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INTRODUCTION

Accuracy of genomic selection has been shown to 
be influenced by the number of animals in the geno-
typed reference population as well as the degree to 
which pairs of animals are related (Goddard, 2009). 
In beef cattle populations, when compared with dairy 
cattle, where genomic selection is highly accurate, 
there are fewer genotypes available and a lesser de-
gree of linkage disequilibrium (LD) between mark-
ers. Crossbreeding is heavily adopted in the beef in-
dustry, leading to limitations regarding the degree of 
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ABSTRACT: Genomic prediction for crossbred beef 
cattle has shown limited results using low- to mod-
erate-density SNP panels. The relationship between 
the training and validation populations, as well as 
the size of the reference population, affects the pre-
diction accuracy for genomic selection. Rotational 
crossbreeding systems require the usage of crossbred 
animals as sires and dams of future generations, so 
crossbred animals require accurate evaluation. Here, a 
novel method for grouping of purebred and crossbred 
animals (based exclusively on genotypes) for genom-
ic selection was investigated. Clustering of animals 
to investigate the genetic similarity among different 
groups was performed using several genomic rela-
tionship criteria between individuals. Hierarchical 
clusters based on average-link criteria (computed as 
the mean distance between elements of each subclus-
ter) were formed. The accuracy of genomic prediction 
was assessed using 1,500 bulls genotyped for 54,609 
markers. Estimated breeding values based on all avail-
able phenotypic records for birth weight, weaning 
gain, postweaning gain, and yearling gain were cal-
culated using BLUP methodologies and deregressed 

to ensure unbiased comparisons could be made across 
populations. A 5-fold validation technique was used 
to calculate direct genomic values for all genotyped 
bulls; the addition of unrelated animals in the reference 
population was also investigated. We demonstrate a 
decrease in genomic selection accuracy after includ-
ing animals from disconnected clusters. A method to 
improve genomic selection for crossbred and pure-
bred animals by clustering animals based on their 
genotype is suggested. Unlike traditional approaches 
for genomic selection with a fixed reference popula-
tion, genomic prediction using clusters (GPC) chooses 
the best reference population for better accuracy of 
genomic prediction of crossbred and purebred ani-
mals using clustering methods based on genotypes. 
An overall average gain in accuracy of 1.30% was 
noted over all scenarios across all traits investigated 
when the GPC approach was implemented. Further 
investigation is required to assess this difference in 
accuracy when a larger genotyped population is avail-
able, especially for the comparison of groups with 
higher genetic dissimilarity, such as those found in 
industry-wide across-breed genetic evaluations.
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relationship among animals. As many traits of economic 
impact are measured in crossbred populations, deriving 
accurate direct genomic values (DGV) for these animals 
has significant implications on many breeding schemes. 
It has been shown that one pure breed cannot be used 
as the sole reference population to estimate SNP effects 
in another breed (De Roos et al., 2008). It was shown, 
however, that when there is a component of a breed in 
a crossbred reference population, it can accurately esti-
mate SNP effects for a purebred population that is one of 
the components of the crossbreeds (Hayes et al., 2009; 
Toosi et al., 2010). Expanding the reference population 
with animals of breeds that are not closely related to the 
validation population may lead to further inaccuracy in 
estimation of SNP effects. This study proposes a novel 
method for genomic prediction in a multibreed popula-
tion, creating clusters of animals to be evaluated togeth-
er (avoiding the incorporation of animals in the same 
evaluation if the relationship between them is small) 
while maintaining populations large enough to accu-
rately estimate DGV. The accuracy of genomic predic-
tion was evaluated by the correlation of DGV with 1) 
EBV obtained from BLUP methods and 2) deregressed 
EBV (dEBV). Results from the genomic prediction us-
ing clusters (GPC) application were compared against 
alternative scenarios that used a larger reference popula-
tion augmented by the inclusion of animals from an un-
related cluster. This allowed the assessment of the effect 
on accuracy from GPC for a multibreed evaluation.

MATERIALS AND METHODS

Data
Genotypes were collected from routinely evalu-

ated animals from the University of Guelph multibreed 
beef cattle population as well as a number of herds 
that are part of the Beef Improvement Opportunities 
(BIO; Guelph, Canada) data set evaluated in the last 6 
yr in southern Ontario and composed of purebred and 
crossbred beef cattle. Numbers of purebred animals 
of each breed as well as the average breed composi-
tion of the crossbred animals (n = 932) are presented 
in Table 1: 51.6% Angus (Red and Black Angus), 

24.4% Simmental, 6.5% Limousin, 4.7% Charolais, 4% 
Hereford, and other breeds composing the remaining 
8.7%. All animals were genotyped using the Illumina 
Bovine SNP50_v1 Beadchip (51,620 markers) or the 
Illumina BovineSNP50 Genotyping BeadChip (54,609 
markers; Illumina Inc., San Diego, CA). All the geno-
types received from different locations were converted 
to a unique format that could be compared (AB format). 
The genotyping was accomplished on blood, tail hair, 
and semen samples. Genotypes of animals from the 
University of Guelph were also part of previous inves-
tigations, after approval from the University of Guelph 
Animal Care Committee based onthe recommendations 
outlined in the Canadian Council on Animal Care guide-
lines( Canadian Council on Animal Care, 2009).

Poor quality genotypes and individuals with poten-
tial genotyping errors were excluded from the analysis. 
The following quality control thresholds were applied 
on the data: SNP call rate < 0.95, minor allele frequency 
< 0.05, and sample call rate < 0.90. Forty-three thousand 
six hundred twenty-four autosomal markers remained 
for further DGV calculation after quality control.

