	20,98	14,8	81,18	0,284	
3	47,55	13,24	15,39	76,18	0,264	
4	40,39	25,88	14,8	81,08	0,195	
5	45,69	17,45	13,73	76,86	0,239	
Médias	44,35	20,35	13,73	78,43	0,230	

Fase B

Fase C

Topologia 6–25–15–1							
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)		
1	51,47	24,51	10,49	86,47	0,240		
2	57,84	18,92	9,51	86,27	0,174		
3	46,47	26,76	11,47	84,71	0,2		
4	47,16	26,18	13,14	86,47	0,278		
5	60,29	18,33	9,51	88,14	0,163		
Médias	52,65	22,94	10,82	86,41	0.211		

Os resultados do treinamento *Backpropagation* levaram ao estudo dos efeitos do algoritmo de *Levenberg-Marquardt*

Etapa 2: Treinamento com o algoritmo Levenberg-Marquardt

Critério de parada: Erro Médio Quadrático = 10⁻⁶ e/ou Máximo de 800 épocas. **Fase A**

	Topologia 6–10–5–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)		
1	70,2	18,43	5,88	94,51	3,696		
2	70,29	18,63	5,98	94,9	0,336		
3	69,61	18,82	5,29	93,73	0,621		
4	69,41	20,2	3,53	93,14	0,974		
5	73,53	11,37	8,53	93,43	0,362		
Médias	70,61	17,49	5,84	93,94	1,198		

15

40

Fase A

	Topologia 6–25–20–1						
	Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
Ε	1	80,1	12,16	1,76	94,02	0,556	
	2	80,98	9,22	3,43	93,63	4,582	
	3	77,84	9,8	5,2	92,84	1,499	
	4	82,45	8,82	2,16	93,43	0,759	
	5	81,18	9,12	3,73	94,02	0,585	
	Médias	81,81	8,97	2,94	93,73	0,672	

• Treinamento para as Fase B e C

Topologia 6–25–20–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
1	86,67	6,37	3,33	96,37	4,83	
2	79,31	9,9	6,37	95,59	0,667	
3	81,67	9,02	6,08	96,76	1,192	
4	81,86	12,65	2,35	96,86	0,652	
5	82,65	9,41	3,24	95,29	1,026	
Médias	82,43	9,47	4,27	96,18	1,673	

Fase **B**

Fase C

Topologia 6–25–20–1						
Ensaio	erro<0,005p.u. (%)	0,005≤ erro <0,015p.u. (%)	0,015≤ erro ≤0,025p.u. (%)	erro ≤0,025p.u. (%)	Magnitude do maior erro (p.u.)	
1	88,33	5,59	1,18	95,1	0,364	
2	87,65	8,14	1,57	97,35	0,58	
3	88,33	5,59	1,18	95,1	0,364	
4	88,14	7,94	1,27	97,35	0,476	
5	87,94	7,55	2,55	98,04	0,704	
Médias	88,08	6,96	1,55	96,59	0,497	

Escolha da topologia para as 3 fases

Arquitetura da RNA	Fase A e≤0,025pu (%)	Fase B e≤0,025pu (%)	Fase C e≤0,025pu (%)
(6-15-10-1)	93,76	96,8	96,16
(6-25-20-1)	93,72	96,18	96,59

Optou-se pela topologia $6 - 15 - 10 - 1 \rightarrow$ Menor esforço computacional!

Análise de um caso de falta simulada

- Falta em 4, com impedância de 30Ω, e ângulo de incidência de falta de 90°;
- Pontos observados no sistema: MR1 e MR2;

Resultados

Resultados

Duração (ciclos)

Resultados

- Análise dos Histogramas de erros
 - MR1 (<0,03p.u.)
 - Fase A: 98,73%
 - Fase B: 98,82%
 - Fase C: 99,22%

- MR2 (<0,03p.u.)
 - Fase A : 97,35%
 - Fase B : 98,73%
 - Fase C : 99,02%

• Fato Importante!:

 80% a 90% dos casos de teste situam-se na faixa de erro inferior a 0,005p.u.

