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Disease Focus

Editor’s Note: Disease Focus articles provide brief overviews of a neural disease or syndrome, emphasizing potential links to basic
neural mechanisms. They are presented in the hope of helping researchers identify clinical implications of their research. For more
information, see http://www.jneurosci.org/misc/ifa_minireviews.dtl.
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Migraine is a common, multifactorial, disabling, recurrent, hereditary neurovascular headache disorder. It usually strikes sufferers a few
times per year in childhood and then progresses to a few times per week in adulthood, particularly in females. Attacks often begin with
warning signs (prodromes) and aura (transient focal neurological symptoms) whose origin is thought to involve the hypothalamus,
brainstem, and cortex. Once the headache develops, it typically throbs, intensifies with an increase in intracranial pressure, and presents
itself in association with nausea, vomiting, and abnormal sensitivity to light, noise, and smell. It can also be accompanied by abnormal
skin sensitivity (allodynia) and muscle tenderness. Collectively, the symptoms that accompany migraine from the prodromal stage
through the headache phase suggest that multiple neuronal systems function abnormally. As a consequence of the disease itself or its
genetic underpinnings, the migraine brain is altered structurally and functionally. These molecular, anatomical, and functional abnor-
malities provide a neuronal substrate for an extreme sensitivity to fluctuations in homeostasis, a decreased ability to adapt, and the
recurrence of headache. Advances in understanding the genetic predisposition to migraine, and the discovery of multiple susceptible
gene variants (many of which encode proteins that participate in the regulation of glutamate neurotransmission and proper formation of
synaptic plasticity) define the most compelling hypothesis for the generalized neuronal hyperexcitability and the anatomical alterations
seen in the migraine brain. Regarding the headache pain itself, attempts to understand its unique qualities point to activation of the
trigeminovascular pathway as a prerequisite for explaining why the pain is restricted to the head, often affecting the periorbital area and

the eye, and intensifies when intracranial pressure increases.

Introduction

Migraine is a recurrent headache disorder
affecting ~15% of the population during
the formative and most productive peri-
ods of their lives, between the ages of 22
and 55 years (Stewart et al., 1994). It fre-
quently starts in childhood, particularly
around puberty, and affects women more
than men (3:1 female-to-male ratio;
Leonardi et al., 2005; Bigal and Lipton,
2009). It tends to run in families and, as
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such, is considered a genetic disorder
(Ferrari et al., 2015).

In some cases, the headache begins
with no warning signs and ends with
sleep. In other cases, the headache may be
preceded by a prodromal phase that in-
cludes fatigue; euphoria; depression; irri-
tability; food cravings; constipation; neck
stiffness; increased yawning; and/or ab-
normal sensitivity to light, sound, and
smell (Kelman, 2004; Schoonman et al.,
2006); and an aura phase that includes a
variety of focal cortically mediated neuro-
logical symptoms that appear just before
and/or during the headache phase (Lashley,
1941; Cutrer et al., 1998; Hansen et al., 2012,
2013). Symptoms of migraine aura develop
gradually, feature excitatory and inhibitory
phases, and resolve completely (Russell and
Olesen, 1996). Positive (gain-of-function)
and negative (loss-of-function) symptoms

may present as scintillating lights and scoto-
mas when affecting the visual cortex; pares-
thesia, and numbness of the face and hands
when affecting the somatosensory cortex;
tremor and unilateral muscle weakness
when affecting the motor cortex or basal
ganglia; and difficulty saying words (apha-
sia) when affecting the speech area (Cutrer
and Olesen, 2006).

The pursuant headache is commonly
unilateral, pulsating, aggravated by rou-
tine physical activity, and can last a few
hours to a few days (Headache Classifica-
tion Committee of the International
Headache Society, 2013). As the headache
progresses, it may be accompanied by a
variety of autonomic symptoms (nausea,
vomiting, nasal/sinus congestion, rhinor-
rhea, lacrimation, ptosis, yawning, fre-
quent urination, and diarrhea), affective
symptoms (depression and irritability),
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cognitive symptoms (attention deficit,
difficulty finding words, transient amne-
sia, and reduced ability to navigate in
familiar environments), and sensory
symptoms (photophobia, phonophobia,
osmophobia, muscle tenderness, and cu-
taneous allodynia; Silberstein, 1995; Lip-
ton et al., 2001; Kelman and Tanis, 2006).

The extent of these diverse symptoms
suggests that migraine is more than a
headache. It is now viewed as a complex
neurological disorder that affects multiple
cortical, subcortical, and brainstem areas
that regulate autonomic, affective, cogni-
tive, and sensory functions. As such, it is
evident that the migraine brain differs
from the nonmigraine brain (Borsook et
al., 2012a) and that an effort to unravel the
pathophysiology of migraine must ex-
pand beyond the simplistic view that there
are “migraine generator” areas (Borsook
and Burstein, 2012). In studying migraine
pathophysiology, we must consider how
different neural networks interact with
each other to allow migraine to com-
mence with stressors such as insufficient
sleep, skipping meals, stressful or post-
stressful periods, hormonal fluctuations,
alcohol, certain foods, flickering lights,
noise, or certain scents, and why migraine
attacks are sometimes initiated by these
triggers and sometimes not. We must
tackle the enigma of how attacks are re-
solved on their own or just weaken and
become bearable by sleep, relaxation,
food, and/or darkness. We must explore
the mechanisms by which the frequency
of episodic migraine increases over time
(from monthly to weekly to daily), and
why progression from episodic to chronic
migraine is uncommon.

