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CHAPTER 4 
AC MACHINES 

 
4.1 Synchronous Machines 
 
4.1.1 Derivation of the Equivalent Circuit for a Synchronous Machine 
 
A synchronous machine can be described as "inside out" compared to a DC 
generator.  In a synchronous machine the field generating windings are on the 
rotating element — the rotor — and the power generating windings are on the 
stationary element — the stator. 
 
A DC current, If , is fed to the rotor windings producing a magnetic flux from the 
rotor through the stator and back to the rotor again.  A simplified rotor with a 
single pole pair (two poles) is shown in Figure 4.1.   
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Figure 4.1 Cross section through a two pole AC machine 

 
 

Rotors with more than one pole pair are common and a two pole pair rotor (4 
poles) is shown in Figure 4.2.   
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Figure 4.2 Cross section of a 4 pole AC Machine 
 

In both cases the rotor windings are sinusoidally distributed.  The number of 
conductors in each slot varies approximately as a sinusoidal function of the angle 
θm , where θm  is the angle of rotation along the rotor as shown in Figure 4.3a.  
The radial flux density B can also be plotted as a function of θm  as shown in 
Figure 4.3b.  
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a) Sinusoidal distribution of turns, N , in each slot position

b) Resulting radial flux density  
Figure 4.3 Sinusoidal turns distribution  

and resulting radial flux density 
 

The resultant flux density distribution (neglegting saturation effects) can be 
described as: 
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 B = � )Bsin(
p

2
θm  

 
Where p is the number of poles.  It is convenient to define an electrical angle θ e , 
where; 
 

 θ e = 
p

2
 -  θ δm  

 
Thus: 
 

 B = � )Bsin(
p

2
θm = � )Bsin(  +  eθ δ  

 
The flux enclosed by each turn in the stator can be determined from; 
 
 ΦS  = ∫ ∂A B  

 
Where A is the circumferential area enclosed by the turn as shown in Figure 4.4.   

θm2

θm1

L

R
Stator coil

Stator

(one turn shown)

 
Figure 4.4 Orientation of a single turn of the stator winding 

(Rotor has been omitted for clarity)  
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Thus; 
 
 A = LR(θm1 -θ m2 ) 
And: 
 
 ∂A = LR∂θ m  

 

Substitute for ∂A into the expression for ΦS and obtain; 
 

 ΦS =  ∫ ∂A B = BLR m
m1

m2 ∂� θ
θ

θ
= LRBsin( e m

m1

m2 � )θ θ
θ

θ
+ ∂ ∂�  

  = LR � sin( )B θ δ θe m+ ∂�  

 
All the stator turns are connected in series in each winding.  All will have the 
same length L and radius R.  Therefore the voltage induced in each stator 
winding, e )S (t , can be determined from: 
 

 e )S (t = 
t∂

∂λ
= N

ts ∂
Φ∂

= N
t
m

m
s ∂

∂
∂

Φ∂ θ
θ

 

 
Where NS  is the number of turns in each stator phase winding. 
 
Assume that the rotor is rotating at a shaft speed of ω

m
  such that: 

 
 θm = ωmt  
 
And  

 θ e =  
p

2 mθ -  δ = 
p

2 mω t  -  δ 

 
and substitute for : 
 

 
mθ∂

Φ∂
= LR � sin( )B θ δe +  = LR � sin( )B

p

2 mω δt +  

and 
 

  
t
m

∂
∂θ

= ωm  

 
To obtain: 

 e )S (t = ωm SN LR � sin( )B
p

2 mω δt +  
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If the effects of saturation are neglected, then the peak flux density, �B , will be 
proportional to the field current, If ; 
 
 �B = K If f  
 

Substitute for �B  into the expression for e )S (t  to obtain: 
 

 e )S (t = ωm SN LR K I
p

2f f msin( )ω δt +  

 
Note that the above expression for eS  is: 
 
a) sinusoidal 
b) proportional in amplitude to rotor speed ωm and field current If  

c) proportional in frequency to rotor speed ωm and number of poles p 
 
For AC machines we define ω as the electrical supply frequency; 
 

 ω  = ωe = 
t
e

∂
∂θ

= 
t
m

∂
∂θ

2
p

= 
p

2 mω  

 
Make the above substitutions into the expression for e )S (t  and obtain; 
 

 e )S (t = 
2

p
NSω LR K I +f f sin( )ω δt  = K I +S f sin( )ω δt  

  = � sin( )E +S ω δt  
This is the expression for the voltage generated by each stator winding of a 
synchronous machine.  For a three phase synchronous machine three such 
windings will be arranged within the stator at 120° displacement from each other 
to produce a three phase output voltage. 
 
The per phase equivalent circuit for the above expression is shown in Figure 
4.5.  The basic circuit shown in Figure 4.5a does not include stator winding 
resistance and leakage inductance.  The modified circuit shown in Figure 4.5b 
includes stator winding resistance and leakage reactance.   
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Figure 4.5 Equivalent circuits for a synchronous machine  

 
It is important to note that for synchronous machines the electrical frequency ω = 
ω

e
  is constant and it is more convenient to refer to leakage reactance rather than 

leakage inductance.  Also for most synchronous machine applications the 
leakage reactance is referred to as the synchronous reactance and it is much 
larger than the winding resistance and thus as a first approximation it is usually 
sufficient to ignore the winding resistance. 
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Example 4.1 
A 3 Phase, 11kV, 60 Hz, 72 pole, Y connected synchronous motor has a 
synchronous reactance of 5Ω/phase. 
a) Draw the per phase equivalent circuit. 
b) Determine the shaft rpm 
c) Determine the synchronous voltage, (back EMF) when it draws 1050A at 11 
kV and 0.9 lagging PF. 
 
Solution: 
a) Per phase equivalent circuit: 

Vf

I
f

Xs

Es ∠ δ Vp ∠ 0°

I p

 
 
b) Shaft rpm: 

 ωm = 
2

p
ω  = 

2
72  × 60 × 60 = 100 rpm  

c) Synchronous voltage: 
For a Y connected system: 

 Vp = 
V

AB

3
  = 

11kV
3

  = 6.35 kV 

 Ip = IA = 1,050 A 

     = 1,050∠ 9.0cos 1−

= 945 – j458 

 ES = Vp - jI Xp S  = 6350 - [945 - j458] × [j5.0]  

     = 4060 - j4725  = 6,229 ∠ °- 49 3. per phase 
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4.1.2 Power and Torque in a Synchronous Machine 
 
For a balanced three phase system the expression for electrical power, Pe , 
converted to mechanical power within the machine is given by: 
 

 Pe = Real e is s
*

1

3

∑   

     = 3Real e is s
*  

 
Where iS

* represents the complex conjugate of iS . 
The above expression for Pe can be further elaborated by determining iS from the 
equivalent circuit of Figure 4.5b.  Assume that the per phase voltage at the 
machine terminals, vp  is; 

 vp = Vp ∠ 0  = Vp  

and 

 eS = E
s
 ∠ δ = E

s
cos(δ) + jE

S
sin(δ)  

 
Therefore, from the analysis of the circuit of Figure 4.5b; 
  

 iS = 
e  -  v

R  +  jX
S p

a S

 

 
In most cases however; 
 
 Ra << jXS  
 
Therefore; 
 

 iS  = 
e  -  v

 jX
S p

S

 = 
1

 X
 jv -  je

S
p S = 

1

 X
 jv -  jE E

S
p S Scos( ) sin( )δ δ+  

 
Substitute for iS  and eS  into the equation for Pe : 
 
 Pe = 3Real e is s

*  

     = 
3

 X
 E jE E jE jV

S
S S S S pcos( ) sin( ) sin( ) cos( )δ δ δ δ+ + −  

      = 3
E V

X
S p

S

sin( )δ  = � sin( )Pe δ  

Therefore; 
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 Pe = � sin( )Pe δ  
 
Also the torque generated by the machine from the above electrical power can 
be determined; 
 

