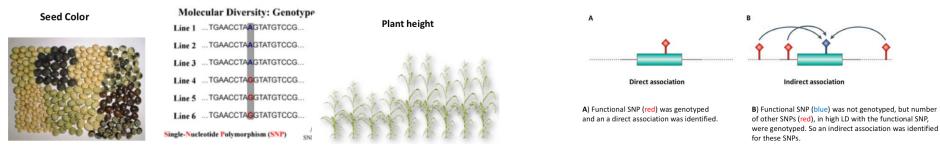


Genome-Wide Association Studies


Prof. Roberto Fritsche-Neto

roberto.neto@usp.br

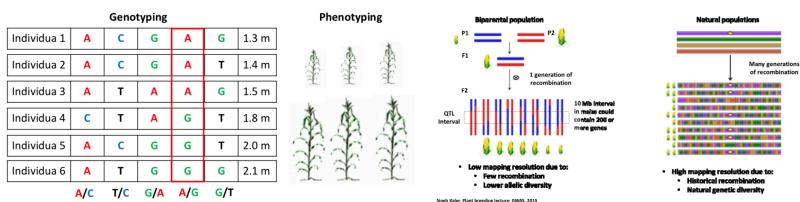
Piracicaba, October 30th, 2019

Introduction

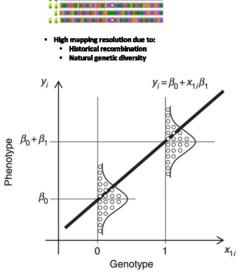
- Qualitative traits few genes, with large effect, low environmental bias, and high h²
- Quantitative traits many genes, little effect, with high environmental bias, and low h^2
- How to select for these traits?
- "Traditional" Breeding
- Molecular markers associated with quantitative trait loci (*QTL*)
- Marker Assisted Selection (major QTL or QTL with large effect)
- Genomic Selection (many QTL with little effect)
- GWAS is more interested to find the causal relationship between genetic polymorphism within a specie than the phenotypic differences observed between individuals
- Also, how it is passed to the next generation

Trait-marker association

- How to identify trait-marker association?
- QTL mapping based on biparental population
- It is still a powerful method to identify regions of the genome that co-segregate with a given trait
- F_{2:3} populations or Recombinant Inbred Line (RIL) families


• Limitations of QTL mapping:

- Low allelic diversity:
- It is limited between two parents (alleles) of a particular cross
- Lower resolution:
- Few recombination events happen during the creation of the RIL
- When the resolution is low the QTL interval is large
- 10 Mb interval in maize might have more than 200 genes
- Biparental population need to be created
- It takes a long time


GWAS vs. QTL mapping

• A GWAS is an approach that uses whole genome markers to find genetic variations associated with a trait

Biparental population vs Natural populations: Mapping resolution

- High-resolution power due to high amount of historical recombination
- Low LD
- High genetic diversity (diverse populations)
- Biological adaptation and geographical distribution
- No need to create mapping population (time saving)
- Study various regions of the genome simultaneously
- Greater capacity for detecting more alleles

GWAS limitations and advantages

• Limitations

- Reproducibility: sometimes results are not replicated across populations
- Results need to validate by replication in independent samples in different populations (validation test)
- Size of population: population should be enough large to detect a QTL (statistical power)
- Marker dataset size: a large number of markers is required to cover the whole genome
- Detects association not causation
- Noncoding variants with unknown effect: most of the identified variants in GWAS are far from discovered protein-coding gene
- Detection of rare variant: detects only variants that their frequency >5% in a population
- SNPs only explains a small fraction of phenotypic variation of a trait

Advantages

- Discover novel candidate genes or QTL for measured trait(s)
- Determine aspects of the genetic architecture of complex trait:
- Number of loci that contributed to the phenotype
- Respective contribution of loci to the phenotype

Linkage disequilibrium (LD)

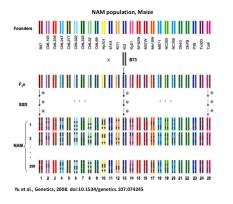
- Non-random association between two or more loci
- Not necessarily on the same chromosome
- Some combinations are more frequent than expected

LE	LD
$\bigcirc \bigcirc$	
$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
\bigcirc	$\bigcirc \bigcirc$
\bigcirc	$\bigcirc \bigcirc$