Disease mechanisms

In many cases, migraine attacks are likely
to begin centrally, in brain areas capable
of generating the classical neurological
symptoms of prodromes and aura,
whereas the headache phase begins with
consequential activation of meningeal no-
ciceptors at the origin of the trigemino-
vascular system (Noseda and Burstein,
2013). While some clues about how the
occurrence of aura can activate nocicep-
tors in the meninges exist, nothing is
known about the mechanisms by which
common prodromes initiate the headache
phase or what sequence of events they
trigger that results in activation of the
meningeal nociceptors. A mechanistic
search for a common denominator in mi-
graine symptomatology and characteris-
tics points heavily toward a genetic
predisposition to generalized neuronal

hyperexcitability (Ferrari et al., 2015).
Mounting evidence for alterations in
brain structure and function that are sec-
ondary to the repetitive state of headache
can explain the progression of disease
(Sprenger and Borsook, 2012).

Prodromes

In the context of migraine, prodromes are
symptoms that precede the headache by
several hours. Examination of symptoms
that are most commonly described by pa-
tients point to the potential involvement
of the hypothalamus (fatigue, depression,
irritability, food cravings, and yawning),
brainstem (muscle tenderness and neck
stiffness), cortex (abnormal sensitivity to
light, sound, and smell), and limbic sys-
tem (depression and anhedonia) in the
prodromal phase of a migraine attack
(Maniyar et al., 2014). Given that symp-
toms such as fatigue, yawning, food crav-
ing, and transient mood changes occur
naturally in all humans, it is critical that
we understand how their occurrence
triggers a headache; whether the routine
occurrence of these symptoms in mi-
graineurs (i.e., when no headache devel-
ops) differs mechanistically from their
occurrence before the onset of migraine;
and why yawning, food craving, and fa-
tigue do not trigger a migraine in healthy
subjects. Recently, much attention has
been given to the hypothalamus because it
plays a key role in many aspects of human
circadian rhythms (wake-sleep cycle,
body temperature, food intake, and hor-
monal fluctuations) and in the continu-
ous effort to maintain homeostasis.
Because the migraine brain is extremely
sensitive to deviations from homeostasis,
it seems reasonable that hypothalamic
neurons that regulate homeostasis and
circadian cycles are at the origin of some
of the migraine prodromes.

Unraveling the mechanisms by which
hypothalamic and brainstem neurons can
trigger a headache is central to our ability
to develop therapies that can intercept the
headache during the prodromal phase
(i.e., before the headache begins; Géraud
and Donnet, 2013). The ongoing effort to
answer this question focuses on two very
different possibilities (Fig. 1). The first
suggests that hypothalamic neurons that
respond to changes in physiological and
emotional homeostasis can activate men-
ingeal nociceptors by altering the balance
between parasympathetic and sympa-
thetic tone in the meninges (Burstein and
Jakubowski, 2005) toward the predomi-
nance of parasympathetic tone (Shechter
etal., 2002). Support for such a proposal is
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based on the following: (1) hypothalamic
neurons are in a position to regulate the
firing of preganglionic parasympathetic
neurons in the superior salivatory nucleus
(SSN) and sympathetic preganglionic
neurons in the spinal intermediolateral
nucleus (Hosoya et al., 1983, 1984; Tucker
and Saper, 1985; Loewy, 1990; Dampney,
2011; Fig. 1A); (2) the SSN can stimulate
the release of acetylcholine, vasoactive in-
testinal peptide, and nitric oxide from
meningeal terminals of postganglionic
parasympathetic neurons in the spheno-
palatine ganglion (SPG), leading to dila-
tion of intracranial blood vessels, plasma
protein extravasation, and local release of
inflammatory molecules capable of acti-
vating pial and dural branches of menin-
geal nociceptors; (3) meningeal blood
vessels are densely innervated by para-
sympathetic fibers (Larsson et al., 1976;
Nozaki et al., 1993; Suzuki and Hardebo,
1993); (4) activation of SSN neurons can
modulate the activity of central trigemi-
novascular neurons in the spinal trigemi-
nal nucleus (SpV; Akerman et al., 2012);
(5) activation of meningeal nociceptors
appears to depend partially on enhanced
activity in the SPG (Bolay et al., 2002); (6)
enhanced cranial parasympathetic tone
during migraine is evident by lacrimation
and nasal congestion (Liveing, 1873;
Havanka-Kanniainen et al., 1988; Shech-
ter et al., 2002); and, finally, (7) blockade
of the sphenopalatine ganglion provides
partial or complete relief of migraine pain
(Sluder, 1908; Kudrow, 1980; Diamond
and Dalessio, 1982; Waldman, 1993; Kud-
row et al., 1995; Maizels et al., 1996; Yar-
nitsky et al., 2003).