 Te = 
Pe

ωm

 = 3
E V

X
S p

Sω
δ

m

sin( ) = � sin( )Te δ  

 
In analyzing the above equations for Pe  and Te  it is important to note the 
following: 
a) The power and torque converted by the machine is dependent on the angle δ  
which is the angle between the terminal voltage at the machine, Vp , and the 

internally generated voltage, ES . 
b) Because δ is dependent on phase angles, the power and torque converted by 
the machine is dependent on load power factor. 
c) The power and torque converted by the machine is also dependent on the 
synchronous reactance, XS . 
d) ωm is the speed of the rotor, which is often referred to as the shaft speed, in 
radians per second. 
e) The above equations are equally valid for all polarities of voltage, current, 
torque, power etc. and thus these equations are valid for both synchronous 
generators and synchronous motors.  
f) The machine will be generating for positive values of δ  and motoring for 
negative values of δ . 
g) The relationship between torque/power and δ is shown graphically in Figure 
4.6.   It is important to note that for |δ | > 90° the machine will be unstable and 
will 'pull out' of synchronization.  It will no longer operate as a synchronous 
machine. 
g) The peak attainable torque, �Te and power, �Pe  are referred to as the pullout 
torque and the pullout power, respectively. 
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Figure 4.6 Relationship between torque, power and �  
for a synchronous machine 

 
Also it is important to note that in a synchronous machine (as in all AC 
machines) the electrical power is transmitted through the stator windings 
whereas in DC machines the electrical power is transmitted through the rotor 
windings.  Therefore in AC machines the stator dissipates much more internal 
heat than the rotor.  This is the opposite of the situation in a DC machine where 
the rotor dissipates much more internal heat than the stator.  Since it is much 
easier to water cool a stationary part than a rotating part it is thus common to find 
water cooled AC machines, especially at high power levels.  Water cooled DC 
machines are virtually non-existent. 
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Example 4.2 
1. A synchronous motor has the following characteristics: 
 6 pole, Y connected, 
 Open circuit voltage: 440 V, with If = 12 A 
 Full load voltage: 440 V, with If = 15 A 
 Full load is 100 A at unity power factor. 
a) Draw the per phase equivalent circuit for this machine 
b) Determine the machine parameters: KS , XS , and ωm in rpm. 
c) What is the maximum power available from this machine assuming maximum 
If  is 24 Amps, VAB is 440 V and there are no losses in the machine. 
d) What is the maximum torque in part c). 
 
Solution: 
a) Per phase equivalent circuit for a synchronous motor: 
 

Vf

I
f

Xs

Es∠ δ Vp∠ 0°

Ip

 
 
b) Determine KS : 
For a Y connected machine: 

 Ip = IA    and      Vp = 
V

3
AB  

Under open circuit conditions: 

 ES = Vp  =  
V

3
AB  = K IS f  

Solve for: 

 KS = 
V

3I
AB

f

= 
123

440

×
= 21.2 Ω 

 
Determine XS : 

 Ip = 
V  -  E

jX
p S

S

 = IA  

Solve for: 

 jXS = 
V  -  E

I
p S

A

 

 
Substitute for: 
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 ES = K IS f ∠ δ = K I  +  jK IS f S fcos( ) sin( )δ δ  
To obtain: 

 jXS = 
V  -  K I  -  jK I

I
p S f S f

A

cos( ) sin( )δ δ
 = 

V  -  K I  

I
p S f

A

cos( )δ
 - 

jK I

I
S f

A

sin( )δ
 

For real values of XS  the real parts of the above equation must be zero, 
therefore: 
 V  -  K Ip S f cos( )δ = 0 

Solve for: 

 δ  = cos− �
��

�
��

1 V

K I
p

S f

= cos− �
��

�
��

1 V

3K I
AB

S f

 = cos
.

−

× ×
�
��

�
��

1

212 15

440

3
 = -36.9° 

(Note that δ  is negative because the machine is motoring). 
The preceding equation for XS  simplifies to: 

 XS = - 
K I

I
S f

A

sin( )δ
 = 

100

)9.36sin(152.21 °−××
= 1.91 Ω 

 
Determine ωm  in rpm: 
For a synchronous machine: 

 ωm = ωS = 
2

p
ω  = 

2
6  × 60 × 60 = 1200 rpm 

 
c) Maximum power:  

 �Pe  = 3
E V

X
S p

S

 = 3
3

K I V

X
S f AB

S

 = 
91.1

440242.213 ×××
= 203 kW 

 
d) Maximum torque: 

 �Te = 
�Pe

ωm

 = 
�P

p

e

2 ω
 = 

π260
6
2

10203 3

××

× −

= 1,615 n-m 
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4.1.3 Synchronous Generator 
 
The basic per phase equivalent circuit for a synchronous generator is shown in 
Figure 4.5.  By convention, the stator current is shown as going out of the 
machine when it is in the generating mode. 
 
Synchronous generators (sometimes called alternators) are the most commonly 
used machines for generating AC and DC* power.  Some examples are: 
 a) Commercial power grids such as Ontario Hydro and Quebec  
  Hydro 
 b) Automotive "alternators"* 
 c) Diesel-electric locomotives* 
 d) Standby emergency generators 
 e) Special AC power such as 400 Hz and 1000 Hz for aircraft 
*In these cases DC power is derived from an AC generator (or alternator) 
producing AC which is then rectified by diodes to produce DC. 
 
The relevant equations for a synchronous generator are: 
 
Electrical output power, Pout is: 
 

 Pout  = 3V Ip p cos( )θ  = 3V IAB A cos( )θ  

 
Where θ  is the power factor angle, or the phase angle between Vp and Ip .  

 
Net mechanical power converted by the generator, Pe is 
 

  Pe  = � sin( )Pe δ   
 
Where; 

 �Pe  = 3
E V

X
S p

S

 

And 
  
 ES  = K IS f  
 
And δ  is the angle between ES  and V

p
  and will vary depending on loading and 

on the field current If . 
 
For a generator the total mechanical input power into the generator, Pm , will also 
have to include the power required to overcome friction; 
 
 Pm  = Pe  + Pf  
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Where Pf  is the power required to overcome friction. 
 
Similarly the net mechanical torque converted by the generator, T

e
  is; 

 

 Te = 
Pe

ωm

 =  � sin( )Te δ  

Where; 
 

  �Te  = 3
E V

X
S p

m Sω
δsin( )  

 
And ωm is the shaft speed, where; 
 

 ωm = 
2

p
ω   

 
And ω is the electrical supply frequency. 
Also for a generator the total mechanical input torque into the generator, Tm , will 
also have to include the torque required to overcome friction; 
 
 Tm  = Te  + Tf  

 

Where Tf  is the friction torque.  
A synchronous generator will always operate at synchronous speed, ωs , where; 
 

 ωm  = ωs = 
2

p
ω   

 
As long as the electrical output power, Pout does not exceed the pullout power, 
�Pe . 

 
For high power generators, ( >10MW) major considerations are, low 
maintenance and high efficiency.  These are achieved by using a high number of 
poles, typically 72 poles.  This results in a low mechanical shaft speed; 
 

 ωm = 
2

p
ω  = 

2
72  × 60 × 60     rpm 

   = 100 rpm  
  
This reduces mechanical bearing wear and friction and windage losses.  
However, it requires high torque, (because torque is inversely proportional to 
shaft speed), which results in large shaft and a large, heavy generator.    
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Example 4.3 
A delta connected synchronous generator has the following ratings:  
135 MVA, 13.8 KV, 60 Hz, 3 Φ   
The following test data is available: 
 Field excitation: 485A 
    Open circuit voltage: 13.8  KV 
 Short circuit current: 2000 A 
Assume the machine is linear, doesn’t saturate, and all power losses are 
negligible. 
a) Draw the equivalent circuit and determine the synchronous reactance, XS , 
and field constant KS . 
b) Determine the field excitation required to deliver rated voltage and current to a 
load of 0.8 PF lagging. 
c) If the field current is kept constant at the value in part b) determine the 
regulation. 
 
