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Topic Overview 

• Sources of Overhead in Parallel Programs 

• Performance Metrics for Parallel Systems 

• Effect of Granularity on Performance 

• Scalability of Parallel Systems 

• Minimum Execution Time and Minimum Cost-Optimal Execution 
Time 

• Asymptotic Analysis of Parallel Programs 

• Other Scalability Metrics 



  

Analytical Modeling - Basics 

• A sequential algorithm is evaluated by its runtime (in general, 
asymptotic runtime as a function of input size). 

• The asymptotic runtime of a sequential program is identical on any 
serial platform. 

• The parallel runtime of a program depends on the input size, the 
number of processors, and the communication parameters of the 
machine. 

• An algorithm must therefore be analyzed in the context of the 
underlying platform. 

• A parallel system is a combination of a parallel algorithm and an 
underlying platform. 



  

Analytical Modeling - Basics 

• A number of performance measures are intuitive. 

• Wall clock time - the time from the start of the first processor to the 
stopping time of the last processor in a parallel ensemble. But how 
does this scale when the number of processors is changed of the 
program is ported to another machine altogether? 

• How much faster is the parallel version? This begs the obvious 
followup question - whats the baseline serial version with which we 
compare? Can we use a sub-optimal serial program to make our 
parallel program look 

• Raw FLOP count - What good are FLOP counts when they dont 
solve a problem? 



  

Sources of Overhead in Parallel Programs 

• If I use two processors, shouldn’t my program run twice as fast? 

• No - a number of overheads, including wasted computation, 
communication, idling, and contention cause degradation in 
performance. 

The execution profile of a hypothetical parallel program 
executing on eight processing elements. Profile indicates times spent 
performing computation (both essential and excess), communication, 
and idling. 



  

Sources of Overheads in Parallel Programs 

• Interprocess interactions: Processors working on any non-trivial 
parallel problem will need to talk to each other. 

• Idling: Processes may idle because of load imbalance, 
synchronization, or serial components. 

• Excess Computation: This is computation not performed by the 
serial version. This might be because the serial algorithm is difficult 
to parallelize, or that some computations are repeated across 
processors to minimize communication. 



  

Performance Metrics for Parallel Systems: Execution 
Time 

• Serial runtime of a program is the time elapsed between the 
beginning and the end of its execution on a sequential computer. 

• The parallel runtime is the time that elapses from the moment the 
first processor starts to the moment the last processor finishes 
execution. 

• We denote the serial runtime by   and the parallel runtime by TP .



  

Performance Metrics for Parallel Systems: Total Parallel 
Overhead 

• Let Tall be the total time collectively spent by all the processing 
elements. 

• TS  is the serial time. 

• Observe that Tall  - TS is then the total time spend by all processors 
combined in non-useful work. This is called the total overhead. 

• The total time collectively spent by all the processing elements 
Tall = p TP  (p is the number of processors). 

• The overhead function (To) is therefore given by  

             To = p TP - TS      (1)



  

Performance Metrics for Parallel Systems: Speedup 

• What is the benefit from parallelism? 

• Speedup (S) is the ratio of the time taken to solve a problem on a 
single processor to the time required to solve the same problem on 
a parallel computer with p identical processing elements. 



  

Performance Metrics: Example 

• Consider the problem of adding n numbers by using n processing 
elements. 

• If n is a power of two, we can perform this operation in log n steps 
by propagating partial sums up a logical binary tree of processors. 



  

Performance Metrics: Example 

Computing the global sum of 16 partial sums using 16 
processing elements .  Σji denotes the sum of numbers with 
consecutive labels from i to j. 



  

Performance Metrics: Example (continued) 

• If an addition takes constant time, say, tc and communication 
of a single word takes time ts + tw, we have the parallel time 
TP = Θ (log n)

• We know that TS = Θ (n)

• Speedup S is given by S = Θ (n / log n)



  

Performance Metrics: Speedup 

• For a given problem, there might be many serial algorithms 
available. These algorithms may have different asymptotic runtimes 
and may be parallelizable to different degrees. 

• For the purpose of computing speedup, we always consider the best 
sequential program as the baseline. 



  

Performance Metrics: Speedup Example 

• Consider the problem of parallel bubble sort. 

• The serial time for bubblesort is 150 seconds. 

• The parallel time for odd-even sort (efficient parallelization of bubble 
sort) is 40 seconds. 

• The speedup would appear to be 150/40 = 3.75. 

• But is this really a fair assessment of the system? 

• What if serial quicksort only took 30 seconds? In this case, the 
speedup is 30/40 = 0.75. This is a more realistic assessment of the 
system. 