The second proposal suggests that
hypothalamic and brainstem neurons
that regulate responses to deviation
from physiological and emotional ho-
meostasis can lower the threshold for
the transmission of nociceptive trigemi-
novascular signals from the thalamus to
the cortex—a critical step in establishing
the headache experience (Noseda et al.,
2014). This proposal is based on under-
standing how the thalamus selects, ampli-
fies, and prioritizes information it
eventually transfers to the cortex (McCor-
mick, 1992; Sherman and Guillery, 1998;
Sherman, 2005), and how hypothalamic
and brainstem nuclei regulate relay
thalamocortical neurons (Saper et al.,
2005, 2010). It is constructed from recent
evidence that relay trigeminothalamic
neurons in sensory thalamic nuclei re-
ceive direct input from hypothalamic
neurons that contain dopamine, hista-
mine, orexin, and melanin concentrating
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Figure 1.  From prodromes to headache: proposed hypothesis for the initiation of headache by the hypothalamus and brainstem. A, Hypothalamic—parasympathetic pathway for the
activation of meningeal nociceptors by neurons that regulate homeostasis, circadian rhythms, and autonomic functions (adapted from Burstein and Jakubowski, 2005). Hypothalamically
mediated activation of preganglionic parasympathetic neurons in the SSN can trigger the release of acetylcholine, vasoactive intestinal peptide, and nitric oxide from meningeal
terminals of postganglionic parasympathetic neurons in the SPG. B, (, Neurochemical pathways capable of modulating the excitability of relay thalamocortical neurons in response to
deviation from physiological (food intake, sleep) and emotional (stress, anxiety) homeostasis. The illustration (top right) shows the hypothalamic and brainstem origin of each of the
pathways found to converge on thalamic trigeminovascular neurons (adapted from Kagan et al., 2013; Noseda et al., 2014). The photomicrographs show the extent of innervation by
vesicular glutamate transporter, vesicular GABA transporter, serotonin transporter, dopamine beta hydroxylase, tyrosine hydroxylase, histamine, melanin-concentrating hormone, and
orexin A. D, Conceptual illustration of how brainstem tone (allostatic load) may allow the headache to develop incosistently in response to identical changes in external and internal
conditions. Brainstem “state of tone” can limit afferent nociceptive drive in migraine-susceptible individuals (adapted from Borsook and Burstein, 2012). Fluctuation of activity in
brainstem neurons s thought to drive adaptive behavior. In the context of migraine, this can apply to the modulation of nociceptive signals from the meninges. The gating of these signals
depends on the threshold of the neural networks that modify these afferent signals. Thus, the robustness of the “gate” that allows nociceptive signals to drive central trigeminovascular
neurons (and thus headache) is dictated by brainstem tone. When the brainstem tone is high [red dot below line of migraine threshold (MT)], nociceptive signals are inhibited; and when
the brainstem tone is low (red dot above MT), afferent signals are not effectively blocked. The model illustrates the following three functional brainstem states: (1) normal state, when
cyclical brainstem activity is high, the potency of pain facilitation (enhanced synaptic strength in the dorsal horn) is too high to allow nociceptive signals from the periphery to drive the
central neurons into the active state (left); (2) threshold state, at threshold, the system has reached a primed state that could tip into a functional state that would allow nociceptive drive
from the dura to activate the central trigeminovascular neurons (middle); and (3) migraine state, when cyclical brainstem activity is low (more sensitive to stimuli), nociceptive signals
from the periphery can drive the central neurons into the active state (right). A11, Hypothalamic dopaminergic nucleus; C1/C2, cervical spinal cord segments; DR, dorsal raphe nucleus;
DTM, dorsal tuberomammary hypothalamic nucleus; LC, locus ceruleus; LH, lateral hypothalamus, PeF, perifornical area; RMg, nucleus raphe magnus; TG, trigeminal ganglion.
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hormone (MCH), and brainstem neurons
that contain noradrenaline and serotonin
(Noseda et al., 2014; Fig. 1B,C). In prin-
ciple, each of these neuropeptides/neu-
rotransmitters can shift the activity of
thalamic neurons from burst to tonic
mode if it is excitatory (dopamine, and
high concentration of serotonin, nor-
adrenaline, histamine, orexin), and from
tonic to burst mode if it is inhibitory
(MCH and low concentration of sero-
tonin). The opposing factors that regulate
the firing of relay trigeminovascular tha-
lamic neurons provide an anatomical
foundation for explaining why pro-
dromes give rise to some migraine attacks
but not to others, and why external (e.g.,
exposure to strong perfume) and internal
conditions (e.g., skipping a meal and feel-
ing hungry, sleeping too little and being
tired, or simple stress) trigger migraine at-
tacks so inconsistently. In the context of
migraine, the convergence of these hypo-
thalamic and brainstem neurons on tha-
lamic trigeminovascular neurons can
establish high and low set points for the
allostatic load of the migraine brain (Bor-
sook et al., 2012b). The allostatic load, de-
fined as the amount of brain activity
required to appropriately manage the
level of emotional or physiological stress
at any given time (McEwen, 1998, 2004;
McEwen and Wingfield, 2003; Peters and
McEwen, 2012), can explain why external
and internal conditions only trigger head-
ache some of the times, when they coin-
cide with the right circadian phase of
cyclic rhythmicity of brainstem, and hy-
pothalamic and thalamic neurons that
preserve homeostasis (Fig. 1D).