Solution: 

Vf

I
f

Xs

Es∠ δ Vp∠ 0°

Ip

 
 

a) Per phase equivalent circuit, if there are no losses then Ra = 0 
For a delta connected machine, then: 

 Vp = VAB = ES ∠ δ -  jXsIp  =  KsIf ∠ δ  -  jXsIp 

Solve for: 

 KS  = 
V

AB
 + jX

s
I
p

I
f

  = 
485

0jX13800 ×+ s = 28.45 Ω 

For a delta connected machine:  

 Ip = 
I
A

3
  

 XS = 
E

s

I
p
  = 

3E
s

I
A

  = 
2000

138003 ×
= 12.0 Ω /phase  
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b) Field excitation required for A rated voltage, current at 0.8 PF lagging: 

 rated Ip = 
VA
3V

p
  = 

VA
3V

AB
  = 

138003

10135 6

×
×

= 3,260 A  at 0.8 PF lagging 

  = 3,260 ∠ -36.7° = 2608 - j1956 A 

 E
s
 ∠ δ = V

p
  +  jXsIp = 13800 + j 12 × 3260∠ −36.7°  =  48,670∠ 40°  V 

Also 
 |E

s
 | = K IS f  

Solve for: 

 If = 
|E

s
|

K
s
  = 

48670
28.45   = 1,711 A 

c) Regulation: 

 VR = 
V

oc
 - V

L

V
L

  = 
48670 - 13800

13800   = 253% 

This is a very lousy regulation and would be unacceptable for most applications.  
To make synchronous generators acceptable they usually require a feedback 
loop that controls the field excitation in order to keep the output voltage constant. 
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4.1.4 Synchronous Motor 
 
The basic per phase equivalent circuit for a synchronous motor is shown in 
Figure 4.7.  By convention, the stator current is shown as going into the machine 
when it is in the motoring mode. 
 

Vf

Ra

I
f

Xs

V
p

Es ∠ δ ∠ 0

Ip

 
 

Figure 4.7 Equivalent Circuit for a Synchronous Motor 
 
The relevant equations for a synchronous motor are: 
 
Electrical input power, P

in
  is 

 
 P

in
  = 3V

p
 I

p
 cos(θ) = 3 V

AB
 I

A
 cos(θ) 

 
Where θ is the power factor angle, or the phase angle between V

p
  and I

p
 .  

 
The total mechanical power produced by the motor, P

e
  is 

 

  P
e
  = P̂

e
 sin(δ)  

 
Where; 

 P̂
e
  = 3

E
s
V

p

X
s

    

And 
  
 |E

s
 | = K

s
 I

f
       (assuming no saturation effects)  

 
And δ is the angle between E

s
  and V

p
  and will vary depending on loading. 

 
For a motor the net mechanical power available from the motor, P

m
 , will be 

reduced by the power required to overcome friction; 
 
 P

m
  = P

e
  - P

f
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Where P
f
  is the power required to overcome friction. 

 
Similarly the total mechanical torque produced by the motor, T

e
  is 

 

 T
e
  = 

P
e

ω
m

  = T
e

^   sin(δ) 

Where; 
 

  T
e

^    = 3
E

s
V

p

ω
m

X
s
  sin(δ)  

 
And ω

m
  is the shaft speed, where; 

 

 ω
m

  = 
2
p  ω  

 
And ω is the electrical supply frequency. 
Also for a motor the net mechanical torque available from the motor, T

m
 , will be 

reduced by the torque required to overcome friction; 
 
 T

m
  = T

e
  - T

f
  

 

Where T
f
  is the friction torque.  

A synchronous motor will always operate at synchronous speed, ω
s
 , where; 

 

 ω
m

  = ω
s
  = 

2
p  ω  

 
As long as the total mechanical torque, T

m
  + T

f
 ,  does not exceed the pullout 

torque, T̂    
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Example 4.4 
A synchronous, Y connected, 6 pole, motor has a synchronous reactance of 2.5 
Ω and draws 100 A/line at unity power factor and rated voltage of 460 V line to 
line.  Assuming constant line voltage, determine; 
a) The maximum power and torque available from this machine assuming 
constant field excitation. 
b) The line current and power factor if the machine field excitation is increased 
by 25%, assuming load power is constant. 
c) The line current and power factor if the machine field excitation is decreased 
by 25%, assuming load power is constant. 
 
Solution: 

Vf

I
f

Xs

Es ∠ δ Vp ∠ 0°

I p

 
Per phase quivalent circuit for a synchronous motor. 
a) Maximum power and torque: 
Maximum power: 

 P̂
e
  = 3

E
s
V

p

X
s

   

 
 E

s
  = V

p
  - jX

s
 I

p
   

And for a Y connected machine: 

 V
p
  = 

V
AB

3
  

Therefore: 

 E
s
  = 

V
AB

3
  - jX

s
 I

p
  = 

460
3

  - j2.5 × 100 = 266 - j250 = 365∠ -43.2°   

Substitute into: 

 P̂
e
  = 3

E
s
V

p

X
s

  = 3 
E

s
V

AB

X
s

  = 
5.2

450365
3

×
= 116 kW 

Maximum torque: 

 T̂
e
  = 

P̂
e

ω
m

   

For a 6 pole synchronous machine: 

 ω
m

  = ω
s
  = 

2
p  ω = 

2
6  × 60 × 2π = 126 r/s 
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Substitute to obtain: 

 T̂
e
  = 

P̂
e

ω
m

  = 
126

10116 3×
= 921 n-m 

b) The line current and power factor if the machine field excitation is increased 
by 25%: 
For a Y connected machine: 

 I
A
  = I

p
  = 

s

sp

jX

EV δ∠−
 

However E
s
  has changed in amplitude and phase. 

 |E
s
 | = K

s
 I

f
  

Therefore: 

 |E
s2

 | = |E
s1

 | 
I
f2

I
f1

  = 365 × 1.25 = 456 

Also since: 

 P
e
  = 3

E
s
V

p

X
s

  sinδ  

and P
e
 , V

p
 , X

s
  are constant then: 

 sinδ
2
  = sinδ

1
 
E

s1

E
s2

  = sinδ
1
 
I
f1

I
f2

  = sin(-43.2°) 
1

1.25  = -0.547 

Therefore: 
 δ

2
  = -33.2° 

Therefore: 

 E
s
 ∠ δ  = 456∠ -33.2°  

And: 

 I
p
  = 

s

sp

jX

EV δ∠−
= 

5.2j
456266 2.33 °−∠−

= 100 +  j46 = 110∠ +24.7°  

 

Therefore: 
 PF = cos(+24.7°) = 0.91 leading 
 
c) The line current and power factor if the machine field excitation is decreased 
by 25%, assuming load is constant: 

 |E
s3

 | = |E
s1

 | 
I
f3

I
f1

  = 365 × 0.75 = 274 

 sinδ
3
  = sinδ

1
 
I
f1

I
f3

  = sin(-43.2°) 
1

0.75  = -0.913 

Therefore: 
 δ

3
  = -65.9° 

j  
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Therefore: 

 E
s
 ∠ δ  = 274∠ -65.9°  

And: 

 I
p
  = 

s

sp

jX

EV δ∠−
= 

5.2j
274266 9.65 °−∠−

 

     = 100 - j61.6 = 117.5∠ -31.6°  

 

Therefore: 
 PF = cos(-31.6°) = 0.851 lagging 
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4.1.5 Synchronous Reactor 
 
The reactive power, Q, drawn by a synchronous motor can be either lagging 
(inductive) or leading (capacitive) depending on the field excitation.  Where Q is 
determined from, S, the total complex VA drawn by the machine, as follows: 
 
 S = P + jQ = 3v ip s

*  

 
Where: 

 vp  = V
p
 ∠ 0° 

 is  = 
v  -  e

jX
p s

s

      and thus  is
*  = 

v  -  e

jX
p s

s

�
��

�
��

*

 

And 

 es  = Es∠ δ 
 
Substitute for vp  and es  into the equation for is

*  to obtain: 

 

 is
*   = 

1

X
-E sin( ) +  j V  -  E cos( )

s
s p sδ δ� 	  

 
Substitute for is

*  into the equation for S to obtain; 
 

 P + jQ = 3v ip s
*  = 

3V

X
-E sin( ) +  j V  -  E cos( )p

s
s p sδ δ� 	  

 
And thus: 
 

 Q = 
3V

X
V  -  E cos( )p

s
p s δ  

 
Therefore, a synchronous machine can have a positive or negative reactance, 
depending on the relative values of E

s
 cos(δ) and V

p
 .  Of course, E

s
 , is 

dependent on the excitation level of the machine, where: 
 
 |E

s
 | = K

s
 I

f
   

And thus: 
 

 Q = 
3V

X
V  -  K I cos( )p

s
p s f δ  

 



4-24 

10/14/01 

For an overexcited machine, with a high field current such that; 
 

 I
f
  >  

V

K cos( )
p

s δ
 

Then, 
 
 E

s
 cos(δ) > V

p
  

 

And, 
 
 Q < 0 (capacitive)  
 
Similarly, for an underexcited machine, with a low field current such that, 
   

 I
f
  <  

V

K cos( )
p

s δ
 

Then, 
 
 E

s
 sin(δ) < V

p
  

 

And, 
 Q > 0 (inductive)      
 
Furthermore, if the field excitation is set exactly such that; 
 

 I
f
  =  

V

K cos( )
p

s δ
 

Then, 
 
 E

s
 cos(δ) = V

p
  

And, 
 Q = 0 (resistive)  
 
Thus a synchronous motor can be a capacitive or inductive or resistive load 
depending on field excitation.  This makes synchronous motors very attractive for 
large installations that require unity or capacitive power factor.  In some cases 
utilities will charge customers more per kW for reactive power than for unity 
power and thus a customer can actually save money on their electricity charges 
by running their synchronous motors at a high excitation level.  Some utilities 
even use synchronous motors as "synchronous reactors" solely to correct for the 
inductive power factor that most transmission lines produce. 
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Example 4.5 
A factory has an overall load of 2.4 MVA at 0.707 lagging PF.  Determine the 
MVA rating of a synchronous motor that would bring the total plant to unity power 
factor under the following conditions: 
a) Assuming the motor is used only for power factor correction. 
b) Assuming the motor is used to drive a new load of 0.405 MW and the motor is 
91% efficient. 
 