 $p(A) = 0,7 \quad p(AB) = 0,35$ $p(a) = 0,3 \quad p(ab) = 0,05$ $p(B) = 0,6 \quad p(Ab) = 0,25$ $p(b) = 0,4 \quad p(aB) = 0,35$ D = p(AB)p(ab) - p(Ab)p(aB) D = 0,35.0,05 - 0,25.0,35 = -0,07 $r^{2} = \frac{D^{2}}{p(A)p(a)p(B)p(b)}$ $r^{2} = \frac{0,0049}{0,7.0,3.0,6.0,4} = 0,10$

- LD after t gerations
- *Recombination rate (c)*

$$D_t = D_o (1-c)^t$$
 $\frac{D_t}{D_o} = (1-c)^t$


$$t = ln \left(\frac{D_t}{D_o}\right) / l \, n(1 - c)$$

- How many generations to reduce 20% of LD?
- *c* = 0.05

$$t = ln(0.8)/l\,n(0.95) = 4.35$$

GWAS assumptions and populations

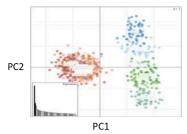
- Assumptions
- Genetic variants contribute to development of trait
- A marker associated with a certain trait is in or near a gene that contributes to that trait
- Common variants explain a significant proportion of the genetic variation in the population
- Population homogeneity
- Populations normally used
- Pool of genotypes from a breeding program
- Multiple cross populations: *NAM*, *MAGIC*
- Lines derived from diallel crosses
- Germplasm collection: *landraces, accessions*

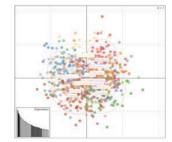
Populations used in GWAS

 Table 8.3
 The relevant features of various mapping populations available for association analysis in plant breeding programs

Feature	Germplasm bank	Elite breeding material	Synthetic population			
Sample	Core collection accessions	Lines and cultivars developed in breeding programs	Individuals or lines drawn from the population			
The composition of sample	Does not change	Changes with time as new materials are developed	Changes with time as the generation advances			
Traits analyzed	Highly heritable and domestication traits	Low heritability traits like yield	Depends on the evaluation scheme			
Level of LD	Low	High	Intermediate			
Population structure	Medium	High	Low			
Allelic diversity in the sample	High	Low	Intermediate			
Resolution of AM	High	Low	Intermediate; increases with generation			
Power of association analysis	Low	High	Intermediate; decreases with generation			
The use of markers associated with the target traits	Marker-aided selection (MAS)	MAS	Incorporated in selection index			

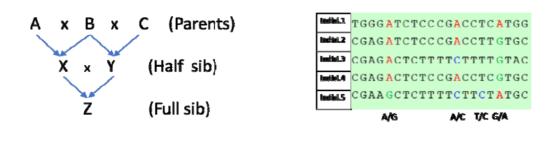
Based on Breseghello and Sorrels (2006)

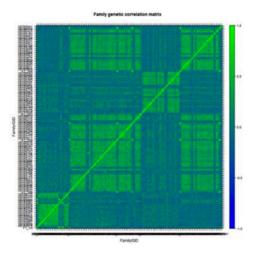

Power of GWAS


- Proportion of phenotypic variation explained by the SNP increase the heritability
- The effect size of the two allelic variants: how they differ in their phenotypic effect (no way to change)
- Sample size (evaluate more individuals)
- Frequency of allelic variants in the sample (change the mating design, increasing the rare alleles)
- Population structure: introduce heterogeneity resulting in an association that is not true
- Geographical distribution
- Growth habit: winter and spring wheat
- Unequal familial relationship
- *Different LD pattern*