Cortical spreading depression

Clinical and preclinical studies suggest
that migraine aura is caused by cortical
spreading depression (CSD), a slowly
propagating wave of depolarization/exci-
tation followed by hyperpolarization/in-
hibition in cortical neurons and glia
(Leao, 1944; Sugaya et al., 1975; Cutrer et
al., 1998; Hadjikhani et al., 2001). While
specific processes that initiate CSD in hu-
mans are not known, mechanisms that in-
voke inflammatory molecules as a result
of emotional or physiological stress, such
as lack of sleep, may play a role. In the
cortex, the initial membrane depolariza-
tion is associated with a large efflux of po-
tassium; influx of sodium and calcium;
release of glutamate, ATP, and hydrogen
ions; neuronal swelling (Hansen and Zeu-
then, 1981; Mutch and Hansen, 1984;
Schock et al., 2007; Charles and Brennan,
2009; Chang et al., 2010); upregulation of

genes involved in inflammatory process-
ing; and a host of changes in cortical per-
fusion and enzymatic activity that include
opening of the megachannel Panx1, acti-
vation of caspase-1, and a breakdown of
the blood—brain barrier (Karatas et al.,
2013). Outside the brain, caspase-1 acti-
vation can initiate inflammation by re-
leasing high-mobility group protein Bl
and interleukin-13 into the CSF, which
then activates nuclear factor-«kB in astro-
cytes, with the consequential release of
cyclooxygenase-2 and inducible nitric ox-
ide synthase (iNOS) into the subarach-
noid space (Karatas et al., 2013). The
introduction into the meninges of these
proinflammatory molecules, as well as
calcitonin gene-related peptide (CGRP)
and nitric oxide (Wahl et al., 1994; Ob-
renovitch et al., 2002; Russo, 2015), may
be the link between aura and headache be-
cause the meninges are densely innervated
by pain fibers whose activation distin-
guishes headaches of intracranial origin
(e.g., migraine, meningitis, and subarach-
noid bleeds) from headaches of extracra-
nial origin (e.g., tension-type headache,
cervicogenic headache, or headaches
caused by mild trauma to the cranium).

Anatomy and physiology of the
trigeminovascular pathway: from
activation to sensitization

Anatomical description. The trigemino-
vascular pathway conveys nociceptive in-
formation from the meninges to the
brain. The pathway originates in trigemi-
nal ganglion neurons whose peripheral
axons reach the pia, dura, and large cere-
bral arteries (Uddman et al., 1985), and
whose central axons reach the nociceptive
dorsal horn laminae of the SpV (Liu et al.,
2004). In the SpV, the nociceptors con-
verge on neurons that receive additional
input from the periorbital skin and peri-
cranial muscles (Davis and Dostrovsky,
1988). The ascending axonal projections
of trigeminovascular SpV neurons trans-
mit monosynaptic nociceptive signals to
(1) brainstem nuclei, such as the ventro-
lateral periaqueductal gray, reticular for-
mation, superior salivatory, parabrachial,
cuneiform, and the nucleus of the solitary
tract; (2) hypothalamic nuclei, such as the
anterior, lateral, perifornical, dorsome-
dial, suprachiasmatic, and supraoptic;
and (3) basal ganglia nuclei, such as the
caudate-putamen, globus pallidus, and sub-
stantia innominata (Malick et al., 2000).
These projections may be critical for the ini-
tiation of nausea, vomiting, yawning, lacri-
mation, urination, loss of appetite, fatigue,
anxiety, irritability, and depression by the
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headache itself (Burstein and Jakubowski,
2005). Additional projections of trigemino-
vascular SpV neurons are found in the
thalamic ventral posteromedial (VPM),
posterior (PO), and parafascicular nuclei
(Malick et al., 2000). Relay trigeminovascu-
lar thalamic neurons that project to the
somatosensory, insular, motor, parietal as-
sociation, retrosplenial, auditory, visual,
and olfactory cortices are in a position to
construct the specific nature of migraine
pain (i.e., location, intensity, and quality)
and many of the cortically mediated symp-
toms that distinguish between migraine
headache and other pains. These include
transient symptoms of motor clumsiness,
difficulty focusing, amnesia, allodynia, pho-
nophobia, photophobia, and osmophobia
(Noseda et al., 2011). Figure 2A illustrates
the complexity of the trigeminovascular
pathway.