Solution: 

Vf

I
f

Xs

Es∠ δ Vp∠ 0°

Ip

 
Per phase equivalent circuit for a synchronous motor. 
a) Assuming the motor is used only for power factor correction: 
Plant load is: 

 S
p
  = 2.4 ∠ 707.0cos 1−

 

      = P
p
  + jQ

p
  = 1.697 + j1.697 MVA 

Therefore: 
 Q

p
  = +1.697 MVA  (lagging) 

Therefore MVA rating of synchronous reactor is: 
 Q

m
  = -Q

p
  = -1.697 MVA  (leading) 

b) Assuming the motor is used to drive a new load of 0.405 MW and the motor is 
91% efficient: 

 S
m

  = 
P

m

0.91  + jQ
m

  = 
0.405
0.91   + jQ

m
  = 0.5 + jQ

m
   

Also Q
m

  is unchanged from part a): 

 Q
m

  = -1.697 MVA  (leading) 

Therefore: 

 S
m

  = 0.5 - j1.697 = 1.769 ∠ −73.6 

∠ 73.6°   MVA  
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4.2 Induction Machines 
 
4.2.1 Derivation of the Equivalent Circuit for an Induction Machine 
 
An induction machine can be considered as a synchronous machine in which the 
field excitation, I

f
 , is zero.  Thus: 

 
 E

s
  = K

s
 I

f
  = 0 

 

And also the pullout torque, T̂
e
   ; 

 

  T
e

^    = 3
E

s
V

p

ω
m

X
S
  sin(δ) = 0 

 
Therefore, the machine pullout torque will always be exceeded and that means 
the shaft and rotor will not rotate at synchronous speed. 
 
There are several methods of producing zero field excitation but for the purposes 
of this analysis we shall assume that the rotor windings are shorted at the rotor 
terminals. 
 
Assume that the shaft speed is ω

m
 .  We can then visualize this machine as a 

transformer in which the stator is the primary and the rotor is the secondary.  
However, the secondary winding is rotating at a mechanical frequency of ω

m
 , 

which is equivalent to an electrical frequency of ω
e
 , where: 

 

 ω
e
  = 

p
2  ω

m
    

 
Since there is no current in the rotor (secondary) windings, the flux in the 
machine will be produced by current in the stator (primary) windings.  Assume 
there are N

s
  turns in the windings of each phase of the stator, (which are the 

primary windings of the transformer).  Also assume that the applied voltage per 
phase is v

p
 , where; 

 

 v
p
  = V̂

p
 sin(ωt) 

 
And therefore; 
 

 φ
s
  = ∫ ∂tp

s

v
N
1

 = ∫
sN

1
V

p
^  sin(ωt) ∂t 
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  = 
-V̂

p

ωN
s
  cos(ωt) 

 
Assuming negligible leakage flux; 
 
 | φ

r
 | = | φ

s
 | 

 
And thus; 
 

 | φ
r
 | = 

-1
ωN

s
  V

p
   

 
If the rotor, (which is the secondary of the transformer), is rotating at a speed of 
ω

m
 , then the frequency of the rotor (secondary) flux will be ω

r
 , where; 

 

 ω
r
  = ω - 

p
2  ω

m
    

And; 
 

 φ
r
  = 

-1
ωN

s
  V

p
^  cos(ω

r
 t)  

 
Then the voltage induced in the rotor, (secondary) windings can be determined: 
 

 v
r
(t)  = N

t
r

r ∂
Φ∂

= 
ω

r
N

r

ωN
S
  V

p
^  sin(ω

r
 t) 

 
It is convenient at this point to refer to the synchronous speed ω

s
 , which is the 

speed at which the induction machine would rotate if it were a synchronous 
machine, i.e; 
 

 ω
s
  = 

2

p
ω  

 
Also because the induction machine does not rotate at synchronous speed, it is 
convenient to define the slip, s, which is a relative measure of how close the 
machine speed is to synchronous speed.  The slip, s, is defined as: 
 

 s = 
(ω

s
 - ω

m
)

ω
s

  = 
(2
P
 ω - ω

m
)

2
P
 ω   
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  = 
(ω - P

2
 ω

m
)

ω   = 
ω

r

ω  

 
Also define, N, as the turns ratio between the stator and rotor windings: 
 

 N = 
N

s

N
r
   

 
Substitute for N and s into the equation for e

r
(t)  to obtain; 

 

 v
r
(t)  = 

s
N  V

p
^  sin(ω

r
 t) 

 
Assuming that the rotor can be represented by a winding resistance, R

r
 ’ , and a 

leakage inductance, L
r
 ’ , then the rotor current, I

r
 , can be determined; 

 

 I
r
  = 

v
r

R
r
’+jω

r
L

r
’ 
  = 

sV
p

N[ ]R
r
’+jω

r
L

r
’

   

  = 
V

p

N  
1

[ ]R
r
’/s +jωL

r
’

    

 
The above equation represents an R L circuit operating at a frequency of ω but 
with a resistance divided by s.  Thus the equivalent circuit for the rotor winding 
can be represented at the stator frequency by the same inductance and the 
resistance divided by s, as shown in Figure 4.8.   
 

e r
V

p

Ip I r
Xs

R
s Xr

’

Rr
’

s
_

 
Figure 4.8 Equivalent Transformer Circuit  

for an Induction Machine 
 

This circuit can now be reflected to the primary (stator) side of the transformer by 
applying the turns ratio, N.  The resultant per phase equivalent circuit for an 
induction machine is shown in Figure 4.9.   
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V
p

Ip
Xs

R
s Xr

Rr
s
_

 
 

Figure 4.9 Simplified Equivalent Circuit for an Induction Machine with the 
rotor elements reflected to the stator side 
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Example 4.6 
A 60 Hz induction motor operates at 1746 rpm under full load.  Under no load the 
speed is 1791 rpm.  Determine: 
a) The slip at no load and at full load. 
b) The speed regulation in %. 
 
Solution: 
Per phase equivalent circuit for an induction motor: 

V
p

Ip
Xs

R
s Xr

Rr
s
_

 
 
a) Slip at no load and at full load: 
 ω = 60 Hz = 3600 rpm 

 ω
s
  = 2

P
  ω  ≈  ω

m
  = 1791 rpm 

Solve for: 

 P = 
2ω
ω

s

   ≈  
2ω
ω

m

  = 2 3600

1791

×  = 4.02 

Therefore 
 P = 4  and ω

s
  = 1800 rpm 

 s = 
(ω

s
 - ω

m
)

ω
s

  = 
(1800 - 1791)

1800   = 0.005 at no load 

  = 
(1800 - 1746)

1800   = 0.030 at full load 

b) Speed regulation: 

 SR = 
(ω

no load
 - ω

full load
)

ω
full load

  = 
(1791 - 1746)

1746   = 2.6% 
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4.2.2 Power and Torque in an Induction Motor 
 
The electrical power converted within an induction motor can be determined by 
analyzing the equivalent circuit of Figure 4.9.   
 