  

Performance Metrics: Speedup Bounds 

• Speedup can be as low as 0 (the parallel program never 
terminates). 

• Speedup, in theory, should be upper bounded by p - after all, we 
can only expect a p-fold speedup if we use times as many 
resources. 

• A speedup greater than p is possible only if each processing 
element spends less than time TS / p solving the problem. 

• In this case, a single processor could be timeslided to achieve a 
faster serial program, which contradicts our assumption of fastest 
serial program as basis for speedup. 



  

Performance Metrics: Superlinear Speedups 

One reason for superlinearity is that the parallel version does less 
work than corresponding serial algorithm. 

Searching an unstructured tree for a node with a given label, 
`S', on two processing elements using depth-first traversal. The two-
processor version with processor 0 searching the left sub-tree and 
processor 1 searching the right sub-tree expands only the shaded 
nodes before the solution is found. The corresponding serial 
formulation expands the entire tree. It is clear that the serial 
algorithm does more work than the parallel algorithm. 



  

Performance Metrics: Superlinear Speedups

Resource-based superlinearity: The higher aggregate 
cache/memory bandwidth can result in better cache-hit ratios, and 
therefore superlinearity. 

Example: A processor with 64KB of cache yields an 80% hit 
ratio. If two processors are used, since the problem size/processor 
is smaller, the hit ratio goes up to 90%. Of the remaining 10% 
access, 8% come from local memory and 2% from remote memory. 

If DRAM access time is 100 ns, cache access time is 2 ns, and 
remote memory access time is 400ns, this corresponds to a 
speedup of 2.43! 



  

Performance Metrics: Efficiency 

• Efficiency is a measure of the fraction of time for which a 
processing element is usefully employed 

• Mathematically, it is given by 

         =    (2)

• Following the bounds on speedup, efficiency can be as low as 0 
and as high as 1. 



  

Performance Metrics: Efficiency Example 

• The speedup of adding numbers on processors is given by 

• Efficiency is given by 

=

=



  

Parallel Time, Speedup, and Efficiency Example 

Consider the problem of edge-detection in images. The 
problem requires us to apply a 3 x 3 template to each pixel. If each 
multiply-add operation takes time tc, the serial time for an n x n 
image is given by TS= 9tc n2. 

Example of edge detection: (a) an 8 x 8 image; (b) typical 
templates for detecting edges; and (c) partitioning of the image 
across four processors with shaded regions indicating image data 
that must be communicated from neighboring processors to 
processor 1. 



  

Parallel Time, Speedup, and Efficiency Example 
(continued) 

• One possible parallelization partitions the image equally into vertical 
segments, each with n2 / p pixels. 

• The boundary of each segment is 2n pixels. This is also the number 
of pixel values that will have to be communicated. This takes time 
2(ts + twn). 

• Templates may now be applied to all n2 / p pixels in time 
TS = 9 tcn2 / p. 



  

Parallel Time, Speedup, and Efficiency Example 
(continued) 

• The total time for the algorithm is therefore given by: 

• The corresponding values of speedup and efficiency are given by:

 

and 



  

Cost of a Parallel System 

• Cost is the product of parallel runtime and the number of processing 
elements used (p x TP ). 

• Cost reflects the sum of the time that each processing element 
spends solving the problem. 

• A parallel system is said to be cost-optimal if the cost of solving a 
problem on a parallel computer is asymptotically identical to serial 
cost. 

• Since E = TS / p TP, for cost optimal systems, E = O(1). 

• Cost is sometimes referred to as work or processor-time product. 



  

Cost of a Parallel System: Example 

Consider the problem of adding numbers on processors. 

• We have, TP = log n (for p = n). 

• The cost of this system is given by p TP = n log n. 

• Since the serial runtime of this operation is Θ(n), the algorithm is not 
cost optimal. 



  

Impact of Non-Cost Optimality 

Consider a sorting algorithm that uses n processing elements 
to sort the list in time (log n)2. 

• Since the serial runtime of a (comparison-based) sort is n log n, the 
speedup and efficiency of this algorithm are given by n / log n and 1 
/ log n, respectively. 

• The p TP product of this algorithm is n (log n)2. 

• This algorithm is not cost optimal but only by a factor of log n. 

• If p < n, assigning n tasks to p processors gives TP = n (log n)2 / p .

• The corresponding speedup of this formulation is p / log n. 

• This speedup goes down as the problem size n is increased for a 
given p ! 



  

Effect of Granularity on Performance 

• Often, using fewer processors improves performance of parallel 
systems. 