Activation. Studies in animals show
that CSD initiates delayed activation (Fig.
2 B, C) and immediate activation (Fig. 2D)
of peripheral and central trigeminovascu-
lar neurons in a fashion that resembles the
classic delay and occasional immediate
onset of headache after aura (Zhang et al,,
2010, 2011), and that systemic adminis-
tration of the M-type potassium channel
opener KCNQ2/3 can prevent the CSD-
induced activation of the nociceptors
(Zhang et al., 2013). These findings sup-
port the notion that the onset of the head-
ache phase of migraine with aura
coincides with the activation of meningeal
nociceptors at the peripheral origin of the
trigeminovascular pathway. Whereas the
vascular, cellular, and molecular events
involved in the activation of meningeal
nociceptors by CSD are not well under-
stood, a large body of data suggests that
transient constriction and dilatation of
pial arteries and the development of dural
plasma protein extravasation, neurogenic
inflammation, platelet aggregation, and
mast cell degranulation (Moskowitz and
Macfarlane, 1993; Moskowitz, 1993), many
of which may be driven by CSD-dependent
peripheral CGRP release (Russo, 2015),
can introduce to the meninges proinflam-
matory molecules, such as histamine, bra-
dykinin, serotonin, and prostaglandins
(prostaglandin E2), and a high level of hy-
drogen ions-thus altering the molecular en-
vironment in which meningeal nociceptors
exist.

Sensitization. When activated in the al-
tered molecular environment described
above, peripheral trigeminovascular neu-
rons become sensitized (their response
threshold decreases and their response
magnitude increases) and begin to re-
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Figure 2.  Activation and sensitization of the trigeminovascular pathway provide anatomical and physiological substrates for migraine headache and its associated symptoms. A, Intricate
anatomy of the trigeminovascular pathway. B-D, Single-unit recording showing delayed (B, €) and immediate (D) activation of a meningeal nociceptor (B) and two SpV neurons (C, D) following
the induction of CSD in the visual cortex of the rat. E, Activation and sensitization of a meningeal nociceptor. Baseline responses to mechanical stimulation of the dura (blue) increase (red) after
exposure to inflammatory soup (IS). F, Activation and sensitization of a trigeminovascular neuron in the SpV. Baseline responses to mechanical stimulation of the periorbital skin (blue) increased
(red) after a brief exposure of the dura to IS. G, Activation and sensitization of thalamic trigeminovascular neurons. Baseline responses to mechanical stimulation of the lower limb (blue) increased
inmagnitude and duration (red) following brief application of IS to the dura. H, Contrast analysis of BOLD signals registered in fMRI scans of the human trigeminal ganglion during migraine attacks.
1, Contrast analysis of BOLD signals registered in fMRI scans of the human SpV following innocuous mechanical stimulation of the periorbital skin during migraine. J, Contrast analysis of BOLD signals
registered in fMRI scans of the human thalamus following innocuous mechanical stimulation of the skin on the dorsum of the hand during migraine. Red/yellow area depicts the periorbital area of
referred pain. Purple/yellow areas depict region of cephalic and extracephalic allodynia. Au, Auditory cortex; (6 —C7, sixth and seventh spinal cord segments; DRG, dorsal root ganglion; Ins, insular
cortex; Ect, ectorhinal cortex; LP, lateral posterior thalamic nucleus; M1/M2, primary and secondary motor cortices; PAG, periaqueductal gray; PB, parabrachial nucleus; PtA, parietal association
cortex; Pul, pulvinar; RS, retrosplenial cortex; $1/52, primary and secondary somatosensory cortices; TG, trigeminal ganglion; V1/V2, primary and secondary visual cortex. Parts of this figure were

