Modelos Quantitativos de Bacias Sedimentares AGG0314

Modelos de processos superficiais em 2D

Década de 90

a SHORT RANGE (HILLSLOPE) DIFFUSIVE TRANSPORT

b LONG-RANGE FLUVIAL TRANSPORT

• Soil creep

Soil creep

- Soil creep
- Rockfall

- Soil creep
- Rockfall
- Landslide

- Soil creep
- Rockfall
- Landslide

$\frac{dh}{dt} \propto Q^m S^n_{\text{declividade}}$

$$\frac{dh}{dt} \propto A^m S^n$$

$$\frac{dh}{dt} \propto A^m S^n$$

$${dh\over dt} \propto A^m S^n$$
área da bacia de drenagem

 $\frac{\partial h}{\partial t} = -K_f S^n A^m$

 $\frac{\partial h}{\partial t} = -K_f S^n A^m$

 $n \approx 1$

 $\frac{\partial h}{\partial t} = -K_f S^n A^m$

 $n \approx 1$

 $m\approx 0.5$

 $\frac{\partial h}{\partial t} = -K_f S^n A^m$

 $n \approx 1$

$m \approx 0.5$

(Whipple & Tucker 1999)

$Q_{eqb} = K_t S^{n'} A^{m'}$

capacidade de transporte sedimentar $Q_{eqb} = K_t S^{n'} A^{m'}$

capacidade de transporte sedimentar $Q_{eqb} = K_t S^{n'} A^{m'}$

Coeficiente de transporte sedimentar

 $Q_{eqb} = K_t S^{n'} A^{m'}$

 $\frac{\partial h}{\partial t} = -\frac{Q_{eqb} - Q_{sed}}{L_f}$

Tucker & Slingerland (1994)

Retração de escarpas x T_e

Kooi & Beaumont (1994)