Officially reported across-breed comparisons (ABC; 
EBV/2) for birth weight (BiW), weaning gain (WG), 
postweaning gain (PWG), and yearling gain (YG) were 
provided by BIO for all animals (n = 1,500). The ABC, 
derived from multibreed beef cattle data and BLUP 
methods (Sullivan et al., 1999), were multiplied by 2 to 
create EBV to assess accuracy of genomic selection in a 
multibreed beef cattle population. Breed composition of 
the crossbred and purebred animals was calculated using 
Admixture software (Alexander et al., 2009) and was de-
termined solely by marker investigation without adding 
pedigree information. Default parameters were used in 
Admixture, and the number of groups to sort animals was 
selected by using pedigree data, starting with a biologi-
cally relevant number of groups (K = 6) and increasing 
that number until no purebred animals were found in the 
same grouping as a purebred animal from another breed. 
This gave a final K value of 10 for admixture. Groups 
that were composed of the same breed of animals, along 
with the corresponding crossbred animals, were grouped 
together, leaving 7 groups, 1 for each breed and 1 group 
that contained no purebred animals (the number of groups 

Table 1. Average breed composition as estimated by ancestral components in Admixture software (Alexander et al., 2009)

 
Feature

Breed1

BLK RED SIM LIM HER CHA OTH
Number of purebreds2 160 23 191 60 23 107 4
Average breed composition 0.320 0.196 0.244 0.065 0.040 0.047 0.087

1Breeds were determined using pedigree information on available purebred animals. BLK = Black Angus; RED = Red Angus; SIM = Simmental; LIM = 
Limousin; HER = Hereford; CHA = Charolais; OTH = ancestry component not identified to contain any purebred animals. 

2Purebreds were defined as having greater than 75% of ancestry component in Admixture.
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reported here is not related to the number of groups after 
applying clustering methods, which will be presented in 
the remaining part of this manuscript). Figure 1 shows 
breed composition for all animals based on estimated 
ancestry components taken from the breed composition 
(Q) matrix as calculated by Admixture (Alexander et al., 
2009). In Fig. 2, we present a flow chart that illustrates 
the analyses performed in this study. 

Clustering

Animals were clustered together into distinct groups 
to evaluate the impact of different clustering methods on 
the accuracy of genomic predictions. This was in an ef-
fort to create groups of animals that were genetically sim-
ilar so that SNP effects would be consistent within these 
clusters, even if they were not consistent across the entire 
group of genotyped animals. The clustering approach re-
quires a distance (or similarity) matrix for grouping the 
animals according to their genetic proximity. This rela-
tionship matrix between all animals was measured using 
3 different methods: 1) based on the genomic relation-
ship matrix (G) implemented by VanRaden (2008); 2) 
computing a modified version of the Mendelian incon-
sistency (MI) distance (counting the number of oppos-
ing homozygotes; Howie et al., 2012), which is a part of 
the parentage discovery process implemented in the BIO 
genomics pipeline to identify beef cattle with sires previ-
ously not assigned properly in the pedigree; and 3) by 
the Euclidian genotype distance matrix (EDM) among 
all animals (Gianola and van Kaam, 2008).

Because the EDM and MI clustering methods 
showed a correlation with G close to 1, results in this 
investigation will be reported based solely on the G 
clustering strategy. Clusters were applied in this inves-
tigation using the average link hierarchical clustering 
method implemented in the “hclust” function of the R 
(V3.02, http://r-project.org) “stats” package, aimed at 
identifying relationships among animals based on ge-
netic similarity. The heat map R function was also used 
to plot the cluster results obtained in this study. As indi-
vidual animals need to be efficiently added into clusters 
for further evaluations, the average-link method was 
preferred in our investigation. In average-link cluster-
ing, the distance between one cluster and another one is 
considered to be equal to the average distance from any 
member of one cluster to any member of the other clus-
ter. The adoption of this method to allocate new animals 
for the next run, without running a clustering procedure, 
may accelerate the genomic evaluation process as well 
as reduce the risk of introducing this new animal into 
an inappropriate cluster. A new individual could be in-
serted in the same cluster of a preexisting animal based 
exclusively on the higher genomic relationship similar-
ity (a process that demands only the G construction).

As the cluster is generated only by the use of gen-
otypes, and not by phenotypes, there is no inherent 
bias to the process of placing animals into clusters. To 
ensure accurate genomic prediction, if a cluster con-
tained fewer animals than required a reference popu-
lation for a specific trait evaluation, animals from this 
cluster were combined with the nearest cluster, once 

Figure 1. Per animal breed composition as estimated by ancestry components in Admixture software (Alexander et al., 2009). Breed definitions were 
determined using pedigree information on available purebred animals. CHA = Charolais; HER = Hereford; LIM = Limousin; SIM = Simmental; RED = 
Red Angus; BLK = Black Angus; OTH = ancestry component not identified to contain any purebred animals.
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again based on the average of the dissimilarities be-
tween the points in that cluster with all other clusters.

A more complex version of the MI method (MI_
Phase) was also explored. In this method, genotypes 
were first phased to separate heterozygotic loci into 
their parental haplotypes. These haplotypes were then 
used to calculate opposing homozygosity for each 
marker. Where there was a difference in the paren-
tal haplotypes of 2 individuals, the count increased. 
Based on the genotypes available in this study, large 
proportion of animals could not be accurately phased. 
As such, results from this method are not reported 
here, as fair comparisons with other clustering meth-
odologies could not be made. In the future, this meth-
od could outperform the other 2, especially when ap-
plied for multibreed populations with strong pedigree 
information and larger genotyped populations and as 
phasing methodologies are improved.

Cluster results were then compared with breed 
compositions from Admixture to determine if cross-
bred animals were consistently clustered with other 
individuals with highly similar breed compositions.

