
Bayesian networks in R with the gRain package

Søren Højsgaard
Aalborg University, Denmark

gRain version 1.3-0 as of 2016-10-16

Contents

1 Introduction 1

2 A worked example: chest clinic 2
2.1 Building a network . 2
2.2 Queries to networks . 3

3 A one–minute version of gRain 3
3.1 Specifying a network . 3
3.2 Querying a network . 4
3.3 Conditioning on evidence with zero probability . 5

4 Hard and virtual (likelihood) evidence 6
4.1 An excerpt of the chest clinic network . 7
4.2 Specifying hard evidence . 8
4.3 What is virtual evidence (also called likelihood evidence) ? 8
4.4 Specifying virtual evidence . 9
4.5 A mixture of a discrete and a continuous variable 10

5 Building networks from data 10
5.1 Extracting information from tables . 11
5.2 Using smooth . 12
5.3 Extracting tables . 13

1 Introduction

The gRain package implements propagation in [gra]phical [i]ndependence [n]etworks (hereafter ab-
breviated grain). Such networks are also known as probabilistic networks and Bayesian networks.

To cite gRain in publications, please use:

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package
for R. Journal of Statistical Software, 46(10), 1-26. http://www.jstatsoft.org/v46/
i10/.

and possibly also

Søren Højsgaard, David Edwards and Steffen Lauritzen (2012). Graphical Models with
R. Springer

1

More information about the package, other graphical modelling packages and development versions
is available from

http://people.math.aau.dk/~sorenh/software/gR

2 A worked example: chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988) (illustrated in
Figure 1) and shows one way of specifying the model in gRain. Lauritzen and Spiegelhalter (1988)
motivate the chest clinic example as follows:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X–ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

asia

tub

smoke

lung

bronceither

xray dysp

Figure 1: Chest clinic example from LS.

2.1 Building a network

A Bayesian network is a special case of graphical independence networks. In this section we outline
how to build a Bayesian network. The starting point is a probability distribution factorising
accoring to a DAG with nodes V . Each node v ∈ V has a set pa(v) of parents and each node
v ∈ V has a finite set of states. A joint distribution over the variables V can be given as

p(V) =
∏
v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that
∑

v∗ p(v =
v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v), the sum over the levels of
v equals one. Hence p(v|pa(v)) becomes the conditional distribution of v given pa(v). In practice
p(v|pa(v)) is specified as a table called a conditional probability table or a CPT for short. Thus,
a Bayesian network can be regarded as a complex stochastic model built up by putting together
simple components (conditional probability distributions).

Thus the DAG in Figure 1 dictates a factorization of the joint probability function as

p(V) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ε|τ, λ)p(δ|ε, β)p(ξ|ε). (2)

2

In (2) we have α = asia, σ = smoker, τ = tuberculosis, λ = lung cancer, β = bronchitis,
ε = either tuberculosis or lung cancer, δ = dyspnoea and ξ = xray. Note that ε is a logical
variable which is true if either τ or λ are true and false otherwise.

2.2 Queries to networks

Suppose we are given the evidence (sometimes also called “finding”) that a set of variables E ⊂ V
have a specific value e∗. For example that a person has recently visited Asia and suffers from
dyspnoea, i.e. α = yes and δ = yes.

With this evidence, we are often interested in the conditional distribution p(v|E = e∗) for some of
the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E.

In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or possibly in the
joint (conditional) distribution p(λ, τ, β|e∗).
Interest might also be in calculating the probability of a specific event, e.g. the probability of
seeing a specific evidence, i.e. p(E = e∗).

3 A one–minute version of gRain

3.1 Specifying a network

A simple way of specifying the model for the chest clinic example is as follows.

1. Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter
(1988)):

> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99),levels=yn)
> t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)
> s <- cptable(~smoke, values=c(5,5), levels=yn)
> l.s <- cptable(~lung|smoke, values=c(1,9,1,99), levels=yn)
> b.s <- cptable(~bronc|smoke, values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either|lung:tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
> x.e <- cptable(~xray|either, values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp|bronc:either, values=c(9,1,7,3,8,2,1,9), levels=yn)

2. Compile list of conditional probability tables and create the network:

> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> plist

CPTspec with probabilities:
P(asia)
P(tub | asia)
P(smoke)
P(lung | smoke)
P(bronc | smoke)
P(either | lung tub)
P(xray | either)
P(dysp | bronc either)

> plist$tub

asia
tub yes no
yes 0.05 0.01
no 0.95 0.99

attr(,"class")
[1] "parray" "array"

3

> plist$either ## Notice: a logical node

, , tub = yes

lung
either yes no

yes 1 1
no 0 0

, , tub = no

lung
either yes no

yes 1 0
no 0 1

attr(,"class")
[1] "parray" "array"

> net1 <- grain(plist)
> net1

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" ...

3.2 Querying a network

1. The network can be queried to give marginal probabilities:

> querygrain(net1, nodes=c("lung","bronc"), type="marginal")

$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

2. Likewise, a joint distribution can be obtained:

> querygrain(net1,nodes=c("lung","bronc"), type="joint")

bronc
lung yes no
yes 0.0315 0.0235
no 0.4185 0.5265

3. Evidence can be entered in one of these two equivalent forms:

> net12 <- setEvidence(net1, evidence=list(asia="yes", dysp="yes"))
> net12 <- setEvidence(net1,
+ nodes=c("asia", "dysp"), states=c("yes", "yes"))

4. The probability of observing this evidence under the model is

> pEvidence(net12)

[1] 0.004501375

5. The network can be queried again:

> querygrain(net12, nodes=c("lung","bronc"))

4

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygrain(net12, nodes=c("lung","bronc"), type="joint")

bronc
lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

3.3 Conditioning on evidence with zero probability

Consider setting the evidence

> net13 <- setEvidence(net1,nodes=c("either", "tub"),
+ states=c("no","yes"))

Under the model, this finding has zero probability;

> pEvidence(net13)

[1] 0

Therefore, all conditional probabilities are (under the model) undefined;

> querygrain(net13, nodes=c("lung","bronc"), type="joint")

bronc
lung yes no
yes NaN NaN
no NaN NaN

We can look closer into this zero–probability issue. Because the node either is logical, half of the
configurations will have zero probability:

> tt <- querygrain(net1, type="joint")
> sum(tt==0)/length(tt)

[1] 0.5

In particular the configuration above has zero probability

> sum(tableSlice(tt, c("either","tub"), c("no","yes")))

[1] 0

Zero probailities (or almost zero probabilities) also arise in a different in a different setting. Con-
sider this example

> yn <- c("yes","no")
> eps <- 1e-100
> a <- cptable(~a, values=c(1,eps),levels=yn)
> b.a <- cptable(~b+a, values=c(1,eps,eps,1),levels=yn)
> c.b <- cptable(~c+b, values=c(1,eps,eps,1),levels=yn)
> plist <- compileCPT(list(a, b.a, c.b))
> bn <- grain(plist)
> (tt <- querygrain(bn, type="joint"))

, , c = yes

b
a yes no

5

yes 1e+00 1e-200
no 1e-200 1e-200

, , c = no

b
a yes no
yes 1e-100 1e-100
no 1e-300 1e-100

attr(,"class")
[1] "parray" "array"

> querygrain(setEvidence(bn, nodes=c("a","c"), state=c("no", "yes")))

$b
b
yes no
0.5 0.5

No problem so far, but if eps is made smaller numerical problems arise:

> eps <- 1e-200
> a <- cptable(~a, values=c(1,eps),levels=yn)
> b.a <- cptable(~b+a, values=c(1,eps,eps,1),levels=yn)
> c.b <- cptable(~c+b, values=c(1,eps,eps,1),levels=yn)
> plist <- compileCPT(list(a, b.a, c.b))
> bn <- grain(plist)
> (tt <- querygrain(bn, type="joint"))

, , c = yes

b
a yes no
yes 1 0
no 0 0

, , c = no

b
a yes no
yes 1e-200 1e-200
no 0e+00 1e-200

attr(,"class")
[1] "parray" "array"

> querygrain(setEvidence(bn, nodes=c("a","c"), state=c("no", "yes")))

$b
b
yes no
NaN NaN

4 Hard and virtual (likelihood) evidence

Below we describe how to work with virtual evidence (also known as likelihood evidence) in gRain.
This is done via the function setEvidence().