The power dissipated in the apparent rotor resistance, 
R

s
r  is given by; 

 

 Ps  = I
R

sp
2 r                 per phase 

 
Where, Ip is the per phase stator current, derived from the per phase equivalent 

circuit shown in Figure 4.9; 
 

 Ip = 
V

R  +  
R
s

 +  j(X + X )

p

s
r

s r

  

 
The preceding equation represents the power that is dissipated in the rotor 
resistance as seen from the stator.  However, on the rotor side, the actual power 
dissipated in the rotor winding resistance, R

r
 ’ is given by; 

 
 Pr  = I Rr

2
r
’                  per phase 

 
Substitute for; 
 
 Ir = NIp  

And 
 

 Rr
’ =

R

N
r
2

 

 
Into the equation for Pr to obtain; 
 
 Pr = I Rr

2
r   per phase 

In the preceding equations Ps  represents the power dissipated in the rotor 
windings as seen from the stator side, whereas Pr represents the power actually 
dissipated in the rotor windings.  The difference between the two is the electrical 
power "lost" in the machine, Pe .  Where; 
 
 Pe = Ps  - Pr  per phase 
     = 3( Ps - Pr )        for a three phase machine 



4-32 

10/14/01 

     = 3I
R

s
 -  Rp

2 r
r

�
��

�
��  

     = 3I
R

s
1-  sp

2 r 
 �  

 
The power, Pe , represents the electrical power converted by the machine into 
mechanical power, and thus; 
 
 Pe = Teωm  
 
Where Te  is the electrical torque produced by the machine and ωm is the shaft 
speed in radians per second.   
Thus; 
 

 Te = 
Pe

ωm

= 3I
R

s
1-  sp

2 r

mω

 �  

 
This expression can be plotted as a torque vs. slip curve as shown in Figure 
4.10.    
 

T

Slip, S

Motor

Generator

Τ̂

- Τ̂

 
 

Figure 4.10 Torque vs. Slip curve for an Induction Machine 
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This expression can also be plotted as a torque vs speed curve as shown in 
Figure 4.11.   

generator

T

ωs

ωm

Τ̂

motor

 
 

Figure 4.11 Torque vs. Speed Curve for an Induction Machine 
 
Some important characteristics of this curve are; 
a) There is a relatively low starting torque, which means that induction motors 
inherently take relatively long to ’get up to speed’  

b) There is a characteristic pullout torque, T̂  , which is the maximum torque the 
machine can deliver.  If this torque is exceeded, even momentarily the machine 
will ’pull out’ and start to decelerate.  
c) The torque-speed curve has two regions;  
  - the region in which the torque increases with speed is  
  unstable and the machine will only pass through this region  
  transiently while accelerating towards the stable region or   
 decelerating to a stop. 
 - the region in which the torque decreases with speed is the  
  stable operating region. 
d) The machine produces zero torque at synchronous speed (ω

m
  = ω

s
 ) 

e) The machine produces negative torque if the speed exceeds synchronous 
speed, (ω

m
  > ω

s
 ), in which case the machine is acting as a generator. 

ωm
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In some applications an induction motor operates at low slip, i.e. small values of 
s, in which case the equations for power and torque simplify to; 
 

 P
e
  = 3I

2
pR

r

s

  

 T
e
  = 3I

2
p R

r

sω
m

  

 
Furthermore, for very small values of s, the equivalent circuit model is dominated 
by the R

r
 /s term as shown in Figure 4.12.   

V
p

Ip

Rr
s
_

 
Figure 4.12 Simplified Equivalent Circuit for an Induction Motor 

for Very Low Values of Slip 
 

In this case a further simplification can be made for I
p
 ; 

 
  I

p
  = V

p
 /(R

r
 /s) = sV

p
 /R

r
  

 
The equations for power and torque can thus be further simplified: 
 

 P
e
  = 3s(1-s)V

2
p /R

r
   ≈  3sV

2
p /R

r
   

 T
e
  = 3s(1-s)V

2
p /ω

m
 R

r
   ≈  3sV

2
p /ω

s
 R

r
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Example 4.7 
A 2300V, 800 kW, 60 Hz, 16 pole induction motor has the following parameters, 
reflected to the stator: 
 R

s
  = 0.0725 Ω/phase, R

r
  = 0.1035 Ω /phase,  X

r
  = X

s
  = 0.625 Ω /phase 

The rotor and stator windings are both connected in Y and the speed is 442 rpm 
at rated voltage.  Determine: 
a) The torque 
b) The shaft power 
c) The efficiency 
d) The input power factor 
e) The stator and rotor losses 
 
Solution: 
Per phase equivalent circuit for an induction motor: 
 

V
p

Ip
Xs

R
s Xr

Rr
s
_

 
a) Torque: 

 T
e
  = 3I

R

s
1-  sp

2 r

mω

 �  

 
 ω = 60 Hz = 3600 rpm 

 ω
s
  = 2

P
  ω = 2

16
  × 3600 = 450 rpm 

 s = 
(ω

s
 - ω

m
)

ω
s

  = 
(450 - 442)

450   = 0.0178 

 I
p
  = 

V
p

Z
p
  

 V
p
  = 

V
AB

3
  

 

 Z
p
  = R

s
  + 

R
r

s   + j(X
s
  + X

r
 )  

  = 0.0725 + 
0.1035
0.0178  +j(0.625 + 0.625) = 5.89 + j1.25  
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  = 6.02 ∠ 11.98°  
Therefore: 

 I
p
  = 

V
p

Z
p
  = 

V
AB

3Z
p

  = °∠× 98.1102.63

2300
= 220.6 ∠ -11.98°  

Substitute into: 

 T
e
  = 3I

R

s
1-  sp

2 r

mω

 � = 

60
2

4420178.0

)0178.01(1035.06.2203 2

π××

−×××
 

  = 18,000 n-m 
 
b) The shaft power 

 P
e
  = T

e
 ω

m
  = 18000 × 442 × 

2p
60  = 834 kW 

 
c) The efficiency 

 η = 
P

out

P
in

  = 
P

e

3V
AB

I
A
cos(θ)

    

And, for a Y connected machine: 
  I

A
  = I

p
  

Therefore: 

 η = 
P

e

3V
AB

I
p
cos(θ)

   = 
)98.11cos(6.22023003

10834 3

°−×××
×

= 97.0% 

 
 
d) The input power factor: 
 PF = cos(θ) = cos(-11.98°) = 0.978   lagging 
 
e) The stator and rotor losses: 
 In the stator: 
 P

losses
  = 3I

2
p R

s
  = 3 × 220.62  ×  0.0725 = 10.6 kW 

 In the rotor: 
 P

losses
  = 3I

2
p R

r
  = 3 × 220.62  × 0.1035 = 15.1 kW 

 
Power Check: 
          Total input power: P

in
  = 3 V

AB
 I

A
 cos(θ)  

  = 3  × 2300 × 220.6 × cos(-11.98°) = 859.7 kW 
 Mechanical output power:  P

e
  = 834 kW 

 Total losses:  P
losses

  = 3I
2
p R

r
  + 3I

2
p R

s
  = 10.6 + 15.1 = 25.7 kW 

Thus    P
in

  = P
e
  + P

losses
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Example 4.8 
Assume the motor of example 4.7 can be represented entirely by the rotor 
resistance. Determine: 
a) The torque 
b) The shaft power 
c) The efficiency 
d) The input power factor 
e) The stator and rotor losses 
 
Solution: 
Simplified per phase equivalent circuit for an induction motor: 

V
p

Ip

Rr
s
_

 
 
a) Torque: 

 T
e
  = 

3sV
2
p

ω
m

R
r

  ≈ 
3sV

2
p

ω
s
R

r

   

However, in a Y connected machine: 

 V
p
  = 

V
AB

3
  

Therfore: 

 T
e
  = 

s(1-s)V
2
AB

ω
m

R
r

  = 
1035.0

60
2

442

2300)0178.01(0178.0 2

××

×−×
π  

  = 19,300 n-m     (vs. 18,000 n-m in example 4.7) 
 

b) The shaft power: 

 P
e
  = 

3s(1-s)V
2
p

R
r

  = 
s(1-s)V

2
AB

R
r

   

  = 
1035.0

2300)0178.01(0178.0 2×−×
 

 = 893.6kW (vs. 834 kW in example 4.7) 
 
c) The efficiency 
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 η = 
P

e

P
in

    

And for the simplified model: 

 P
e
  = 

s(1-s)V
2
AB

R
r

   

 P
in

  = 
3sV

2
p

R
r

  = 
sV

2
AB

R
r

  

Therefore: 