Direct Genomic Value Estimation – Genomic BLUP

Direct genomic values were estimated using ge-
nomic BLUP (VanRaden, 2008). The gebv software 
(Sargolzaei et al., 2009) was used to estimate DGV. 
Direct genomic values for each animal were calcu-
lated where the traditional pedigree based relationship 
matrix is replaced by G as calculated by

G = XX′/2∑pj(1 − pj),

in which pj is the allele frequency of the jth SNP and X 
is an incidence matrix for SNP effects with elements 

Figure 2. Overview of study design. A description of data flow and different scenarios tested using within cluster and outside of cluster genotypes as 
well as EBV and deregressed EBV to determine accuracy of genomic prediction using clusters. gebv software (Sargolzaei et al., 2009). G = the genomic 
relationship matrix; EDM = Euclidian genotype distance matrix; MI = Mendelian inconsistency; MI_Phased = a more complex version of the MI method; 
ABC = across-breed comparisons; GBLUP = genomic BLUP; DGV = direct genomic values group “Extra1” and “Extra2” are subsets of the cluster 2”.
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Xij equal to 0 − 2pj (if homozygous 11), 1 − 2pj (if 
heterozygous 12 or 21), or 2 − 2pj (if homozygous 22) 
for a given animal i (VanRaden, 2008; VanRaden and 
Sullivan, 2010).

The DGV for each animal is then calculated as

DGV = G(G + R)−1(y − m̂ ),

in which y is a vector containing the EBV or a dEBV 
(VanRaden and Sullivan, 2010) to determine the im-
pact of deregression in a population with low EBV re-
liability and R is a diagonal matrix with elements Rij = 
(1/Rel) − 1, in which Rel is the reliability of dEBV.

Accuracy of DGV were then assessed by the correla-
tions between the DGV and EBV (r(DGV, EBV)) and be-
tween the DGV and dEBV (r(DGV, dEBV)) in real data 
for each combination of scenarios as presented in Fig. 2.

Validation

Two main clusters were defined based on the ge-
nomic similarity among individuals (based on G), where 
cluster 1 was the largest cluster (n_Cluster1 containing 
1,065 animals and n_Cluster2 containing 435 animals). 
Individuals within each group shared a higher number 
of haplotypes compared with individuals placed in the 
other set. This investigation evaluated the impact on the 

Figure 3. Overview of the validation process: The k-fold method is applied on 5 subsets (X1 to X5) of the largest cluster (1). Two groups from cluster 
2 (Extra1 and Extra2) were added into the training population of cluster 1 (following the k-fold strategy) for validation of each of X1 to X5 subgroups to 
investigate the impact of genomic prediction accuracy after adding unrelated animals. 
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accuracy of genomic prediction for animals from cluster 
1. Genomic predictions within cluster 1 were compared 
as well as by adding 2 less-related groups of animals 
(group “Extra1” and “Extra2,” subsets of the cluster 2) 
into the training population exclusively composed of in-
dividuals from cluster 1. The K-fold validation process, 
as used by Saatchi et al. (2012), was applied in this study 
with some minor adjustments to evaluate the impact on 
accuracy of genomic predictions after including animals 
from cluster 2 (Fig. 3). In the K-fold method, the group 
of genotyped individuals (cluster 1) is divided into K (5) 
random subsets, wherein each set is used as the valida-
tion group, and is also used as the training population for 
each of the other (K − 1) groups. Each group is iterative-
ly excluded from the estimation input EBV used to pre-
dict the marker effects, and, subsequently, DGV for the 
animals in that group are estimated from the remaining 
groups. Animals in the largest cluster (1), with EBV reli-
abilities greater than 0.5, were used and randomly sorted 
into 5 groups (“X1” to “X5”) of equal size for the valida-
tion process above described. Each of these groups from 

cluster 1 included at least 200 animals. Subsets from 
cluster 2 (Extra1 and Extra2, containing 217 and 218 
randomly selected animals, respectively) were added in 
the training set of cluster 1 to determine the effect of en-
larging the reference population by inclusion of animals 
from the less-related clusters. This will determine which 
clusters should be excluded from genomic prediction 
based on distances between clusters.

After each group within the cluster was validated 
using the 4 other subclusters as training groups (as part 
of the K-fold validation process), a group of unrelated 
individuals (Extra1) was used to replace each of the 
other 4 subclusters (X1 to X4, if we consider the vali-
dation of X5) to validate each subpopulation. This can 
be seen in Fig. 3, where groups “X1” through “X5” are 
subsets of cluster 1. “Extra1” is the group that is added 
to the population to replace one of the other clusters for 
evaluation. This meant that 25% of the reference popula-
tion was formed by animals outside of cluster for each 
scenario. An average of these 4 iterations was taken to 
determine the effect of using animals within a cluster 

Figure 4. Genetic distances between individuals in the study population. Distances represented as cluster heat map calculated using the multidimen-
sional scaling approach.
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vs. using less-related animals. Finally, another group of 
animals (Extra2) from the unrelated population cluster 2 
was added to see the impact of having a larger population 
with weaker relationships to the validation population. 
This can again be seen in Fig. 3, as the additional ani-
mals added to the population are labeled as “Extra2.” It is 
evident when looking at results from breed composition 
in Admixture that these animals are more distant from 
the main cluster and should not be included in the same 
population for genomic selection. Another set of analy-
ses was performed, adding groups Extra1 and Extra2 into 
the reference population without replacement of individ-
uals from subsets X1 to X5. Further demonstrating the 
relationship between animals, Fig. 4 shows a heat map 
plot to illustrate distances between each pairs of animals, 
calculated using a multidimensional scaling approach 
and hierarchical clustering techniques.

Scaling of genomic evaluation was checked by 
examining slopes of regression between DGV and ei-
ther EBV or dEBV for animals in the testing set. This 
compares the scale of the DGV with that of the EBV 
or dEBV, where a number at or close to 1 indicates 
that they are on a similar scale and that there is no 
significant under- or overevaluation of genotyped ani-
mals relative to ungenotyped animals.

Traditional evaluations were also performed using 
the BLUP procedure to determine the accuracy of selec-
tion using no genomic information. These evaluations 
were performed not using clustering but using all avail-
able phenotyped animals, because in a population with-
out genotypes, the clustering methods described here 
could not be used. In this case, G was replaced by the A 
matrix, and evaluations were performed using hundreds 
of thousands of animals with pedigree information, re-
flecting the true, most accurate traditional evaluations 
possible. Estimated breeding values were generated for 
each group by masking the phenotypes within a group 
and using all other available phenotypes to calculate an 
EBV. Table 2 shows the percentage of animals (before 

masking the phenotypes) in each subpopulation (X1 to 
X5) that had their own performance measured for each 
trait (BiW, WG, PWG, and YG) used during the EBV 
calculation as part of the BIO traditional genetic evalu-
ation. Most individuals had their own records available 
for comparison for BiW and WG; however, for PWG 
and YG, a large proportion of the population did not 
have their own phenotypes, leading to a potential loss 
of accuracy in validation for these 2 traits.