The clique potential representation in a Bayesian network gives

p(x) ∝ ψ(x) =
∏
C

ψC(xC)

6

where we recall that the whole idea in computations with Bayesian networks is to avoid calculation
the product on the right hand side. Instead computations are based on propagation (multiplying,
dividing and summing clique potentials ψC in an appropriate order, and such an appropriate
order comes from a junction tree). The normalizing constant, say c =

∑
x ψ(x), comes out of

propagation as a “by product”.

Suppose a set of nodes E are known to have a specific value, i.e. xE = x∗E . This is called hard
evidence. The probability of the event xE = x∗E is

p(xE = x∗E) = Ep{I(xE = x∗E)} =
∑
x

I(xE = x∗E)p(x) =
1

c

∑
x

I(xE = x∗E)ψ(x)

The computations are based on modifying the clique potentials ψC by giving value zero to states
in ψC which are not consistent with xE = x∗E . This can be achieved with an indicator function,

say LC(xC) such that we obtain a set of new potentials ψ̃C = LC(xC)ψC(xC). Propagation with
these new potentials gives, as a by product, c̃ =

∑
ψ̃(x) where ψ̃(x) =

∏
C ψ̃C(xC). Consequently,

we have p(xE = x∗E) = c̃/c.

In a more general setting we may have non–negative weights L(x) for each value of x. We may
calculate

Ep{L(X)} =
∑
x

L(x)p(x)

If L(X) factorizes as L(X) = LC(XC) then the computations are carried out as outlined above,
i.e. by the message passing scheme.

4.1 An excerpt of the chest clinic network

Consider the following excerpt of the chest clinic network which is described in the paper mentioned
above.

> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99),levels=yn)
> t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)
> (plist1 <- compileCPT(list(a, t.a)))

CPTspec with probabilities:
P(asia)
P(tub | asia)

> plist1[[1]]

asia
yes no
0.01 0.99
attr(,"class")
[1] "parray" "array"

> plist1[[2]]

asia
tub yes no
yes 0.05 0.01
no 0.95 0.99

attr(,"class")
[1] "parray" "array"

> (chest1 <- grain(plist1))

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:2] "asia" "tub"

> querygrain(chest1)

7

$asia
asia
yes no
0.01 0.99

$tub
tub

yes no
0.0104 0.9896

4.2 Specifying hard evidence

Suppose we want to make a diagnosis about tuberculosis given the evidence that a person has
recently been to Asia. The functions setFinding() (which has been in gRain for years) and
setEvidence() (which is a recent addition to gRain) can both be used for this purpose. The
following forms are equivalent.

> setFinding(chest1, nodes="asia", states="yes")

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:2] "asia" "tub"
Evidence:
nodes is.hard.evidence hard.state

1 asia TRUE yes
pEvidence: 0.010000

> setEvidence(chest1, nodes="asia", states="yes")

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:2] "asia" "tub"
Evidence:
nodes is.hard.evidence hard.state

1 asia TRUE yes
pEvidence: 0.010000

> setEvidence(chest1, evidence=list(asia="yes"))

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:2] "asia" "tub"
Evidence:
nodes is.hard.evidence hard.state

1 asia TRUE yes
pEvidence: 0.010000

> querygrain(setEvidence(chest1, evidence=list(asia="yes")))

$tub
tub
yes no
0.05 0.95

4.3 What is virtual evidence (also called likelihood evidence) ?

Suppose we do not know with certainty whether a patient has recently been to Asia (perhaps the
patient is too ill to tell). However the patient (if he/she is Caucasian) may be unusually tanned
and this lends support to the hypothesis of a recent visit to Asia.

To accommodate we create an extended network with an extra node for which we enter evidence.
However, it is NOT necessary to do so in practice, because we may equivalently enter the virtual
evidence in the original network.

We can then introduce a new variable guess.asia with asia as its only parent.