 η = 
P

e

P
in

   = (1 - s) = (1 - 0.0178) = 98.2%  (vs. 97.0% in example 4.7) 

 
d) The input power factor 
Since the simplified model is entirely resistive,  
 PF = 1  ( vs 0.978   lagging in example 4.7)  
 
e) The stator and rotor losses 
The simplified model has no stator losses, therefore: 
 In the stator: 
 P

losses
  = 0   (vs. 10.6 kW in example 4.7)  

 In the rotor: 
 P

losses
  = 3I

2
p R

r
   

And, 

  I
p
 = 

sV
p

R
r

  = 
sV

AB

3R
r

   

 Therefore: 

 P
losses

  = 3I
2
p R

r
  = 

s2V
2
AB

R
r

  = 
1035.0

23000178.0 22 ×
 

  = 16.2 kW  (vs. 15.1 kW in example 4.7)  
 
Power check: 

 Input power:   P
in

  = 
sV

2
AB

R
r

  = 
1035.0

23000178.0 2×
= 909.8 kW 

 Losses:  P
losses

  = 16.2 kW  

 Output power: P
e
  = 893.6 kW  
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4.2.3 Squirrel Cage Induction Motor 
 
In all the preceding analysis for an induction machine there was no rotor 
excitation.  No external voltage or current was applied to the rotor windings.  
Therefore no external connections are required for the rotor windings.  The rotor 
"windings" can thus be simplified by connecting them internally and removing the 
external connections entirely.  The rotor windings can then consist of a cylindrical 
arrangement of copper bars shorted at the ends by copper end rings as shown in 
Figure 4.13.   

Copper Bars
End Ring

 
 

Figure 4.13 "Squirrel Cage" Rotor for a  
"Squirrel Cage Induction Motor" 

 
It is a very inexpensive yet highly robust and reliable construction and is the most 
commonly used type of rotor for induction machines.  Because this type of 
’winding’ arrangement resembles a squirrel cage the machines that use it are 
called squirrel cage induction motors.   
The main disadvantage of a squirrel cage induction motor is that there is no 
access to the rotor windings which reduces the flexibility for speed control. 
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4.2.4 Wound Rotor Induction Motor 
 
If the rotor of an induction machine has accessible windings it is called a wound 
rotor.  The winding terminals can be used to add external resistance or to apply 
an external three phase AC voltage, (applying a DC voltage would turn the 
machine into a synchronous machine).  The equivalent circuit is shown in Figure 
4.14.   

Vp

Ip
Xs

R
s Xr

Rr
s
_

Re
s
_

External Rotor Circuit
(as reflected to the stator)

Vr

 
 

Figure 4.14 Equivalent circuit for a wound rotor induction motor  
with external rotor resistance and voltage  

as reflected to the stator. 
 

Assume that the maximum (pullout) torque of the machine is not exceeded and 
that the external resistance and voltage are 
R

e
 , and V

e
 , respectively where; 

 

 V
e
  = V̂

e
 sin(ωrt) 

 
Since the rotor is already rotating at a mechanical shaft speed of ω

m
  and the 

external voltage has a frequency of ω
r
  then it can be shown that the effective 

frequency of the rotor currents, when reflected to the stator will be ω, where; 
 

 ω = ω
r
  +  

P
2
ω

m  
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Thus the external rotor voltage, V
e
 , can be represented on the stator side by V

r
 , 

where; 
 

 V
r
  = NV̂

e
 sin((ω

r
 + 

p
2
ω

m )t) = V̂
r
 sin(ωt) 

 
Where: 

 N = 
N

s

N
r
   

And N
s
  is the number of turns on the stator and N

r
  is the number of turns on the 

rotor. 
 
 
The external rotor resistance, R

e
 ’ , has exactly the same effect as increasing the 

internal rotor resistance, R
r
 , and therefore can be represented in the stator side 

equivalent circuit by R
e
 /s.   

Where; 
 
 R

e
  =  N2 R

e
 ’  

 
Thus the per phase stator current, Ip , electrical power converted by the machine, 

P
e
 , and torque generated by the machine, T

e
 , will be; 

 

 Ip = 
V  -  V

R  +  
R + R

s
 +  j(X + X )

p r

s
r e

s r


 �   

 
 

 P
e
  = 3I

R + R

s
1-  sp

2 r e
 � 
 �  

 T
e
  = 

P
e

ω
m

  = 3I
R + R

s
1-  sp

2 r e

m


 � 
 �
ω

 

 
Note that since the rotor frequency, ω

r
 , is fixed by the external rotor voltage, and 

the stator frequency, ω, is fixed by the stator voltage then the shaft speed, ω
m

 , 
will also be fixed, (as long as the pullout torque is not exceeded), such that; 
 

 ω
m

  = 
2
P
(ω - ω

r
)  

 
Thus, an external rotor voltage, of variable frequency, can be used to control the 
shaft speed of an induction motor.  
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4.2.5 Induction Generator 
 
All the preceding analysis can also be applied to describe an induction machine 
in the generator mode.  The per phase equivalent circuit for an induction 
generator is shown in Figure 4.15.   

V
p

Ip Xs
R

s

Rr
s
_

Xr

 
 

Figure 4.15 Equivalent Circuit for an Induction Generator 
 

In the generator mode the slip, s, is always negative; 
 
 s = (ω

s
  - ω

m
 )/ω

s
  < 0 

or 

 ω
m

  > ω
s
  = 

2
p  ω 

 
The reflected rotor resistance, R

r
 /s, will also be negative and thus act as a 

source of power for the stator circuit. 
 
The behaviour of an induction generator is much more complex than a 
sychronous generator.  The per phase stator current, Ip , can be determined 

from; 
 

 P
e
  = 3I

2
pR

r

s

(1 - s)  

Solve for Ip ; 

 
 I

p
  = sP

e
/3R

r
(1-s)  

 
The output voltage can then be determined; 
 
 V

s
  = I

p[ ]R
s
 + R

r
/s + j(ωL

r
+ωL

s
)         per phase 

 
The frequency of the generated current will be ω, where; 
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 ω  = 
P
2  ω

s
  = 

P
2
ω

m
/(1-s)  

 
In general then, the output voltage and frequency of an induction generator, is 
dependent on the shaft speed, and the available power P

e
 .  This results in a very 

poor type of generator and therefore induction machines are never used as 
generators of electrical power. 
  
However, induction machines are often used as generators when regenerating 
power back into a power system during braking.  For such applications the 
equivalent circuit is shown in Figure 4.16.   
 

V
p

Ip Xs
R

s

Rr
s
_

The voltage source, , is capable of sourcing and sinking power.Vp  
 

Figure 4.16 An induction machine regenerating power 
 to a voltage source 

 
In this case the stator voltage and frequency are determined by the power 
system.  However, the slip, s, is negative for a generator.  This means that; 
 

 s = 
ω

s
 - ω

m

ω
s

  < 0  

Or; 
 ω

m
  > ω

s
   

        >  
2
P  ω 

 
 
In other words, an induction machine will only recover braking energy when the 
shaft speed is above synchronous speed.  The machine equations for such a 
generator become identical to those of an induction motor; 
  

 Ip = 
V

R  +  
R
s

 +  j(X + X )

p

s
r

s r
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 P
e
  = 3I

2
pR

r

s

(1 - s)  

 T
e
  = 

P
e

ω
m

  = 3I
2
p R

r

sω
m

(1 - s)  

 
Since the slip, s, is negative for an induction generator the stator current can 
become very high as; 
 
 R

r
 /s  ⇒  - R

s
   

Or; 
 

 s  ⇒  − 
R

r

R
s
  

 
In which case; 
 

 I
p
  ⇒  

V

 j(X + X )
p

s r

  

 
 
The only way the stator current can be controlled is by controlling the slip. The 
slip, in turn, can only be controlled by controlling the shaft speed ω

m
  if the power 

system voltage and frequency are fixed.  If, however, the power system is a 
variable frequency, variable voltage power supply then the stator current, braking 
torque, etc. can be controlled by varying the power system frequency, so as to 
control the slip.  This is discussed further in Section 4.2.6. 