Tables 3 and 4 display the average EBV and accu-
racies for BiW, WG, PWG, and YG for each subgroup 
of cluster 1 (X1 to X5) after deleting the phenotypes in 
each subgroup EBV calculation. Columns with headings 
ending with “-W” refer to the average EBV and accuracy 
within a subpopulation (validation population); columns 
with headings ending with “-R” refer to the EBV and 
accuracy for the 4 remaining subgroups averaged to-
gether (training population), where phenotypes were not 
deleted for the EBV calculation (e.g., for the group X1, 
“-W” columns represents the EBV and accuracies within 
a group and the “-R” columns report the same values 
for groups X2 to X5 averaged together). As presented in 
Table 4, averaged accuracies from the “-R” group, where 
the phenotype was not deleted, are much higher (16.87, 
13.21, 12.08, and 13.00% for the traits BiW, WG, PWG, 
and YG, respectively) compared with the “-W” group. As 
the EBV accuracy depends on the amount of information, 
removing phenotypes returns a lower EBV accuracy.

RESULTS AND DISCUSSION

Clustering Identifies Genotyping Errors
There was one major cluster that contained only 1 

animal using all 3 clustering methods (G, EDM, and MI). 
This animal was not found to be from a different breed ori-
gin than many of the other animals in the study population 
and was deleted from the analysis data set. This cluster 
could be explained by a genotyping error, an animal with 
very different lineage than the rest of the population re-
gardless of breed composition, or the clustering algorithm 
being forced to create an unnatural number of clusters 
for the given data. This may provide a way to find outlier 
animals that will not be well predicted through genomic 
evaluation without having to have an accurate EBV to 
compare the DGV with. For young animals that may have 
genotyping errors, this will be valuable in excluding those 
animals from subsequent analysis and avoid decreasing 
the accuracy of genomic evaluation for all animals.

Genomic Prediction and Validation

As shown in Fig. 2, validation was first performed 
on EBV that had not been deregressed. Accuracy was 

Table 2. Percentage of animals from each subpopulation 
of cluster 1 (X1–X5) with their own phenotype measured 
for birth weight (BiW), weaning gain (WG), postwean-
ing gain (PWG), and yearling gain (YG) used for the 
EBV calculation before phenotype deletion (a deletion 
that occurs only as part of the cross-validation process) 

 
Subset

Percent own record
BiW WG PWG YG

X1 99.06 97.17 29.72 61.79
X2 98.11 94.81 16.98 56.60
X3 98.58 92.92 23.11 57.08
X4 95.75 91.51 19.34 47.64
X5 98.58 96.23 19.34 58.49
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calculated as the correlation of the across-breed EBV of 
each individual and the DGV estimated using the esti-
mated marker effects from the training population for 
that iteration of the k-means clustering validation algo-
rithm. A minimum EBV reliability threshold of 0.5 was 
set for all animals to be included in the validation steps 
to ensure that animals with very low accuracy EBV were 
not biasing the validation accuracy results. This, how-
ever, may not be a strict enough threshold, and EBV reli-
abilities should ideally be higher to validate the accuracy 
of genomic evaluations. However, in a beef cattle sce-
nario where a reduced number of progeny is obtained per 
bull, this is not always possible (the males in this study 
were primarily yearling bulls, not proven sires). The av-
erage accuracy of across-breed EBV used for this study 
was 0.674 (average value for the 4 traits as presented in 
Table 4, in columns with headings ending with “-R”). 
Minimum thresholds were also set for animals from out-
side of the clusters, so all comparisons were consistent. 
As higher accuracy EBV are not available in this case, or 
in most scenarios using crossbred beef cattle, this is the 
best estimation of validation accuracy for this population. 
Table 5 displays the accuracy of genomic prediction for 
the cluster as an average of all subclusters. The regres-
sion coefficient (b) of genomic selection averaged across 
validation groups from k-fold validation is presented in 
Table 6.  Also presented in Table 5 is the accuracy of pre-
diction when a subcluster is replaced with animals from 
outside the cluster and when extra animals are added 
from outside the primary cluster. Table 7 shows scenarios 
similar to Table 5, except extra animals are added from 
the external cluster (Extra1 and Extra2) without replac-
ing animals from the main cluster (Extra1). Scenarios 
presented in Table 7 that aimed to check reference set en-
largement by adding unrelated animals without exclud-
ing 200 related animals as done by scenarios in Table 5.

In both Tables 5 and 7, a decrease in accuracy is ob-
served in all scenarios including animals from cluster 2. 
As more animals from cluster 2 are introduced, predic-
tion of marker effects for the validation population be-
comes less relevant. This implies that marker effects are 
not consistent across clusters. The primary cluster used 
for this analysis was mostly made up of crossbred ani-
mals as well as purebred Angus animals (Fig. 1). When 
some reference crossbred and purebred animals were 
replaced by purebred animals of the different breeds 
included in the Extra1 subset, a decrease in accuracy 
was seen. A loss in prediction accuracy when more 
animals are added from cluster 2 (Extra2) implies that 
having large populations for genomic selection is ben-
eficial only if all animals in the training population are 
closely related to the validation population. It has been 
shown that across-breed genomic selection in purebred 
groups relies heavily on the degree of relationship be-
tween training and validation groups but can be effec-
tive if the relationships between the groups are high, 
as was shown in a population of purebred Angus and 
Charolais cattle (Chen et al., 2013). As we diverge from 
very similar animals, accuracies will significantly drop 
as marker effects become more reliant on animals from 
populations where there may be different QTL or, at the 
very least, different LD patterns between markers used 
and the underlying QTL. In theory, clustering creates 
populations more similar in genetic structure underly-
ing phenotypic differences within populations than 
simply separating populations by breed composition. 
Table 7 (addition of animals from cluster 2 without the 
replacement of related animals [X1 to X5] from clus-
ter 1 during the k-fold validation) showed accuracies 
slightly higher (less than 0.47% improvement across all 
scenarios) than the equivalent comparison presented in 
Table 5. Animals that were replaced according to the 