• Using fewer than the maximum possible number of processing 
elements to execute a parallel algorithm is called scaling down a 
parallel system. 

• A naive way of scaling down is to think of each processor in the 
original case as a virtual processor and to assign virtual processors 
equally to scaled down processors. 

• Since the number of processing elements decreases by a factor of  
n / p, the computation at each processing element increases by a 
factor of n / p. 

• The communication cost should not increase by this factor since 
some of the virtual processors assigned to a physical processors 
might talk to each other. This is the basic reason for the 
improvement from building granularity. 



  

Building Granularity: Example 

• Consider the problem of adding n numbers on p processing 
elements such that p < n and both n and p are powers of 2. 

• Use the parallel algorithm for n processors, except, in this case, we 
think of them as virtual processors. 

• Each of the p processors is now assigned n / p virtual processors. 

• The first log p of the log n steps of the original algorithm are 
simulated in (n / p) log p steps on p processing elements. 

• Subsequent log n - log p steps do not require any communication. 



  

Building Granularity: Example (continued) 

• The overall parallel execution time of this parallel system is 
Θ ( (n / p) log p). 

• The cost is Θ (n log p), which is asymptotically higher than the Θ 
(n) cost of adding n numbers sequentially. Therefore, the parallel 
system is not cost-optimal. 



  

Building Granularity: Example (continued) 

Can we build granularity in the example in a cost-optimal 
fashion? 

• Each processing element locally adds its n / p numbers in time      
Θ (n / p). 

• The p partial sums on p processing elements can be added in time 
Θ(n /p).

A cost-optimal way of computing the sum of 16 numbers using four 
processing elements. 



  

Building Granularity: Example (continued) 

• The parallel runtime of this algorithm is 

(3)

• The cost is
 
• This is cost-optimal, so long as            ! 



  

Scalability of Parallel Systems 

How do we extrapolate performance from small problems and 
small systems to larger problems on larger configurations? 

Consider three parallel algorithms for computing an n-point Fast 
Fourier Transform (FFT) on 64 processing elements. 

 A comparison of the speedups obtained by the binary-exchange, 2-D 
transpose and 3-D transpose algorithms on 64 processing elements 
with tc = 2, tw = 4, ts = 25, and th = 2. 

Clearly, it is difficult to infer scaling characteristics from 
observations on small datasets on small machines. 



  

Scaling Characteristics of Parallel Programs 

• The efficiency of a parallel program can be written as: 

or (4)

• The total overhead function To  is an increasing function of p  . 



  

Scaling Characteristics of Parallel Programs 

• For a given problem size (i.e., the value of TS  remains constant), as 
we increase the number of processing elements, To increases. 

• The overall efficiency of the parallel program goes down. This is the 
case for all parallel programs. 



  

Scaling Characteristics of Parallel Programs: Example 

• Consider the problem of adding   numbers on   processing 
elements. 

• We have seen that:

 
=     (5)

=     (6)

   
=     (7)



  

Scaling Characteristics of Parallel Programs: Example 
(continued) 

Plotting the speedup for various input sizes gives us: 

Speedup versus the number of processing elements for 
adding a list of numbers. 

Speedup tends to saturate and efficiency drops as a 
consequence of Amdahl's law



  

Scaling Characteristics of Parallel Programs 

• Total overhead function To is a function of both problem size Ts and 
the number of processing elements p.

 
• In many cases, To grows sublinearly with respect to Ts. 

• In such cases, the efficiency increases if the problem size is 
increased keeping the number of processing elements constant. 

• For such systems, we can simultaneously increase the problem size 
and number of processors to keep efficiency constant. 

• We call such systems scalable parallel systems. 



  

Scaling Characteristics of Parallel Programs

• Recall that cost-optimal parallel systems have an efficiency of Θ(1).

• Scalability and cost-optimality are therefore related.

•  A scalable parallel system can always be made cost-optimal if the 
number of processing elements and the size of the computation are 
chosen appropriately.



  

Isoefficiency Metric of Scalability

• For a given problem size, as we increase the number of processing 
elements, the overall efficiency of the parallel system goes down for 
all systems.

• For some systems, the efficiency of a parallel system increases if 
the problem size is increased while keeping the number of 
processing elements constant.



  

Isoefficiency Metric of Scalability

     Variation of efficiency: (a) as the number of processing elements 
is increased for a given problem size; and (b) as the problem size 
is increased for a given number of processing elements. The 
phenomenon illustrated in graph (b) is not common to all parallel 
systems.



  

Isoefficiency Metric of Scalability

• What is the rate at which the problem size must increase with 
respect to the number of processing elements to keep the efficiency 
fixed?