4-45 

10/14/01 

Example 4.9 
A locomotive has two axles with a 12 pole, three phase, induction motor on each 
axle.  The motors are identical and each have the following parameters, referred 
to the stator: 
 R

r
  = 0.06 Ω/phase,  R

s
  = 0.5 Ω/phase,   

 X
r
  = 0.12 Ω/phase, X

s
  = 0.2 Ω/phase, X

m
  = 8.5 Ω/phase 

All the above values are in Ω/phase, in Y connection, at 60Hz.  Both motors are 
supplied with 2300Vac, three phase, at 60 Hz.  The locomotive is travelling at 
112 km/h.  Determine: 
a) The torque produced by each machine if the both axles have wheels of 
exactly 1.0 m diameter. 
b) The torque produced by each machine if the wheel manufacturer guarantees 
each wheel radius as 0.5 ± .005 m, and our luck is such that one axle has the 
largest possible radius and the other axle has the smallest possible radius. 
 
Solution: 

V
p

Ip
R

s

Rr
s
_

Xs Xr

Xm

 
Per phase equivalent circuit for an induction motor including magnetizing 
inductance. 
For Y connected machine: 

 V
p
  = 

V
AB

3
  

a)Torque produced by each machine: 

 T
e
  = 3I

2
p R

r

sω
m

(1 - s)  

 ω
m

  = 
velocity
radius   

 velocity = 
112 km

1 hr    × 
1000 m

1 km    × 
1 hr

3600 sec.  = 31.11 m/s 

 radius = 0.5 m 
Therefore: 

 ω
m

  = 
velocity
radius    = 

31.11
0.5   = 62.22 r/s 

 s = 
(ω

s
 - ω

m
)

ω
s
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 ω
s
  = 

2
P   ω = 

2
12   ×   60 ×  2 π = 62.83 r/s 

Therefore: 

 s = 
(ω

s
 - ω

m
)

ω
s

  = 
(62.83 - 62.22)

62.83   = 0.0097 

 
From equivalent circuit solve for 

 I
p
  = 

V
p

R
s
 + 

R
r

s  + j(X
s
 + X

r
)

  = 
V

AB

3 







R
s
 + 

R
r

s  + j(X
s
 + X

r
)

   

 

  = 
2300

3 



0.05 + 

0.06
0.0097 + j(0.2 + 0.12)

  = 207.9 ∠ -2.87°  

Therefore: 

 T
e
  = 3I

2
p R

r

sω
m

(1 - s)  = 
22.620097.0

)0097.01(06.09.2073 2

×
−×××

 

  = 12,754 n-m 
Note that the torque is not affected by the magnetizing reactance.  
 
b) The torque produced by each machine if one wheel radius is 0.5 - .005 m, and 
the other wheel radius is 0.5 + .005 m. 

 ω
m

  = 
velocity
radius   

Therefore: 

 ω
m1

  = 
31.11

0.5 - .005  = 62.85 r/s 

 ω
m2

  = 
31.11

0.5 + .005  = 61.61 r/s 

And: 

 s
1
  = 

(ω
s
 - ω

m1
)

ω
s

  = 
(62.83 - 62.85)

62.83   = -3.18 × 10-4  

 s
2
  = 

(ω
s
 - ω

m2
)

ω
s

  = 
(62.83 - 61.61)

62.83   = +0.0195j 

And: 

 I
p1

  = 
V

AB

3 








R
s
 + 

R
r

s
1
 + j(X

s
 + X

r
)
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  = 





 ++

×−
+ − )12.02.0(j

1018.3
06.0

05.03

2300

4

= 7.07∠ -180° A 

 

 I
p2

  = 
V

AB

3 








R
s
 + 

R
r

s
1
 + j(X

s
 + X

r
)

   

  = 





 +++ )12.02.0(j

0195.0
06.0

05.03

2300
= 422∠ 5.8° A 

 
Substitute into the equation for torque to obtain: 

 T
e1

  = 3I
2
p1 R

r

s
1
ω

m1

(1 - s
1
)   

       = 
85.621018.3

)1018.31(06.007.73
4

42

××−
×−−×××

−

−

 

   = -447 n-m 

 T
e2

  = 3I
2
p2 R

r

s
2
ω

m2

(1 - s
2
)  = 

85.620195.0
)0195.01(06.007.73 2

×
−×××

 

   = +26,187 n-m 
Therefore, the machine with the smaller diameter wheels is acting as a 
generator. 
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4.2.6  Variable Speed Control of Induction Motors 
 
The shaft speed of an induction motor, ω

m
 , will only vary by the slip, s, as long 

as the stator frequency (and rotor frequency, if applicable) is fixed. 
 

 ω
m

  = 
2
P  ω(1-s) 

 
Since s is typically very small, ( 0.001 to 0.1), the resultant variation in shaft 
speed would be 0.1% to 10% below synchronous speed — not much speed 
variation. 
 
The optimum method of getting wide speed variation is by varying the stator 
frequency, ω.  With a variable stator frequency we can redraw the Torque vs. 
Speed curve into a family of curves as shown in Figure 4.17.   

T

ωs 3

ωm

ωs 2ωs 1

Τ1

ω=ω2ω=ω1 ω=ω3
{ { {

∆ω ∆ω∆ω

 
Figure 4.17 Family of Torque vs Speed Curves for an 
Induction Motor fed from a variable frequency supply 

 
In this case there is a different curve for each stator frequency; 
 
 ω = ω

1
 , ω

2
 , ω

3
 ,… , ω

n
 , etc. 

 
And the corresponding shaft speed, ω

mn
 , will be; 

 

 ω
mn

  = 
2
P  ω

n
(1-s)  
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Thus the machine speed can be controlled by controlling the stator frequency, 
ω.  This mode of operation requires a three phase, variable frequency supply 
voltage, and this can be produced using power electronics.  However the 
magnetic material within the machine imposes particular constraint on the power 
supply. 
 
The magnetic flux, φ, in the machine is limited by; 
 
 φ = ∫ ∂AB  = B

max
 A

effective
  

 

    = ∫
p

N 0

1
V

p
^  sin(ωt)∂t = B

max
 A

effective
  

The above equation can be reduced to; 
 
  

 
V

p
^

ω    =  
N
2 B

max
A

effective
 = K  

 
For a given machine, the values of N, B

max
 , and A

effective
  are constant, and 

therefore; 
 

 
V

p
^

ω    = K  

 
Thus for variable speed drive, the ratio of supply voltage to frequency, (often 
referred to as the volt-second product) must be kept below some limit to prevent 
saturation.  This is particularly important at low frequencies.  Thus variable speed 
drive of induction machines requires the simultaneous control of frequency and 
voltage in a three phase power system.  This applies to all AC powered magnetic 
devices, machines and transformers as well. 
 
Varying the voltage and frequency in an induction motor drive always runs the 
risk of "pullout" and stalling if the load torque exceeds the pullout torque of the 
machine at any particular operating point.  To ensure that this doesn’t occur in an 
induction motor drive requires feedback information on the slip frequency, or 
rotor frequency, ω

r
 , where; 

 

 ω
r
  = ω - p2  ω

m
  

 
This information can then be used to determine the actual load torque and take 
corrective action if load torque increase.  Corrective action may be to increase 
stator voltage, or reduce frequency, etc.  This feedback is the weakest link in any 
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induction motor drive system because it requires a mechanical tachometer for 
shaft speed feedback from which ω

r
  can be determined.  Such a mechanical 

device usually spoils the otherwise high reliability associated with solid state 
power electronics and squirrel cage induction motors.   
 
A typical variable speed squirrel cage induction motor drive is shown in Figure 
4.18.   

Induction Motor

Tachometer

speed feedback

Three Phase 
Voltage

Power Conditioning Unit

Produces:
Variable voltage 
Variable frequency 

Limits V/ ω 

µProcessor control to 
calculate load torque

Senses stator current  
and shaft speed

P C U

 
 

Figure 4.18 A Variable Speed Induction Motor Drive  
Using a PCU (Power Conditioning Unit) 

 
 The critical component in this system is the Power Conditioning Unit, (PCU).  It 

would typically produce a variable three phase voltage, E
s

^  sin(ωt), at a variable 

frequency, ω.  It would also receive feedback as to shaft speed, ω
m

 , and 

machine current, I
s
 .  This information would be used to calculate the load torque 

which would then be compared to the  available pullout torque at the given 
operating conditions.  The PCU would then ensure that the machine never pulled 
out by adjusting voltage and/or frequency accordingly. 
 