Table 3. Average EBV values for birth weight (BiW), 
weaning gain (WG), postweaning gain (PWG), and 
yearling gain (YG) in each subpopulation of cluster 
1 (X1–X5). Columns with headings ending in “-W” 
refer to the average EBV after deleting an individuals’ 
own phenotype, and the group of column with head-
ings ending in “-R” refer to the average EBV for the 4 
remaining subgroups where the phenotypes were not 
deleted before the EBV calculation
Subset BiW-W WG-W PWG-W YG-W BiW-R WG-R PWG-R YG-R
X1 −7.12 79.36 80.1 158.7 −6.24 76.92 74.58 155.3
X2 −5.14 80.58 72.14 139.86 −4.58 79.14 72.24 152.6
X3 −5.32 80.2 73.12 158.78 −5.6 79.14 72.84 158.1
X4 −5.74 76.2 74.56 150.98 −5.84 79.56 75.38 154.5
X5 −5.98 79.14 76.08 154.24 −5.84 78.52 74.02 152.74

Table 4. Average EBV accuracy of traditional evalu-
ations for birth weight (BiW), weaning gain (WG), 
postweaning gain (PWG), and yearling gain (YG) 
in each subpopulation of cluster 1 (groups X1–X5). 
Columns with headings ending in “-W” refer to the 
average EBV accuracy after deleting an individuals’ 
own phenotype, and the group of columns with head-
ings ending in “-R” refer to the average EBV accuracy 
for the 4 remaining subgroups where the phenotypes 
were not deleted before the EBV calculation
Subset BiW-W WG-W PWG-W YG-W BiW-R WG-R PWG-R YG-R
X1 58.22 54.69 52.69 53.01 74.15 66.94 62.14 64.78
X2 57.34 53.82 49.76 52.07 74.85 67.65 63.00 65.56
X3 57.66 54.13 50.53 52.59 74.94 67.84 62.98 65.64
X4 57.44 53.92 50.01 51.84 74.48 67.33 63.08 65.43
X5 57.46 54.03 50.20 52.21 74.05 66.89 62.37 65.31
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strategy presented in Table 5 (around 200 individuals), 
kept in the reference population in Table 7 during the 
k-fold validation (X1 to X5), contributed toward this 
minimal accuracy improvement. However, even with 
the enlargement of the reference population, the accu-
racy remained lower compared with the within-cluster 
evaluation, confirming the negative impact of adding 
unrelated animals in the reference population.

Results from genomic predictions here are still infe-
rior to traditional evaluations (“Traditional Evaluation” 
column in Table 5) without genomics for most traits. 
This, however, is not indicative that genomics will not 
work as well as or better than traditional EBV for these 
traits, especially as the training population of genotyped 
beef cattle with accurate phenotypes grows. Accuracies 
were conservatively calculated, with no correction for 
the accuracy of traditional EBV, dEBV, or DGV being 
compared. If a method to correct DGV accuracy was 
used, higher accuracies of genomic selection generally 
have been found (Saatchi et al., 2012). Also, as the pop-
ulation of genotyped animals in all breeds continues to 
grow, genomic selection will become more feasible for 
animals both within and outside of the largest clusters 
detected. Training population size has been consistently 
shown to be a strong indicator of genomic selection ac-
curacy; however, for a crossbred population, using a 
sparse genotype panel, the importance of training popu-
lation size becomes even more pertinent. Haplotypes be-
tween markers and potentially causative QTL may not 
be in the same phase across different breeds, as has been 

shown in dairy cattle (De Roos et al., 2008). A differ-
ing haplotype phase will lead to inaccuracy of estimat-
ing marker effects across a population, and if markers 
are associated with different variants on a QTL across 
animals in the training population, marker effects will 
generally regress toward 0 and the effects of certain QTL 
will be ignored. Although cross-validation is the best 
method to evaluate results in real data, the accuracy of 
input EBV being less than 1 can lead to incorrect conclu-
sions about the validity of different methods. Accuracy 
of various methods is also highly dependent on popula-
tion size, and the clusters built here vary in size, so the 
true cause of reduced accuracy is difficult to ascertain. 
Accuracy was also explored as the accuracy of the over-
all population; however, for some groups or individuals, 
the results may vary depending on breed composition 
and the potential effective population size of each breed.

Accuracies found in this study are similar to those 
found in both simulated and true populations of pure-
bred beef cattle (Brito et al., 2011; Saatchi et al., 2012). 
This is very promising for genomics to allow crossbred 
cattle to be evaluated as accurately as purebreds and al-
low for more accurate selection when using crossbred 
animals as parents of future generations in composite 
breeding systems. When compared with other stud-
ies that have used crossbred animals as the training 
population, accuracies found here are similar or higher 
for traits of similar heritability, although population size 
and accuracy of trait measurement vary widely (Toosi et 
al., 2010; Mujibi et al., 2011). The heritability of traits 

Table 5. Accuracy (Pearson correlation) of genomic selection averaged across validation groups from k-means 
validation

 
 
 
Trait used in gebv1  
  software

Validation group (compared with dEBV2) Validation group (compared with EBV)
 

Within 
cluster 1 
(k-fold)3

Replacing 
X1 to 

X5 with 
Extra14

 
 
 

SE

Replacing  
X1 to X5 with 

Extra1 and  
adding Extra25

 
 
 

SE

 
 

Traditional 
evaluation

 
Within 

cluster 1 
(k-fold)3

Replacing 
X1 to 

X5 with 
Extra14

 
 
 

SE

Replacing  
X1 to X5 with 

Extra1 and  
adding Extra25

 
 
 

SE

 
 

