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Introduction

Qualitative traits - few genes, with large effect, low environmental bias, and high h?
Quantitative traits - many genes, little effect, with high environmental bias, and low h?

How to select for these traits?

“Traditional” Breeding

Molecular markers associated with quantitative trait loci (O71)
Marker Assisted Selection (major QTL or QTL with large effect)
Genomic Selection (many QTL with little effect)

GWAS 1s more interested to find the causal relationship between genetic polymorphism within a specie
than the phenotypic differences observed between individuals
Also, how it is passed to the next generation

Molecular Diversity: Genotype
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Trait-marker association

How to identify trait-marker association?

QTL mapping based on biparental population

It is still a powerful method to identify regions of the genome that co-segregate with a given trait
F,.; populations or Recombinant Inbred Line (RIL) families

Limitations of QTL mapping:

Low allelic diversity:

It is limited between two parents (alleles) of a particular cross
Lower resolution:

Few recombination events happen during the creation of the RIL
When the resolution is low the QTL interval is large

10 Mb interval in maize might have more than 200 genes
Biparental population need to be created

It takes a long time



GWAS vs. QTL mapping

A GWAS is an approach that uses whole genome markers to find genetic variations associated with a trait

Biparental population vs Natural populations: Mapping resolution

Genotyping Phenotyping Biparental population Natural poputations
[individua1| A | ¢ [ ¢ [ A ] ¢ [13m] N = ="{
IIndividuaZl A | c | c | alT |1.4m| " 4 f) o= l oy gnerens
! i : o i
’Individua3| A | T | Alaloe |1.5m‘ n e —
10 Mb Interval L W ol i
[individuaa| ¢ | T [ A [ | T [18m] o || ””l ”I || i e ot ot
mare genes P s L
IIndividua5| A I C | G G T |2.0m| u'u“““ ‘4 m
Individua6 | A | T G G G |21m * Low mapping resolution due to: * High mapping resolution due to:
I |A/c l T/C | G/A A/G G/T| l - . . - Lot bl ety . Eﬂmm

. . . . . . . Yi Yi=Bo+ Xy
* High-resolution power due to high amount of historical recombination

e LowlLD B

« High genetic diversity (diverse populations) g Fot i /
* Biological adaptation and geographical distribution : \

00 000

© o
elele
(o]e (o]
oo

* No need to create mapping population (time saving) Bo
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GWAS limitations and advantages

Limitations

Reproducibility: sometimes results are not replicated across populations

Results need to validate by replication in independent samples in different populations (validation test)
Size of population: population should be enough large to detect a QTL (statistical power)

Marker dataset size: a large number of markers is required to cover the whole genome

Detects association not causation

Noncoding variants with unknown effect: most of the identified variants in GWAS are far from
discovered protein-coding gene

Detection of rare variant: detects only variants that their frequency >5% in a population

SNPs only explains a small fraction of phenotypic variation of a trait

Advantages

Discover novel candidate genes or QTL for measured trait(s)
Determine aspects of the genetic architecture of complex trait:
Number of loci that contributed to the phenotype

Respective contribution of loci to the phenotype



Linkage disequilibrium (LD)

 Non-random association between two or more loci

* Not necessarily on the same chromosome

* Some combinations are more frequent than expected

LE

o0
o0
@O
@O
o0
o0
@O
®O

LD
o0
o0
o0
| J@)
o0

®O
@O
®O

p(A)=0,7 p(AB)=0,35
p(@)=0,3  p(ab)=0,05
p(B)=0,6 p(A4b)=0,25
p(b)=0,4  p(aB)=0,35

D = p(AB)p(ab)— p(A4b) p(aB)

D =0,35.0,05-0,25.0,35=-0,07

P = D’
p(A)p(a) p(B) p(b)
, 0,0049

9

T 0.7.03.0.60.4

e LD after t gerations

* Recombination rate (c)

D
Dp=Dp(l=0)f  E=(1-o)

(0]

t = ln(%)/ln(l —c)

* How many generations to reduce 20% of LD?
* ¢=0.05

t =(n(0.8)/1n(0.95) = 4.35



GWAS assumptions and populations

Assumptions

Genetic variants contribute to development of trait

A marker associated with a certain trait is in or near a gene that contributes to that trait
Common variants explain a significant proportion of the genetic variation in the population
Population homogeneity