  
 



4-51 

10/14/01 

4.3 PROBLEMS 
 
4.3.1 Synchronous Generators 
 
1. A 10 MVA, 13.8 kV, 60 Hz, 2 pole, 3 phase, Y connected alternator has a 
synchronous reactance of 1.9 Ω/phase and a winding resistance of 0.07 
W/phase.  The generated EMF, (line-to-line),is related to the field current by; 
     Es = 60 If   

 a)Determine the field current required to produce rated voltage across 
rated load at 0.8 PF lagging. (245A) 
 b)What is the regulation? (6.56%) 
 
2. A three phase, 6000 rpm, 8 pole, synchronous generator produces 140 volts 
across an ideal inductance of 8 mH/phase, and 100 volts across 4 mH/phase.  
Assume the generator and inductor are Delta connected, there is no saturation, 
and no resistive losses in the generator, and the field excitation is kept constant 
throughout.  Determine; 

a) The stator frequency, and per phase equivalent circuit.  
(400 Hz, 13.4 Ω/phase and 233 V/phase) 

 b) The shaft torque required by this generator when a resistive Delta 
 connected load of 10.0 Ω/phase is connected across the stator 
 terminals. (9.32 n-m) 
 
3. A three phase synchronous generator has the following test data: 
   Volts   Amps     Stator   Shaft 
                   L-L      Line        Hz       RPM 
                 1800     O.C.       60       400 
                       S.C.     600        60       400 
Assume it is ‘Y’  connected, there is no saturation, and no resistive losses in the 
generator.  Determine 
 a)The per phase equivalent circuit, and the number of poles.  

(1.73  Ω/phase and 1039 V/phase, 18 poles) 
 b)The shaft torque required by this generator when a resistive ‘Y’ 
 connected load of 3.0 Ω/phase is connected across the stator 
 terminals. (19,333 n-m) 
 
4. A three phase synchronous generator has the following test data: 
  Volts   Amps     Stator   Shaft 
                  L-L      Line        Hz      RPM 
                    1400     O.C.        60       600 
                     S.C.      563        60       600 
Assume it is Delta connected, there is no saturation, and no resistive losses in 
the generator.  Determine: 
a)The number of poles, and the per phase equivalent circuit.  

( 12 poles, 4.31 Ω/phase and 1400 V/phase) 
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b)The maximum power this machine can produce with an output voltage of 1200 
V line to line. (1.169 MW) 
 
5. A 4 pole, 60 Hz alternator (synchronous generator) is Y connected, and 
has a synchronous reactance of 4 Ω and an open circuit voltage of 2835 V 
line to line.  It is connected to a 2300 V, 3 phase grid until maximum 
power is drawn from the machine.  Determine: 
 a) The maximum output power. (1.63 MW) 

 b) The output current. (527∠ 39° A)  
 c) The torque required by the machine. (8,650 n-m) 
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4.3.2 Synchronous Motors 
  
6. A 1.8 MVA, 6600 V, 8 pole, 60 Hz, 3 Φ, Y connected, synchronours motor has 
a synchronous reactance of 20 Ω/phase.  The field and load are such that the 
motor has a lagging power factor of 0.8.  The stator current is 130 A/phase.  
Determine; 
 a)The shaft torque developed by the motor. (12,616 n-m) 
 b)The electrical angle δ, between stator and rotor magnetic fields,  and 
the corresponding mechanical angle. (42.75°, 10.7°) 
 c)The maximum, or pull-out torque. (18,586 n-m) 
 
7. A 250 KVA, 600 V, 8 pole, 60 Hz, 3 phase, Delta connected, synchronous 
motor has a synchronous reactance of 4 Ω/phase.  The field and load are such 
that the motor has a leading power factor of 0.8.  The stator current is 130 A/line.  
Determine: 
 a) The shaft torque developed by the motor. (1145 n-m) 
 b) The maximum, or pull-out torque. (3896 n-m) 
 
8. A synchronous, Y connected, motor has a synchronous reactance of 
2.5 Ω and draws 100 A/line at unity power factor and rated voltage of 460 
V line to line.  Assuming constant line voltage, and constant load on the 
motor, determine; 
 a) line current and power factor if the machine field excitation 

 is increased by 50%. ( 133.5∠ 41.5°, 0.749)  
 b) line current and power factor if the machine field excitation 
 is decreased by 20%. 
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4.3.3 Wound Rotor Induction Motors 
 
9. A 3 Φ, 60 Hz, 8 pole, Y connected, wound rotor induction motor develops a 
net mechanical power of 200 KW at a slip of 0.025.  The rotor resistance 
(referred to the stator), is 0.0178 Ω/phase.  Friction and windage for this motor 
are constant at 6750 Watts.  The motor reactances and stator resistance are 
negligible.  Determine; 
 a)The rpm of the machine. (877.5 rpm) 
 b)The torque this machine is producing. (2,177 n-m) 
 c)The net available mechanical torque and power if the rotor 
 resistance (per phase), is doubled by connecting appropriate 
 external resistors via the slip rings, and the slip becomes .033.  The 
 machine voltage is unchanged from a) and b) above. (1,430 n-m, 130 kW) 
 
10. A 480 V, 3 phase, 60 Hz, 6 pole, Y connected, wound rotor induction motor 
develops a net mechanical power of 25 kW at 1172 rpm.  Friction and windage 
for this motor are constant at 1500 Watts.  The motor reactances and stator 
resistance are negligible.  Determine; 
 a) The slip, s, of the machine. (0.0233) 
 b) The electrical torque this machine is producing. (216 n-m) 
 c) The net available mechanical torque and power if the rotor resistance 
(per phase), is doubled by connecting appropriate external resistors via slip 
rings, and the slip becomes 0.033. (140 n-m, 17063 W) 
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4.3.4 Squirrel Cage Motors 
 
11. A six pole, three phase, Y connected, squirrel cage induction motor has the 
following per phase parameters, referred to the stator side; 
 RS = 0.11 Ω,  Rr  = 0.18 Ω, XS  = 0.50 Ω, Xr = 0.40 Ω,  Xm = Rc = 8 
 a) Show the per phase equivalent circuit for this motor and determine the 
stator current if the machine rpm is 1176 and stator voltage is 230 V line to line, 

60 Hz. (s=0.02, IS = 14.5 A∠ −10.8°)  
 b) What is the motor torque and efficiency under the conditions of  part 
a)? (90.3 n-m, 96.8%) 
 
12. A four pole, three phase, ‘Y’ connected, squirrel cage induction motor has 
the following per phase parameters, referred to the stator side; 
 RS =0.11 W   Rr =0.18 W   XS =0.50 W   Xr =0.40 W   RC  = Xm  = ∞ 
 a)Show the per phase equivalent circuit for this motor and determine the 
stator current if the machine RPM is 1782 and stator voltage is 230 V line to line. 

(s=0.01, IS = 7.38 A∠ −0.8°)  
 b)What is the motor torque and efficiency under the conditions of part a)? 
(15.6 n-m, 98.4%) 
 
13. Two identical squirrel cage induction machines are connected to the same 
conveyer belt and the same three phase, 60Hz, 480V line to line AC voltage.  
They are each 4 pole,  ‘Y’ connected, and have the following parameters; 
 RS =2.0 Ω,  Rr =0.02 Ω,  Xr +XS =3.0 Ω,  RC =Xm = ∞ 

Due slight variations in wheel diameter, one machine is operating at 1782 rpm 
and the other is operating at 1806 rpm.  Determine: 
 a) The equivalent circuit for each machine. (s=0.01, -0.0033) 
 b) The torque produced by each machine. (97.8 n-m, -293 n-m) 
 
14. Two identical squirrel cage induction machines are connected to the 
same conveyer belt and the same three phase, 60Hz, 230V line to line AC 
voltage.  They are each 6 pole, Delta connected, and have the following 
parameters; 
 RS =0.32 Ω,  Rr =0.04 Ω,  Xr +XS =2.5 Ω,  RC =Xm = ∞ 

Due slight variations in wheel diameter, one machine is operating at 1188 
rpm and the other is operating at 1206 rpm.  Determine: 
a) The equivalent circuit for each machine. (s= 0.01, -0.005) 
b) The torque produced by each machine. (202.9 n-m, -155.1 n-m) 
 
15. A 6 pole, three phase, Y connected induction motor is operating at a 
speed of 1164 rpm, and drawing 50A line current.  The input power at this 
speed is 33 kW and the losses in the stator winding resistance are 1200 
W.  Assume magnetizing and friction losses are negligible.  Determine: 
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 a) the slip. (0.03) 
 b) the stator resistance and rotor resistance as reflected to the 
stator side. (0.16 Ω, 0.1272 Ω) 
  c) the torque developed by the machine. (253 n-m) 
 