Traditional 
evaluation

Birth weight EBV N/A6 0.610 0.586 0.002 0.590 0.003 0.735
Birth weight dEBV 0.378 0.364 0.004 0.369 0.003 0.460 0.559 0.538 0.004 0.545 0.004 N/A
Weaning gain EBV N/A 0.522 0.495 0.003 0.501 0.002 0.688
Weaning gain dEBV 0.203 0.178 0.005 0.183 0.005 0.272 0.402 0.348 0.005 0.363 0.005 N/A
Postweaning gain EBV N/A 0.685 0.672 0.003 0.672 0.002 0.802
Postweaning gain dEBV 0.186 0.184 0.005 0.180 0.004 0.215 0.599 0.584 0.005 0.584 0.005 N/A
Yearling gain EBV N/A 0.650 0.638 0.002 0.640 0.002 0.768
Yearling gain dEBV 0.268 0.253 0.005 0.260 0.004 0.309 0.561 0.539 0.005 0.545 0.005 N/A

1Sargolzaei et al. (2009).
2dEBV = deregressed EBV.
3Validation using k-fold strategy: Each of the random subsets from cluster 1 (X1 to X5) were replaced by an equal sized group (n = 212) of animals from 

cluster 1(if validation was carried out for the subset X1, the remaining groups [X2 to X5] were used for replacement each time). Accuracy reported is an aver-
age of all k groups having had all other subsets replaced. Estimated breeding values calculated from across-breed comparisons or deregressed breeding values.

4Each of the random subsets (X1 to X5) were replaced by a group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2.
5Each of the random subsets (X1 to X5) were replaced by a group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2 and a second 

group was also included (Extra2) to enlarge the training set with unrelated animals.
6N/A = Not applicable.
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used in this study as been found to range from 0.2 to 0.5 
(Pravia et al., 2014). Accuracy varied with heritability, 
and, in general higher, heritability traits were more ac-
curately evaluated. Weaning gain was poorly evaluated 
in this study, and this is likely due to both a low heri-
tability as well as the low accuracy obtained from the 
traditional evaluation before the DGV estimation.

Table 5 shows the accuracy of DGV when using 
deregressed values as well as full EBV. Previous stud-
ies using deregressed values have shown low to mod-
erate accuracies when using correlations with EBV or 
dEBV to measure accuracy (Weber et al., 2012; Neves 
et al., 2014). Deregression using low reliability EBV 
and parent average (PA) as an input can create difficul-
ty due to potential overinflation of dEBV leading to an 
increase in variance in the genomic prediction model. 
For similar traits as used in this study, accuracies rang-
ing between 0.18 and 0.28 were found; however, ac-
curacies have been calculated variably across genomic 
selection studies (Neves et al., 2014). Accuracy values, 
when comparing with dEBV in this study, were worse 
than when using EBV, likely due to the increased vari-
ance of dEBV in comparison with EBV, leading to gen-
erally lower Pearson correlation values. Concordance 
with dEBV was similar to what previously has been 
seen using a similarly sized population and the 54,609 
SNP panel (Weber et al., 2012) but slightly lower than 
when the high density SNP panel (777,967) SNP panel 
was used (Neves et al., 2014).

Slopes of regression between DGV and EBV or 
dEBV (Tables 6 and 8) were different from 1 for most 

traits, indicating that some scale issues exist for the 
genomic evaluations. This is consistent with the re-
sults found by other such studies in crossbred animals 
(Hanna et al., 2014; Hidalgo et al., 2015) as well as 
those in purebred beef populations (Neves et al., 2014). 
The observed difference in scale is likely, in part, due to 
the poor accuracy of EBV and dEBV that the DGV are 
being regressed on. The regression coefficient was simi-
lar in all scenarios, although it was found to be slightly 
closer to 1 in most cases when evaluated within a cluster. 
Direct genomic values were consistently scaled upward, 
with the lone exception being when dEBV were used to 
generate DGV and then compared with true EBV. In this 
scenario, a slight downward scaling was observed where 
DGV underestimated EBV values. This was, however, 
the lowest accuracy scenario when using EBV as the de-
pendent variable in the regression. Genomic predictions 
are usually overestimated. The strong underestimation 
can be related to the limited amount of information used 
to calculate DGV or lack of an index to combine DGV 
with parent average. Further investigation on an appro-
priate index is required for multibreed genomic evalu-
ations. The regression coefficient was generally lower 
when deregression was performed, showing that the 
parent averages being double counted through the indi-
viduals phenotypes caused an inflation of DGV to take 
place. This shows that although the dEBV led to lower 
accuracy of prediction, further comparisons of geno-
typed and ungenotyped animals is more realistic, and 
the loss in accuracy due to deregression may be indica-
tive of the poor reliabilities of the crossbred ABC and 

Table 6. Regression coefficient (b) of genomic selection averaged across validation groups from k-fold validation

 
 
 
Trait used in gebv1 
software

Validation group (compared with dEBV2) Validation group (compared with EBV)
 

Within 
cluster 1 
(k-fold)3

Replacing 
X1 to 

X5 with 
Extra14

 
 
 

SE

Replacing X1 
to X5 with 
Extra1 and  

adding Extra25

 
 
 

SE

 
 

Traditional 
evaluation

 
Within 

cluster 1 
(k-fold)3

Replacing 
X1 to 

X5 with 
Extra14

 
 
 

SE

Replacing X1 
to X5 with 
Extra1 and  

adding Extra25

 
 
 

SE

 
 

Traditional 
evaluation

Birth weight EBV N/A6 1.240 1.233 0.007 1.215 0.007 1.02
Birth weight dEBV 1.148 1.156 0.012 1.147 0.011 1.05 1.023 1.031 0.008 1.021 0.008 N/A
Weaning gain EBV N/A 1.321 1.400 0.007 1.367 0.007 0.93
Weaning gain dEBV 1.086 1.096 0.031 1.152 0.027 0.91 0.865 0.875 0.013 0.901 0.012 N/A
Postweaning gain EBV N/A 1.655 1.744 0.015 1.679 0.012 1.05
Postweaning gain dEBV 1.849 1.899 0.058 1.800 0.050 1.11 1.514 1.518 0.015 1.467 0.013 N/A
Yearling gain EBV N/A 1.518 1.662 0.014 1.599 0.009 1.02
Yearling gain dEBV 1.650 1.819 0.039 1.773 0.032 1.12 1.254 1.397 0.016 1.348 0.015 N/A

1Sargolzaei et al. (2009).
2dEBV = deregressed EBV.
3Validation using k-fold strategy: Each of the random subsets from cluster 1 (X1 to X5) were replaced by an equal sized group (n = 212) of animals from 

cluster 1(if validation was carried out for the subset X1, the remaining groups [X2 to X5] were used for replacement each time). Accuracy reported is an aver-
age of all k groups having had all other subsets replaced. Estimated breeding values calculated from across-breed comparisons or deregressed breeding values.