adapted from Strassman et al., 1996; Burstein et al., 1998, 2010; and Zhang et al., 2010 and 2011.
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spond to dura stimuli to which they
showed minimal or no response at base-
line (Strassman et al., 1996; Fig. 2E).
When central trigeminovascular neurons
in laminae Iand V of SpV (Fig. 2F) and in
the thalamic PO/VPM nuclei (Fig. 2G) be-
come sensitized, their spontaneous activ-
ity increases, their receptive fields expand,
and they begin to respond to innocuous
mechanical and thermal stimulation of
cephalic and extracephalic skin areas as if
it were noxious (Burstein et al., 1998,
2010). The human correlates of the elec-
trophysiological measures of neuronal
sensitization in animal studies are evident
in contrast analysis of BOLD signals reg-
istered in fMRI scans of the human tri-
geminal ganglion (Fig. 2H), spinal
trigeminal nucleus (Fig. 2I), and the thal-
amus (Fig. 2J), all measured during mi-
graine attacks. The clinical manifestation
of peripheral sensitization during mi-
graine, which takes ~10 min to develop,
includes the perception of throbbing
headache and the transient intensification
of headache while bending over or cough-
ing, activities that momentarily increase
intracranial pressure (Blau and Dexter,
1981). The clinical manifestation of sensi-
tization of central trigeminovascular neu-
rons in the SpV, which takes 30—60 min
to develop and 120 min to reach full ex-
tent, include the development of cephalic
allodynia signs such as scalp and muscle
tenderness and hypersensitivity to touch
(Burstein et al., 2000; Bigal et al., 2008;
Lipton et al., 2008). These signs are often
recognized in patients reporting that they
avoid wearing glasses, earrings, hats, or
any other object that come in contact with
the facial skin during migraine (Burstein
etal., 2000; Bigal et al., 2008; Lipton et al.,
2008). The clinical manifestation of tha-
lamic sensitization during migraine,
which takes 2-4 h to develop, also in-
cludes extracephalic allodynia signs that
cause patients to remove tight cloth and
jewelry, and avoid being touched, mas-
saged, or hugged (Burstein et al., 2000; Bi-
gal et al., 2008; Lipton et al., 2008).
Evidence that triptans, SHT, ;5 agonists
that disrupt communications between pe-
ripheral and central trigeminovascular
neurons in the dorsal horn (Levy et al.,
2004), are more effective in aborting mi-
graine when administered early (i.e., be-
fore the development of central
sensitization and allodynia) rather than
late (i.e., after the development of allo-
dynia; Burstein and Jakubowski, 2004;
Burstein et al., 2004) provides further
support for the notion that meningeal no-
ciceptors drive the initial phase of the

headache. Further support for this con-
cept was provided recently by studies
showing that humanized monoclonal an-
tibodies against CGRP, molecules that are
too big to penetrate the blood—brain bar-
rier and act centrally (according to the
companies that developed them), are ef-
fective in preventing migraine (Diener,
2014; Dodick et al., 2014a,b; Russo, 2015).
Along this line, it was also reported that
drugs that act on central trigeminovascu-
lar neurons [e.g., dihydroergotamine
(DHE)] are equally effective in reversing
an already developed central sensitization
(Pozo-Rosich and Oshinsky, 2005)—a
possible explanation for DHE effective-
ness in aborting migraine after the failure
of therapy with triptans.

Genetics and the hyperexcitable brain
Family history points to a genetic predis-
position to migraine. A genetic associa-
tion with migraine was first observed and
defined in patients with familial hemiple-
gic migraine (FHM). The three genes
identified with FHM encode proteins that
regulate glutamate availability in the syn-
apse. FHM1 (CACNAI1A) encodes the
pore-forming a1 subunit of the P/Q type
calcium channel (Ophoff et al., 1996; Du-
cros et al, 2001); FHM2 (ATP1A2)
encodes the a2 subunit of the Na /K *-
ATPase pump (De Fusco et al., 2003); and
the FHM3 (SCN1A) encodes the a1 sub-
unit of the neuronal voltage-gated Na, 1.1
channel (Dichgans et al., 2005). Collec-
tively, these genes regulate transmitter
release, glial ability to clear (reuptake)
glutamate from the synapse, and the gen-
eration of action potentials (Ferrari et al.,
2015). Since these early findings, large
genome-wide association studies have identi-
fied 13 susceptibility gene variants for mi-
graine with and without aura (Anttila et al.,
2010, 2013; Chasman et al., 2011; Freilinger
etal,, 2012), three of which regulate glutamin-
ergic neurotransmission (MTDH/AEG-1
downregulates glutamate transporter, LPR1
modulates synaptic transmission through the
NMDA receptor, and MEF-2D regulates the
glutamatergic excitatory synapse), and two of
which regulate synaptic development and
plasticity (ASTN2 is involved in the structural
development of cortical layers, and FHL5 reg-
ulates cAMP-sensitive CREB proteins in-
volved in synaptic plasticity; Anttilaetal., 2010,
2013; Chasman et al., 2011; Freilinger et al.,
2012). These findings provide the most plau-
sible explanation for the “generalized” neuro-
nal hyperexcitability of the migraine brain.

In the context of migraine, increased
activity in glutamatergic systems can lead
to excessive occupation of the NMDA

Burstein et al. @ Migraine

receptor, which in turn may amplify and re-
inforce pain transmission, and the develop-
ment of allodynia and central sensitization
(Burstein et al., 2000). Network-wise, wide-
spread neuronal hyperexcitability may also
be driven by thalamocortical dysrhythmia
(Llinas, 1988; Steriade and Llinas, 1988;
Steriade et al., 1993; Fuggetta and Noh,
2013), defective modulatory brainstem
circuits that regulate excitability at multi-
ple levels along the neuraxis (Bahra et al.,
2001); and inherently improper regula-
tion/habituation of cortical (Coppola and
Schoenen, 2012; Coppola et al., 2013),
thalamic (Burstein et al., 2010), and
brainstem (Weiller et al., 1995; Moulton
et al., 2008) functions by limbic structures,
such as the hypothalamus, amygdala, nu-
cleus accumbens, caudate, putamen, and
globus pallidus. Given that 2 of the 13 sus-
ceptibility genes regulate synaptic devel-
opment and plasticity, it is reasonable to
speculate that some of the networks men-
tioned above may not be properly wired to
set a normal level of habituation through-
out the brain, thus explaining the multi-
factorial nature of migraine. Along this
line, it is also tempting to propose that at
least some of the structural alterations
seen in the migraine brain may be inher-
ited and, as such, may be the “cause” of
migraine, rather than being secondary to
(i.e., being caused by) the repeated head-
ache attacks. But this concept awaits
evidence.