• This rate determines the scalability of the system. The slower this 
rate, the better.

• Before we formalize this rate, we define the problem size W as the 
asymptotic number of operations associated with the best serial 
algorithm to solve the problem.



  

Isoefficiency Metric of Scalability 

• We can write parallel runtime as: 
   
       (8)

• The resulting expression for speedup is 

  

      (9)

• Finally, we write the expression for efficiency as 

          



  

Isoefficiency Metric of Scalability 

• For scalable parallel systems, efficiency can be maintained at a 
fixed value (between 0 and 1) if the ratio To / W is maintained at a 
constant value. 

• For a desired value E  of efficiency, 

                 

   (11)

• If  K = E / (1 – E)  is a constant depending on the efficiency to be 
maintained, since To is a function of W and p, we have 

     (12)



  

Isoefficiency Metric of Scalability 

• The problem size W can usually be obtained as a function of p by 
algebraic manipulations to keep efficiency constant. 

• This function is called the isoefficiency function. 

• This function determines the ease with which a parallel system can 
maintain a constant efficiency and hence achieve speedups 
increasing in proportion to the number of processing elements 



  

Isoefficiency Metric: Example 

• The overhead function for the problem of adding n numbers on p   
processing elements is approximately 2p log p . 

• Substituting To  by 2p log p , we get
 

=       
(13)

Thus, the asymptotic isoefficiency function for this parallel system is
   . 

• If the number of processing elements is increased from p to p’, the 
problem size (in this case, n ) must be increased by a factor of        
(p’ log p’) / (p log p) to get the same efficiency as on p processing 
elements. 



  

Isoefficiency Metric: Example 

     Consider a more complex example where 
• Using only the first term of To in Equation 12, we get  

          =    (14)

• Using only the second term, Equation 12 yields the following 
relation between W and p:

 
           

 (15) 

• The larger of these two asymptotic rates determines the 
isoefficiency. This is given by Θ(p3)



  

Cost-Optimality and the Isoefficiency Function 

• A parallel system is cost-optimal if and only if

    (16)

• From this, we have:
 

         (17)   

    (18)

• If we have an isoefficiency function f(p),  then it follows that the 
relation W = Ω(f(p)) must be satisfied to ensure the cost-optimality of 
a parallel system as it is scaled up.



  

Lower Bound on the Isoefficiency Function 

• For a problem consisting of W units of work, no more than W 
processing elements can be used cost-optimally. 

• The problem size must increase at least as fast as Θ(p) to maintain 
fixed efficiency; hence, Ω(p)  is the asymptotic lower bound on the 
isoefficiency function. 



  

Degree of Concurrency and the Isoefficiency Function 

• The maximum number of tasks that can be executed simultaneously 
at any time in a parallel algorithm is called its degree of 
concurrency.

• If C(W)  is the degree of concurrency of a parallel algorithm, then for 
a problem of size W, no more than C(W) processing elements can 
be employed effectively. 



  

Degree of Concurrency and the Isoefficiency Function: Example 

   Consider solving a system of   equations in   variables by using 
Gaussian elimination (W = Θ(n3))

• The n variables must be eliminated one after the other, and 
eliminating each variable requires Θ(n2) computations. 

• At most Θ(n2) processing elements can be kept busy at any time. 

• Since W = Θ(n3) for this problem, the degree of concurrency C(W) is 
Θ(W2/3) .

• Given p  processing elements, the problem size should be at least 
Ω(p3/2) to use them all. 



  

Minimum Execution Time and Minimum Cost-Optimal 
Execution Time 

       Often, we are interested in the minimum time to solution. 

• We can determine the minimum parallel runtime TPmin  for a given W 
by differentiating the expression for TP w.r.t. p and equating it to 
zero. 

 = 0     (19)

• If p0 is the value of p as determined by this equation, TP(p0) is the 
minimum parallel time. 



  

Minimum Execution Time: Example 

   Consider the minimum execution time for adding n  numbers. 

     = (20)

       Setting the derivative w.r.t. p to zero, we have p = n/ 2 . The  
corresponding runtime is 

   =   (21)

    (One may verify that this is indeed a min by verifying that the 
second derivative is positive). 

    Note that at this point, the formulation is not cost-optimal. 



  

Minimum Cost-Optimal Parallel Time 

• Let  TPcost_opt be the minimum cost-optimal parallel time. 

• If the isoefficiency function of a parallel system is Θ(f(p)) , then a 
problem of size W can be solved cost-optimally if and only if 

    W= Ω(f(p)) . 