4Each of the random subsets (X1 to X5) were replaced by a group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2.
5Each of the random subsets (X1 to X5) were replaced by a group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2 and a second 

group was also included (Extra2) to enlarge the training set with unrelated animals.
6N/A = Not applicable.
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not indicative of a failure in the deregression procedure 
for these data. For PWG and YG, a greater variability in 
slope was seen, likely due to a much smaller proportion 
of animals having their own phenotype for evaluation, 
leading to a small scaling effect. Slopes of regression in 
Table 8 were slightly closer to 1 (0.02 as an average val-
ue across all scenarios) than those presented in Table 6.

The comparison of results from traditional evalua-
tions was calculated as the regression between EBV (or 
dEBV) from the entire data set and the EBV calculated 
by removing phenotypes from the animals in a certain 
subcluster (X1 to X5) as part of the k-fold validation 
strategy. Higher accuracies of traditional evaluation 
suggest that genomic evaluation of crossbred animals, 
performed with a restricted reference population size, 
do not provide a significant increase in accuracy of 
evaluation, especially for PWG and YG, where a high 
occurrence of scale issues was seen in genomic evalu-
ations. This should, however, be looked at critically, as 
the EBV used to compare accuracies between genomic 
and traditional methods were calculated using the same 
method as the dependent variable (full EBV) and in-
herently will be more accurate because of this. Further 
investigation repeating the same method in a popula-
tion containing thousands of animals is warranted. One 
additional issue on multibreed studies using real data 
is the absence of equally distributed populations (same 

numbers of purebred animals from each breed or group 
as well as equal representation of crossbred animals 
with similar breed proportions) and the fact that each 
breed was originally generated under different selection 
intensity over the years. The best approach to verify the 
accuracy of genomic evaluation in a multibreed popu-
lation is by simulation, at least until genomic selection 
has been implemented for several years and long-term 
genetic trends can be measured across a population. At 
this point, due to a smaller genotyped population and 
less LD than is seen in major dairy breeds or purebred 
beef breeds, implementation of genomic selection in 
crossbred beef animals remains ineffective.

Further analysis needs to be performed to determine 
the best way to evaluate individuals with a low relation-
ship coefficient with the rest of the population. Even 
when 5 clusters were created, there were clusters of very 
few animals, and these individuals could not be evaluat-
ed within a cluster. It has been shown that these animals 
should not be included in analysis of animals that fit well 
into a large cluster. However, for evaluation of these ani-
mals themselves, a subsequent reclustering must take 
place to ensure a large-enough training population can 
be made to perform accurate DGV estimation. If a study 
is designed to target a specific group of animals, clus-
tering methodologies that ensure a minimum population 
size can be used to build a cluster of animals around a 

Table 7. Accuracy (Pearson correlation) of genomic selection averaged across validation groups from k-means 
validation when sets from the unrelated cluster (Extra2) were added in the validation process without replacing 
a set from the training population

 
 
 
 
Trait used in gebv1 
software

Validation group (compared with dEBV2) Validation group (compared with EBV)
 
 

Within 
cluster 1 
(k-fold)3

Adding 
Extra1 with-
out replacing 

X1 to X54 
(#)

 
 
 

SE
(#)

Adding 
Extra1and 

Extra2 without 
replacing  

X1 to X55 (#)

 
 
 

SE
(#)

 
 
 

Traditional 
evaluation

 
 

Within 
cluster 1 
(k-fold)3

Adding 
Extra1 with-
out replacing 

X1 to X5  
(#)

 
 
 

SE
(#)

Adding 
Extra1and 

Extra2 without 
replacing  

X1 to X5 (#)

 
 
 

SE
(#)

 
 
 

Traditional 
evaluation

Birth weight EBV N/A6 0.610 0.593 0.002 0.594 0.003 0.735
Birth weight dEBV 0.378 0.369 0.003 0.370 0.003 0.460 0.559 0.540 0.005 0.549 0.004 N/A
Weaning gain EBV N/A 0.522 0.499 0.003 0.512 0.004 0.688
Weaning gain dEBV 0.203 0.182 0.005 0.187 0.004 0.272 0.402 0.360 0.005 0.380 0.012 N/A
Postweaning gain EBV N/A 0.685 0.677 0.004 0.680 0.018 0.802
Postweaning gain dEBV 0.186 0.185 0.004 0.182 0.003 0.215 0.599 0.587 0.004 0.589 0.006 N/A
Yearling gain EBV N/A 0.650 0.642 0.003 0.643 0.002 0.768
Yearling gain dEBV 0.268 0.255 0.004 0.262 0.004 0.309 0.561 0.541 0.006 0.555 0.005 N/A

1Sargolzaei et al. (2009).
2dEBV = deregressed EBV.
3Validation using k-fold strategy: Each of the random subsets from cluster 1 (X1 to X5) were replaced by an equal sized group (n = 212) of animals from 

cluster 1(if validation was carried out for the subset X1, the remaining groups [X2 to X5] were used for replacement each time). Accuracy reported is an aver-
age of all k groups having had all other subsets replaced. Estimated breeding values calculated from across-breed comparisons or deregressed breeding values.