8

> g.a <- parray(c("guess.asia", "asia"), levels=list(yn, yn),
+ values=c(.8,.2, .1,.9))

asia
guess.asia yes no

yes 0.8 0.1
no 0.2 0.9

attr(,"class")
[1] "parray" "array"

This reflects the assumption that for patients who have recently been to Asia we would guess so
in 80% of the cases, whereas for patients who have not recently been to A we would (erroneously)
guess that they have recently been to Asia in 10% of the cases.

> (plist2 <- compileCPT(list(a, t.a, g.a)))

CPTspec with probabilities:
P(asia)
P(tub | asia)
P(guess.asia | asia)

> (chest2 <- grain(plist2))

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:3] "asia" "tub" "guess.asia"

> querygrain(chest2)

$asia
asia
yes no
0.01 0.99

$tub
tub

yes no
0.0104 0.9896

$guess.asia
guess.asia
yes no

0.107 0.893

Now specify the guess or judgment, that the person has recently been to Asia:

> querygrain(setEvidence(chest2, evidence=list(guess.asia="yes")))

$asia
asia

yes no
0.07476636 0.92523364

$tub
tub

yes no
0.01299065 0.98700935

4.4 Specifying virtual evidence

The same guess or judgment can be specified as virtual evidence (also called likelihood evidence)
for the original network:

> querygrain(setEvidence(chest1, evidence=list(asia=c(.8, .1))))

9

$tub
tub

yes no
0.01299065 0.98700935

This also means that specifying that specifying asia=’yes’ can be done as

> querygrain(setEvidence(chest1, evidence=list(asia=c(1, 0))))

$tub
tub
yes no
0.05 0.95

4.5 A mixture of a discrete and a continuous variable

grain only handles discrete variables with a finite state space, but using likelihood evidence it
is possible to work with networks with both discrete and continuous variables (or other types of
variables). This is possible only when he networks have a specific structure. This is possible when
no discrete variable has non–discrete parents.

Take a simple example: x is a discrete variable with levels 1 and 2; y1|x = k ∼ N(µk, σ
2
k) and

y2|x = k ∼ Poi(λk) where k = 1, 2. The joint distribution is

p(x, y1, y2) = p(x)p(y1|x)p(y2|x)

Suppose the interest is in the distribution of x given y1 = y∗1 and y2 = y∗2 . We then have

p(x|y∗1 , y∗2) ∝ p(x)p(y∗1 |x)p(y∗2 |x) = p(x)L1(x)L2(x)

5 Building networks from data

The following two graphs specify the same model:

> dG <- dag(~A:B)
> uG <- ug(~A:B)
> par(mfrow=c(1,2)); plot(dG); plot(uG)

A

B A

B

Suppose data is

10

> dat <-as.table(parray(c("A","B"), levels=c(2,2), values=c(0,0,2,3)))

B
A B1 B2
A1 0 2
A2 0 3

> class(dat)

[1] "table" "parray" "array"

A network can be built from data using:

> gr.dG <- compile(grain(dG, dat))

NAs found in conditional probability table(s) for nodes: A
... consider using the smooth argument

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:2] "A" "B"

> gr.uG <- compile(grain(uG, dat))

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:2] "A" "B"

However, when there are zeros in the table, care must be taken.

5.1 Extracting information from tables

In the process of creating networks, conditional probability tables are extracted when the graph is
a dag and clique potentials are extracted when the graph is a chordal (i.e. triangulated) undirected
graph. This takes place as follows (internally):

> extractCPT(dat, dG)

NAs found in conditional probability table(s) for nodes: A
... consider using the smooth argument

$A
B

A B1 B2
A1 NaN 0.4
A2 NaN 0.6

attr(,"class")
[1] "parray" "array"

$B
B
B1 B2
0 1
attr(,"class")
[1] "parray" "array"

attr(,"class")
[1] "extractCPT" "list"

> c(extractPOT(dat, uG))

[[1]]
B

A B1 B2
A1 0 0.4
A2 0 0.6

The conditional probability table P (A|B) contains NaNs because

P (A|B = B1) =
n(A,B = B1)∑
A n(A,B = B1)

=
0

0
= NaN

11

For this reason the network gr.dG above will fail to compile whereas gr.uG will work, but it may
not give the expected results.