Populations normally used

Pool of genotypes from a breeding program
Multiple cross populations: NAM, MAGIC

Populations used in GWAS

Table 8.3 The relevant features of various mapping populations available for association analysis in plant breeding
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Yu et al., Genetics, 2008. doi:10.1534/genetics. 107.074245

Traits analyzed Highly heritable and
domestication traits
Level of LD Low

Population structure Medium

Allelic diversity in the sample High

Resolution of AM High

Power of association analysis Low
The use of markers associated Marker-aided selection

with the target traits (MAS)
Based on Breseghello and Sorrels (2006)

materials are developed
Low heritability traits like
yield

High

High

Low

Low
High

MAS

programs
LlneS deered fI'OIIl dlallel CTrOSSES Feature Germplasm bank Elite breeding material Synthetic population
. . . Sample Core collection Lines and cultivars developed Individuals or lines drawn
Germplasm COHCC'[IOH. lal’ldl"aceS, accessions accessions in breeding programs from the population
The composition of sample Does not change Changes with time as new Changes with time as the

generation advances
Depends on the evaluation
scheme

Intermediate

Low

Intermediate
Intermediate; increases
with generation
Intermediate; decreases
with generation
Incorporated in selection
index



Power of GWAS

Proportion of phenotypic variation explained by the SNP — increase the heritability

The effect size of the two allelic variants: how they differ in their phenotypic effect (no way to change)
Sample size (evaluate more individuals)

Frequency of allelic variants in the sample (change the mating design, increasing the rare alleles)
Population structure: introduce heterogeneity resulting in an association that is not true

Geographical distribution

Growth habit: winter and spring wheat

Unequal familial relationship
Different LD pattern



Population structure

Systematic difference in allele frequencies between subpopulations

May be due to different ancestry: geographical and climate distance, familial relationship, ...

Violates assumptions: population homogeneity

It ends up in spurious association ==> False positives (Type I error)

Over estimation of significance of associations

Solution: regression on on covariates - quantitative (PCs ) or binary (sex, origin)

For instance, including 1-3 PCs in the mixed linear model

Example: SNP1

Assumed the SNP is associated with plant height or disease resistance

North America lines are:

 Taller and susceptible

* Allele T could be associated with either trait
South America lines are

e Shorter and tolerant

e Allele G could be associated with either trait

PC2
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Unequal familial relationship

Coefficient of coancestry: the probability that an allele selected randomly from individual X and an allele
selected randomly from the same autosomal locus of individual Y are in identity by descent (IBD)

K (kinship) = twice of the coancestry
Genomic relationship matrix (G or K)

Molecular markers are using to estimate relationships
Two individuals sharing lots of genotypes at SNPs are likely belong to the same family

Famuy genenc cometanon matnx

A x B x C (Parents)

TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTATGC

AfS NC TICGA

X x Y (Half sib)

N

Z (Full sib}




GWAS models

GLM: all the factors included in a GLM are fixed effects

This model is built and solve for each trait and marker information

Includes:

Phenotypic dataset (observation for each trait)

Each individual could have several observations (e.g. replicates, locations, years)
The adjusted mean value for each genotype is used in GWAS

Marker data (e.g. SNP)

Covariates

Any covariates that can be used to control field variations, and individuals (e.g. winter and spring wheat, geographical
distribution, fertility variation of field ,...)

Source of variation

1-3 PCs (or Qs) to control population structure / \
MLM: Factors in MLM include both fixed and random effects population Py Unequal
Individuals in MLM are random f t f
Kinship matrix added to MLM to control unequal familial relationship Y =u+ SNP + Q(or PCs) + Kinship +e
/ l / / N\
(observation) (Fixed effect) (Fixed effect) (Random effect) (Error)

General linear model (GLM)

Mixed linear model (MLM)



Crop: Maize
Trait: Ear height
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Matrix format:

GWAS model example

/ \

population population Unequal

structure
mean relatedness

! 1 1
Y =u+ SNP + Q(or PCs) + Kinship —+ e
/ i ! i N\

(observation) (Fixed effect) (Fixed effect) (Random effect) (Error)

General linear model (GLM)

Mixed linear model (MLM)

y=Xf+Zu+ e

y: a vector of phenotypic observation for trait of interest.

B: an unknown vector containing fixed effects, including genetic marker effect
and population structure (Q or PC).

e: avector for random residual e ~ N (0, 62I)

u: an unknown vector of random additive genetic effects from multiple
background QTL for individuals ~ u ~ N (0, 62K)

X & Z : known design matrices



How is marker-trait tested?