Conclusões

- Elevado índice de acerto das RNA:
 - Em geral, mais de 98% dos casos de teste permaneceram com erros inferiores e/ou iguais a 0,03p.u. (3%), fornecendo indícios da alta fidelidade das medidas fornecidas pelas RNA;
- Logo, foi possível apresentar um método alternativo para se monitorar remotamente as tensões em pontos de interesse do SD a partir de dados coletados na SE;
- Os resultados revelam que as RNA aprenderam o comportamento do SD de maneira a generalizar respostas (tensões trifásicas monitoradas);
- Apresenta-se como uma técnica complementar que pode ser utilizada juntamente com medidores físicos de QEE;

Publicações e Continuação da Pesquisa.

• Divulgação dos primeiros resultados

- BOTTURA, F. B. Um método alternativo e inteligente para o monitoramento remoto das variações de tensão de curta duração em um sistema de distribuição de energia elétrica. Trabalho de Conclusão de Curso (Engenharia Elétrica) – EESC, USP. São Carlos, 2010.
- BOTTURA, F. B. ; BRANCO, H. M. G. C. ; OLESKOVICZ, M. . Avaliação e Monitoramento das Variações de Tensão ao Longo de um Sistema de Distribuição de Energia Elétrica Empregando Redes Neurais Artificiais. In: IX Conferência Brasileira sobre Qualidade da Energia Elétrica - CBQEE, 2011, Cuiabá - MT. IX Conferência Brasileira sobre Qualidade da Energia Elétrica - CBQEE, 2011.
- TCC Fabrício Silva Pires de Camargo (2012)
 - Generalização de uma topologia de RNA para quaisquer pontos MR;
 - Sistematização da metodologia para ser aplicada em qualquer SD.
- CAMARGO, F. S. P. Uma estimação alternativa, remota e continuada das variações de tensão em um sistema de distribuição utilizando redes neurais artificiais. Trabalho de Conclusão de Curso (Engenharia Elétrica) – EESC, USP. São Carlos, 2012.
- BOTTURA, F. B. ; CAMARGO, F. S. P. ; OLESKOVICZ, M. ; SANTOS, R. C. . Monitoramento remoto do perfil da tensão eficaz em cargas dispostas em um sistema de distribuição utilizando redes neurais artificiais. In: X Conferência Brasileira sobre Qualidade da Energia Elétrica - X CBQEE, 2013, Araxá. X Conferência Brasileira sobre Qualidade da Energia Elétrica - X CBQEE, 2013.

Publicações e Continuação da Pesquisa.

- TCC Daniel Ferreira Lima (2014)
 - Atualização do banco de dados para os 11 tipos de faltas;
 - Aplicação da metodologia sistematizada por Camargo (2012);
 - Definição de uma nova topologia de RNA para atender os novos casos de falta;
 - Estudo preliminar da influência das posições de faltas simuladas
 - Mais recentemente novos resultados sobre o treinamento e formação do banco de dados.
 Em submissão ao IEEE Power & Energy Society General Meeting 2016, Boston, EUA.
- LIMA, D. F.; O monitoramento remoto da tensão trifásica frente às situações de curto-circuito em um sistema de distribuição via redes neurais artificiais. Trabalho de Conclusão de Curso (Engenharia Elétrica) – EESC, USP. São Carlos, 2014.
- LIMA, D. F. ; BOTTURA, F. B. ; OLESKOVICZ, M. . Redes PMC aplicadas ao monitoramento remoto da tensão trifásica frente às situações de curtos-circuitos em um sistema de distribuição. In: XI Conferência Brasileira sobre Qualidade da Energia Elétrica - CBQEE, 2015, Campina Grande. XI Conferência Brasileira sobre Qualidade da Energia Elétrica - CBQEE, 2015.

Um Método Alternativo e Inteligente para o Monitoramento Remoto das Variações de Tensão de Curta Duração em um Sistema de Distribuição de Energia

Obrigado pela Atenção!

Fernando B. Bottura [fernando.bottura@usp.br]

Departamento de Engenharia Elétrica e de Computação, EESC – USP Laboratório de Sistemas de Energia Elétrica - LSEE