5.2 Using smooth

To illustrate what goes on, we can extract the distributions from data as follows:

> p.A.g.B <- tableDiv(dat, tableMargin(dat, "B"))

A
B A1 A2
B1 0.0 0.0
B2 0.4 0.6

attr(,"class")
[1] "parray" "array"

> p.B <- tableMargin(dat, "B")/sum(dat)

B
B1 B2
0 1

> p.AB <- tableMult(p.A.g.B, p.B)

A
B A1 A2
B1 0.0 0.0
B2 0.4 0.6

attr(,"class")
[1] "parray" "array"

However, the result is slightly misleading because tableDiv sets 0/0 = 0.

In grain there is a smooth argument that will add a small number to the cell entries before
extracting tables, i.e.

P (A|B = B1) =
n(A,B = B1) + ε∑
A(n(A,B = B1) + ε)

=
ε

2ε
= 0.5

and

P (B) =

∑
A(n(A,B) + ε)∑
AB(n(A,B) + ε)

We can mimic this as follows:

> e <- 1e-2
> (dat.e <- dat + e)

B
A B1 B2
A1 0.01 2.01
A2 0.01 3.01

> pe.A.g.B <- tableDiv(dat.e, tableMargin(dat, "B"))

A
B A1 A2
B1 0.000 0.000
B2 0.402 0.602

attr(,"class")
[1] "parray" "array"

> pe.B <- tableMargin(dat.e, "B")/sum(dat.e)

B
B1 B2

0.003968254 0.996031746

12

> pe.AB <- tableMult(pe.A.g.B, pe.B)

A
B A1 A2
B1 0.0000000 0.0000000
B2 0.4004048 0.5996111

attr(,"class")
[1] "parray" "array"

However this resulting joint distribution is different from what is obtained from the adjusted table
itself

> dat.e / sum(dat.e)

B
A B1 B2
A1 0.001984127 0.398809524
A2 0.001984127 0.597222222

This difference appears in the grain networks.

5.3 Extracting tables

One can do

> gr.dG <- compile(grain(dG, dat, smooth=e))

which (internally) corresponds to

> extractCPT(dat, dG, smooth=e)

$A
B

A B1 B2
A1 0.5 0.4003984
A2 0.5 0.5996016

attr(,"class")
[1] "parray" "array"

$B
B

B1 B2
0.001992032 0.998007968
attr(,"class")
[1] "parray" "array"

attr(,"class")
[1] "extractCPT" "list"

We get

> querygrain(gr.dG)

$A
A

A1 A2
0.4005968 0.5994032

$B
B

B1 B2
0.001992032 0.998007968

> querygrain(gr.uG)

$A
A

13

A1 A2
0.4 0.6

$B
B
B1 B2
0 1

However, if we condition on B=B1 we get:

> querygrain(setFinding(gr.dG, nodes="B", states="B1"))

$A
A
A1 A2
0.5 0.5

> querygrain(setFinding(gr.uG, nodes="B", states="B1"))

$A
A
A1 A2
NaN NaN

so the “problem” with zero entries shows up in a different place. However, the answer is not
necessarily wrong; the answer simply states that P (A|B = B1) is undefined. To “remedy” we can
use the smooth argument:

> gr.uG <- compile(grain(uG, dat, smooth=e))

which (internally) corresponds to

> c(extractPOT(dat, uG, smooth=e))

[[1]]
B

A B1 B2
A1 0.001984127 0.3988095
A2 0.001984127 0.5972222

Notice that the results are not exactly identical:

> querygrain(gr.uG)

$A
A

A1 A2
0.4007937 0.5992063

$B
B

B1 B2
0.003968254 0.996031746

> querygrain(gr.dG)

$A
A

A1 A2
0.4005968 0.5994032

$B
B

B1 B2
0.001992032 0.998007968

> querygrain(setFinding(gr.uG, nodes="B", states="B1"))

$A
A

14

A1 A2
0.5 0.5

> querygrain(setFinding(gr.dG, nodes="B", states="B1"))

$A
A
A1 A2
0.5 0.5

References

Steffen Lilholt Lauritzen and David Spiegelhalter. Local computations with probabilities on graph-
ical structures and their application to expert systems. J. Roy. Stat. Soc. Ser. B, 50(2):157–224,
1988.

15