• In other words, for cost optimality,  p = O(f--1(W)) . 

• For cost-optimal systems, TP = Θ(W/p) , therefore, 

•
=     (22)



  

Minimum Cost-Optimal Parallel Time: Example 

  Consider the problem of adding n numbers. 

• The isoefficiency function f(p) of this parallel system is Θ(p log p).
 
• From this, we have p ≈ n /log n . 

• At this processor count, the parallel runtime is: 

             =

 =  (23)

• Note that both TPmin and TPcost_opt for adding n numbers are 
     Θ(log n). This may not always be the case. 



  

Asymptotic Analysis of Parallel Programs 

   Consider the problem of sorting a list of n  numbers. The fastest 
serial programs for this problem run in time Θ(n log n). Consider 
four parallel algorithms, A1, A2, A3, and A4 as follows: 

     Comparison of four different algorithms for sorting a given list of 
numbers. The table shows number of processing elements, parallel 
runtime, speedup, efficiency and the pTP product.



  

Asymptotic Analysis of Parallel Programs

• If the metric is speed, algorithm A1 is the best, followed by A3, A4, 
and A2 (in order of increasing TP).

• In terms of efficiency, A2 and A4 are the best, followed by A3 and 
A1. 

• In terms of cost, algorithms A2 and A4 are cost optimal, A1 and A3 
are not. 

• It is important to identify the objectives of analysis and to use 
appropriate metrics! 



  

Other Scalability Metrics 

• A number of other metrics have been proposed, dictated by specific 
needs of applications. 

• For real-time applications, the objective is to scale up a system to 
accomplish a task in a specified time bound. 

• In memory constrained environments, metrics operate at the limit of 
memory and estimate performance under this problem growth rate. 



  

Other Scalability Metrics: Scaled Speedup 

• Speedup obtained when the problem size is increased linearly with 
the number of processing elements. 

• If scaled speedup is close to linear, the system is considered 
scalable. 

• If the isoefficiency is near linear, scaled speedup curve is close to 
linear as well. 

• If the aggregate memory grows linearly in p, scaled speedup 
increases problem size to fill memory. 

• Alternately, the size of the problem is increased subject to an upper-
bound on parallel execution time. 



  

Scaled Speedup: Example 

• The serial runtime of multiplying a matrix of dimension n x n  with a 
vector is tcn2 . 

• For a given parallel algorithm, 

  (24)

• Total memory requirement of this algorithm is Θ(n2) . 

S=
t c n

2

t c
n2

p
+t s log p+ twn



  

Scaled Speedup: Example (continued) 

  Consider the case of memory-constrained scaling. 

• We have  m= Θ(n2) = Θ(p). 

• Memory constrained scaled speedup is given by 

  

or    

• This is not a particularly scalable system



  

Scaled Speedup: Example (continued) 

  Consider the case of time-constrained scaling. 

• We have TP = O(n2) . 

• Since this is constrained to be constant, n2= O(p) . 

• Note that in this case, time-constrained speedup is identical to 
memory constrained speedup. 

• This is not surprising, since the memory and time complexity of the 
operation are identical. 



  

Scaled Speedup: Example 

• The serial runtime of multiplying two matrices of dimension n x n is 
tcn3. 

• The parallel runtime of a given algorithm is: 

• The speedup S is given by: 

     (25)



  

Scaled Speedup: Example (continued) 

  Consider memory-constrained scaled speedup. 
• We have memory complexity m= Θ(n2) = Θ(p), or  n2=c x p .

• At this growth rate, scaled speedup S’  is given by: 

• Note that this is scalable. 



  

Scaled Speedup: Example (continued) 

  Consider time-constrained scaled speedup. 

• We have TP =  O(1) = O(n3 / p) , or n3=c x p . 

• Time-constrained speedup S’’  is given by: 

  

• Memory constrained scaling yields better performance. 



  

Serial Fraction f

• If the serial runtime of a computation can be divided into a totally 
parallel and a totally serial component, we have: 

  
• From this, we have, 

 (26)



  

Serial Fraction f

• The serial fraction f of a parallel program is defined as:
 

• Therefore, we have: 



  

Serial Fraction 

• Since  S = W / TP , we have 
  

• From this, we have: 

     (27)

• If f increases with the number of processors, this is an indicator of 
rising overhead, and thus an indicator of poor scalability. 



  

Serial Fraction: Example 

Consider the problem of extimating the serial component of the 
matrix-vector product. 

We have: 

    (28)

or 

        

Here, the denominator is the serial runtime and the numerator is the 
overhead. 
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