Testing full model over reduced model to see if SNP has significant effect on trait

Y=u+SNP+Q+e (Full model
¢ ¢ Hlt model Full model

Reduced model ’

P value
Y=u+Q+e (Reduced model)

LRT = Chi- square test y2 (df = 1)
anova(Full.m, Red.m) in R
Compare p value with threshold p value (0.05)

Multiple hypothesis testing

In GWAS we perform many marker-trait hypothesistests (#tests = #markers)

It creates a challenge with Type I error called Multiple testing problem

For N independent testes ==> N*0.05. So by increasing N we make lots of errors
Thus, p-value by Bonferroni is equal to 0.05/N



False Discovery Rate - FDR

* The expected proportion of false positive QTL

. * =
1- Sort the markers by their p-values q*=0.05
2 — From the largest value compare it to its p;*-value a, =0.05/15=0.003
o . _ . . '*_ . .
3 — Find the first p;-value that is < than its p;,*-value pi*=q*(i/ Nm)
markeri 1 2 3 [ 4|5 6 7 8 9 10 11 12 13 14 15
p-value 0.0001 0.0002|0.0015/0.004/0.02 0.03 0.1 0.18 0.2 032 0.4 0.56 0.75 0.8 0.92
T 005 005 005]005]|0.05 005 005 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
pi*-value 0.003 0.007 0.0100.013|0.017 0.020 0.023 0.027 0.030 0.033 0.037 0.040 0.043 0.047 0.050
Nm 15 15 15 | 15 |15 15 15 15 15 15 15 15 15 15 15

The markers from this point are declared significant

15 SNP, p-value = 0,05 and 4 SNP considered as significant:
FDR = 15x 0.05/4 = 0.1875

18.75 % of the SNP are false positive



Building your own threshold

Resampling method

First, the phenotypic values are shuffled, breaking their association with marker

Then, the random association between all markers to the phenotype is estimated

The corresponding best marker score (minimum p-value among all markers) is recorded
This procedure is repeated hundred times for each trait — a distribution of random p-values
Based on that, define the 95 % quantile

It is defined as the newest threshold (based in your data) to declare a significant association
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Matrix format: — | 1 | | I |
y=Xp+Zu+

0.000 0.010 0.020 0.030

y: a vector of phenotypic observation for trait of interest.

PB: an unknown vector containing fixed effects, including genetic marker effect

and population structure (Q or PC). N =200 Bandwidth =0.0007281
e: avector for random residual e ~ N (0, 62I)

u: an unknown vector of random additive genetic effects from multiple

background QTL for individuals ~ u ~ N (0, 62K)

X & Z : known design matrices



Quantile—Quantile (QQ) plot

It is a plot of the quantile distribution of observed p-values (on the y-axis) on the quantile distribution of
expected p-values (on x-axis)

The expected p-values have a random uniform distribution

If a QQ plot is a line with a tail, there are some casual polymorphisms

A few of the p-values are in LD with a causal polymorphism and had significant p-values.

It is a statistical tool used to visualize GWAS output and power

Most of the observed p-values have a uniform distribution (nof in LD with a causal polymorphism)

QQ plot: Correction for population structure (model selection)

Trait: Flowering time

Population structure: High

Q-Q plot Q-Q plot Q-Q plot
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Yu et al. 2006 NATURE GENETICS Volume 38, No 2.

. 6
Expected -log10(p)
Results: More complex populations need more complex model!



Manhattan plot

It is a graphical tool to show significant hits associated with the trait under test

Each data point represents a genotyped SNP, ordered across the chromosomes (Xaxis)

Yaxis = -log(p-value)

Soybean cultivars (392 individuals)
Sudden death syndrome (SDS) disease index (DX)
The simple model (using only SNPs) leads to heavily inflated p-values

a Simple model for DX in the P1 diversity panel b QaQplot
y=Xa+e
i 4
o [ 3
i 2o
. 3
— : T3 8 § I
12 34 5 67 8 9 101112 131415 161718 19 20 0 1 2 3 4
Expected -log(p)

8°

MLM model for DX in the P1 diversity panel

12 34 5 67 8 9 101112 131415 161718 19 20 0

Zixiang Wen et al. 2014 (BMC Genomics)

Confounding structure
leads to false positive.
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Common beans reaction for ANT and ALS
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AN Pv02
Intergenic region upstream of gene
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Phvul.002G116400 (Rab escort protein)
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Intergenic region downstream of gene
Phvul 010G072700 (Scarecrow-like protein)