Structural and functional brain
alterations

Brain alterations can be categorized into
the following two processes: (1) alteration
in brain function and (2) alterations in
brain structure (Fig. 3). Functionally, a
variety of imaging techniques used to
measure relative activation in different
brain areas in migraineurs (vs control
subjects) revealed enhanced activation in
the periaqueductal gray (Weiller et al,
1995); red nucleus and substantia nigra
(Cao et al., 2002); hypothalamus (Denu-
elle et al., 2007); posterior thalamus (Bur-
stein et al., 2010); cerebellum, insula,
cingulate and prefrontal cortices, anterior
temporal pole, and the hippocampus (Af-
ridi et al., 2005; Moulton et al., 2011); and
decreased activation in the somatosensory
cortex (Tessitore et al., 2011), nucleus cu-
neiformis (Moulton et al., 2008), caudate,
putamen, and pallidum (Maleki et al.,
2011b). All of these activity changes oc-
curred in response to nonrepetitive stim-
uli, and in the cingulate and prefrontal
cortex they occurred in response to repet-
itive stimuli (Aderjan et al., 2010). Collec-
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Figure 3.

Functional (MRIg, ) and morphometric (MRIy,,,) changes in the migraine brain. The examples illustrate changes in functional and morphological measures in cortical (somatosen-

sory) and subcortical (basal ganglia) areas, as well as sex differences in male and female migraineurs. Bottom left conceptualizes dendritic tree density (blue = volume loss; red = volume gain).
Somatosensory cortex: increased somatosensory activation to a noxious stimulus (pain threshold +1C) applied to the face (forehead) and increased cortical thickness in episodic migraineur. MRl ¢
shows bilateral activation in the primary somatosensory cortex (top; yellow-orange). MR,y shows significant changes in cortical volume (green) in high vs low episodic migraineurs vs healthy
control subjects. Basal ganglia: decreased activation (top) in the caudate (MRIg,,..) in high-frequency vs low-frequency episodic migraineurs in response to a noxious heat stimulus (pain threshold

+10) isassociated with increased volume (MRl

) in the structure (bottom). Sex differences: overlap of disease-related and sex-related functional differences (MRIg,,,,) in men vs women (top;

orange-red) showing decreased activation in episodic migraineurs to a noxious stimulus (pain threshold + 1C) applied to the face (forehead). Also shown are decreased activations in female episodic
migraineurs (F,,) vs healthy control subjects (C). Bottom shows increased cortical thickness in female migraineurs (F,,) vs male migraineurs (M,,) in the insula. Other areas showing a similar sex
difference included the precuneus. The issue of sex-related changes in the migraine brain have been reviewed previously (Borsook et al., 2014). Parts of this figure are adapted from Maleki et al.,

2011b, 2012a,b; and Borsook et al., 2013.

tively, these studies support the concept
that the migraine brain lacks the ability to
habituate itselfand consequently becomes
hyperexcitable (Coppola et al., 2007,
2009). It is a matter of debate, however, if
such changes are unique to migraine
headache. Evidence for nearly identical
activation patterns in other pain condi-
tions, such as low back pain, neuropathic
pain, fibromyalgia, irritable bowel syn-
drome, and cardiac pain (Apkarian, 2008;
Baliki et al., 2008), raises the possibility
that differences between somatic pain and
migraine pain are not due to differences in
central pain processing.

Anatomically, voxel-based morphome-
try and diffusion tensor imaging studies in
migraine patients (vs control subjects) have
revealed thickening of the somatosensory
cortex (DaSilva et al, 2007; Hadjikhani,
2008; Maleki et al., 2012a); increased gray
matter density in the caudate (Maleki et al.,
2011b); and gray matter volume loss in the
superior temporal gyrus, inferior frontal
gyrus, precentral gyrus, anterior cingulate
cortex, amygdala, parietal operculum,
middle and inferior frontal gyrus, inferior
frontal gyrus, and bilateral insula (DaSilva
etal., 2007; Valfre etal., 2008). Changes in