4A group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2 was added in the reference set without replacing subsets from cluster 
1 (X1 to X5).

5Two groups of animals (Extra1 and Extra2; each one with the same size, n = 217) from the unrelated cluster 2 were added to enlarge the reference set 
with unrelated animals without replacing subsets from cluster 1 (X1 to X5). Column headings ending with “(#)” must be compared with the corresponding 
columns from Table 5. The remaining columns from this table are identical to Table 5.

6N/A = Not applicable.
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certain population. However, clustering in this way can 
lead to animals that are not strongly related being includ-
ed in a population. Therefore, a balance is required be-
tween the number of animals to include in the reference 
population and the relationship of the selection candi-
dates to the reference population. When implementing 
GPC in a commercial setting with a diverse set of breeds 
and populations being included, such as would be the 
case for a national commercial beef cattle evaluation 
in Canada, it is likely that some animals initially would 
be deemed unsuitable for prediction due to too few ani-
mals of sufficient relationship in the reference. Another 
challenge to overcome with GPC is that animals will be 
predicted from different reference populations and some 
effort will be needed to ensure animals can be compared 
across clusters in terms of their DGV, when possible. 
However, we feel these challenges can be overcome by 
adjustments on the genomic relationship matrix or by 
using methods that rely on the identification of haplo-
types across different groups or clusters.

For genomic selection to be implemented in cross-
bred commercial beef cattle, a large reference popula-
tion of animals with genotypes and phenotypes is re-
quired. Such resources are being developed, through 
recorded herds. The development of these resources 
could increase at an exponential rate with a step-
change in genotyping technologies. Genotyping by se-

quencing, as one example, shows promise to provide 
high-throughput genotypes at lower cost (Clarke et al., 
2014). In practice, genotyping by sequencing could 
offer medium-density genotyping along with parent-
age for the price point of parentage alone with current 
technologies. With costs of genotyping decreasing and 
accuracy of imputation methods increasing, building a 
reference population for crossbred genomic selection 
that will outperform traditional evaluation seems likely. 
Genomic prediction using clusters provides a means to 
build a better reference population in an efficient man-
ner, for more accurate genomic selection with the type 
of crossbreed data that comes with a commercial beef 
cattle population, such as that seen in Canada.

This study provided an accurate strategy of group-
ing animals for subsequent multibreed genomic eval-
uation effectively incorporating crossbred animals. 
Grouping animals using a cluster strategy for genomic 
selection is more accurate and efficient than using all 
available animals. The population of 1,500 genotyped 
crossbred or multibreed beef cattle used in this study 
was not large enough to accurately implement genom-
ic selection. There are large multibreed databases be-
ing developed that will enable genomic selection to be 
implemented in the future. The framework provided in 
this paper will allow for efficient use of genotypes for 
routine evaluation as more genotypes and phenotypes 

Table 8. Regression coefficient (b) of genomic selection averaged across validation groups from k-fold validation 
when sets from the unrelated cluster (Extra2) were added in the validation process without replacing a set from 
the training population

 
 
 
 
Trait used in gebv1 
software

Validation group (compared with dEBV2) Validation group (compared with EBV)
 
 

Within 
cluster 1 
(k-fold)3

Adding Extra1 
without 

replacing  
X1 to X54  

(#)

 
 
 

SE
(#)

Adding Extra1 
and Extra2 

without 
replacing X1 

to X55 (#)

 
 
 

SE
(#)

 
 
 

Traditional 
evaluation

 
 

Within 
cluster 1 
(k-fold)3

Adding 
Extra1 

without re-
placing X1 
to X5 (#)

 
 
 

SE
(#)

Adding Extra1 
and Extra2 

without 
replacing  

X1 to X5 (#)

 
 
 

SE
(#)

 
 
 

Traditional 
evaluation

Birth weight EBV N/A6 1.240 1.320 0.008 1.178 0.009 1.02
Birth weight dEBV 1.148 1.150 0.009 1.141 0.010 1.05 1.023 1.016 0.006 1.001 0.007 N/A
Weaning gain EBV N/A 1.321 1.368 0.007 1.322 0.007 0.93
Weaning gain dEBV 1.086 1.092 0.027 1.113 0.020 0.91 0.865 0.921 0.009 0.927 0.011 N/A
Postweaning gain EBV N/A 1.655 1.711 0.012 1.733 0.011 1.05
Postweaning gain dEBV 1.849 1.881 0.045 1.749 0.059 1.11 1.514 1.489 0.011 1.421 0.014 N/A
Yearling gain EBV N/A 1.518 1.599 0.013 1.598 0.016 1.02
Yearling gain dEBV 1.650 1.820 0.036 1.690 0.016 1.12 1.254 1.303 0.012 1.309 0.015 N/A

1Sargolzaei et al. (2009).
2dEBV = deregressed EBV.
3Validation using k-fold strategy: each of the random subsets from cluster 1 (X1 to X5) were replaced by an equal sized group (n = 212) of animals from 

cluster 1(if validation was carried out for the subset X1, the remaining groups [X2 to X5] were used for replacement each time). Accuracy reported is an aver-
age of all k groups having had all other subsets replaced. Estimated breeding values calculated from across-breed comparisons or deregressed breeding values.

4A group of animals of the same size (Extra1; n = 217) from the unrelated cluster 2 was added in the reference set without replacing subsets from cluster 
1 (X1 to X5).

5Two groups of animals (Extra1 and Extra2; each one with the same size, n = 217) from the unrelated cluster 2 were added to enlarge the reference set 
with unrelated animals without replacing subsets from cluster 1 (X1 to X5). Column headings ending with “(#)” must be compared with the corresponding 
columns from Table 6. The remaining columns from this table are identical to Table 6.

6N/A = Not applicable.
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become available. Further research is required to en-
sure these results are consistent across multiple traits 
that may have different genetic architectures, to deter-
mine the practical minimum size and degree of rela-
tionship within a cluster to ensure accurate genomic 
prediction for all individuals and to fine tune evalua-
tions for animals that do not fit well into a cluster.
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