cortical and subcortical structures may
also depend on the frequency of migraine
attacks for a number of cortical (Maleki et
al., 2011a, 2013) and subcortical regions
(Maleki et al., 2012b). As discussed above,
it is unclear whether such changes are ge-
netically predetermined or simply a result
of the repetitive exposure to pain/stress.
Favoring the latter are studies showing
that similar gray matter changes occur-
ring in patients experiencing other
chronic pain conditions (Apkarian et al.,
2004; Baliki et al., 2011) are reversible and
that the magnitude of these changes can
be correlated with the duration of disease
(Rodriguez-Raecke et al., 2009). Further
complicating our ability to determine
how the migraine brain differs from the
brain of a patient experiencing other
chronic pain conditions are anatomical
findings showing decreased gray matter
density in the prefrontal cortex, thalamus,
posterior insula, secondary somatosensory
cortex, precentral and postcentral gyrus,
hippocampus, and temporal pole of chronic
back pain patients; anterior insula and or-
bitofrontal cortex of complex regional pain
syndrome patients; and the insula, mid-
anterior cingulate cortex, hippocampus, and

inferior temporal cortex in osteoarthritis pa-
tients with chronic back pain (Apkarian et al.,
2004; Baliki et al., 2011). Whereas some of the
brain alterations seen in migraineurs depend
on the sex of the patient (Maleki et al., 2012b;
Borsook et al., 2014), little can be said about
the role played by the sex of patients who ex-
perience other pain conditions.

Treatments in development

Migraine therapy has two goals: to termi-
nate acute attacks; and to prevent the next
attack from happening. The latter can po-
tentially prevent the progression from ep-
isodic to chronic state. Regarding the
effort to terminate acute attacks, migraine
represents one of the few pain conditions
for which a specific drug (i.e., triptan) has
been developed based on understanding
the mechanisms of the disease. In contrast,
the effort to prevent migraine from happen-
ing is likely to face a much larger challenge
given that migraine can originate in an un-
known number of brain areas (see above),
and is associated with generalized functional
and structural brain abnormalities. A num-
ber of treatments that attract attention are
briefly reviewed below.
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Medications
The most exciting drug currently under
development is humanized monoclonal
antibodies against CGRP. The develop-
ment of these monoclonal antibodies
are directed at both CGRP and its recep-
tors (Diener, 2014; Bigal et al., 2015;
Edvinsson, 2015; Russo, 2015). The concept is
based on CGRP localization in the trigeminal
ganglion and its relevance to migraine patho-
physiology (Russo, 2015). In recent phase
II randomized placebo-controlled trials
(clinical trials NCT0177252, NCT01625988,
NCT02025556, and NCT01723514; clini-
caltrials.gov), the neutralizing humanized
monoclonal antibodies against CGRP
(ALD403, LY2951742, LBR-101) adminis-
tered by injection for the prevention of epi-
sodic migraine, showed promising results
(Bigal et al., 2013; Diener, 2014; Dodick et
al., 2014a,b; Russo, 2015). Remarkably, a
single injection may prevent or significantly
reduce migraine attacks for 3 months.
Given our growing understanding of
the importance of prodromes (likely rep-
resenting abnormal sensitivity to the fluc-
tuation in hypothalamically regulated
homeostasis) and aura (likely represent-
ing the inherited cortical hyperexcitabil-
ity) in the pathophysiology of migraine,
drugs that target ghrelin, leptin, and
orexin receptors (Hirfanoglu et al., 2009;
Peterlin et al., 2010; Sachdev and Mar-
mura, 2012; Chabi et al., 2015; Hoffmann
et al,, 2015) may be considered for thera-
peutic development which is based on,
their ability to restore proper hypotha-
lamic control of stress, hyperphagia, adi-
posity, and sleep. All may be critical in
reducing allostatic load and, conse-
quently, in initiating the next migraine at-
tack (Borsook and Burstein, 2012;
Borsook et al., 2012b).

Brain modification

Neuroimaging studies showing that brain
networks, brain morphology, and brain
chemistry are altered in episodic and
chronic migraineurs (Sprenger and Bor-
sook, 2012; Charles, 2013; Denuelle and
Fabre, 2013) justify attempts to develop
therapies that widely modify brain networks
and their functions. Transcranial magnetic
stimulation, which is thought to modify
cortical hyperexcitability, is one such ap-
proach (Schoenen et al., 2003; Stankewitz
and May, 2008; Lipton and Pearlman, 2010;
Sanchez-del-Rio Gonzélez, 2013). Another
approach for generalized brain modifica-
tion is cognitive behavioral therapy (Powers
et al., 2013; Martin et al., 2014a,b).

Conclusions

Migraine is a common and undertreated
disease. For those who suffer, it is a major
cause of disability, including missing
work or school, and it frequently has asso-
ciated comorbidities such as anxiety and
depression. To put this in context, it is a
leading cause of suicide, an indisputable
proof of the severity of the distress that the
disease may inflict on the individual
(Wang et al., 2009; Fuller-Thomson et al.,
2013). There is currently no objective di-
agnosis or treatment that is universally ef-
fective in aborting or preventing attacks.
As an intermittent disorder, migraine rep-
resents a neurological condition wherein
systems that continuously evaluate errors
(error detection) frequently fail, thus add-
ing to the allostatic load of the disease
(Borsook et al., 2013). Given the enor-
mous burden to society (Ferrari, 1998),
there is an urgent imperative to focus on
better understanding the neurobiology of
the disease to enable the discovery of
novel treatment approaches.
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