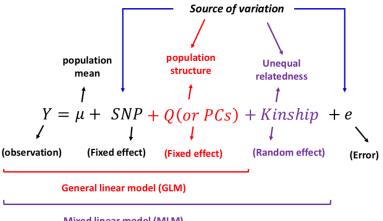
Population structure

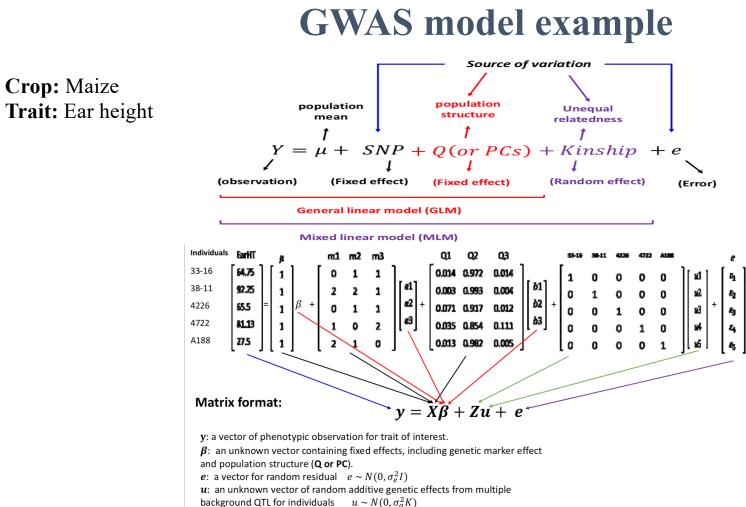
- Systematic difference in allele frequencies between subpopulations
- May be due to different ancestry: geographical and climate distance, familial relationship, ...
- Violates assumptions: *population homogeneity*
- It ends up in spurious association ==> *False positives (Type I error)*
- Over estimation of significance of associations
- Solution: regression on on covariates quantitative (PCs) or binary (sex, origin)
- For instance, including 1-3 PCs in the mixed linear model
- Example: SNP1
- Assumed the SNP is associated with plant height or disease resistance
- North America lines are:
 - Taller and susceptible
 - Allele T could be associated with either trait
- South America lines are
 - Shorter and tolerant
 - Allele G could be associated with either trait


	North America									South America										
Plant Ht.	10	10	12	11	13	9	11	10	13	12	4	6	5	7	6	6	4	5	9	5
Dis. Res.	s	5	\$	т	S	5	s	S	T	5	T	S	т	т	T	т	т	S	т	т
SNP1	т	T	T	6	T	т	т	T	G	T	G	G	G	G	G	G	т	G	T	G



Unequal familial relationship


- Coefficient of coancestry: the probability that **an allele selected randomly from individual X** and **an allele selected randomly from the same autosomal locus of individual Y** are in identity by descent (IBD)
- **K** (kinship) = twice of the coancestry
- Genomic relationship matrix (G or K)
- Molecular markers are using to estimate relationships
- Two individuals sharing lots of genotypes at SNPs are likely belong to the same family



GWAS models

- **GLM:** all the factors included in a GLM are fixed effects •
- This model is built and solve for each trait and marker information
- **Includes:** ٠
- **Phenotypic dataset** (observation for each trait) ٠
- Each individual could have several observations (e.g. replicates, locations, years)
- The adjusted mean value for each genotype is used in GWAS
- Marker data (e.g. SNP)
- Covariates •
- Any covariates that can be used to control field variations, and individuals (e.g. winter and spring wheat, geographical ٠ distribution, fertility variation of field ,...)
- 1-3 PCs (or Qs) to control population structure ٠
- MLM: Factors in MLM include both fixed and random effects
- Individuals in MLM are random
- Kinship matrix added to MLM to control unequal familial relationship ٠

Mixed linear model (MLM)

background QTE for individuals $u \sim N(0)$

X & Z : known design matrices

How is marker-trait tested?

Testing full model over reduced model to see if SNP has significant effect on trait ٠

 $Y = \mu + SNP + Q + e$ (Full model)

 $Y = \mu + Q + e$ (Reduced model)

- LRT = Chi- square test $\chi 2$ (df = 1) ٠
- anova(Full.m, Red.m) in R ٠
- Compare p value with threshold p value (0.05)٠

Multiple hypothesis testing ٠

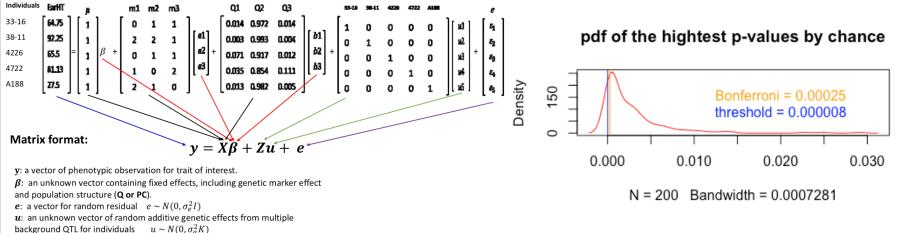
- In GWAS we perform many marker-trait hypothesistests (#tests = #markers) ٠
- It creates a challenge with Type I error called Multiple testing problem ٠
- For N independent testes => N*0.05. So by increasing N we make lots of errors ٠
- Thus, p-value by Bonferroni is equal to 0.05/N ٠

Full model $\frac{1}{Reduced model}, \qquad P value$

False Discovery Rate - FDR

• The expected proportion of false positive QTL

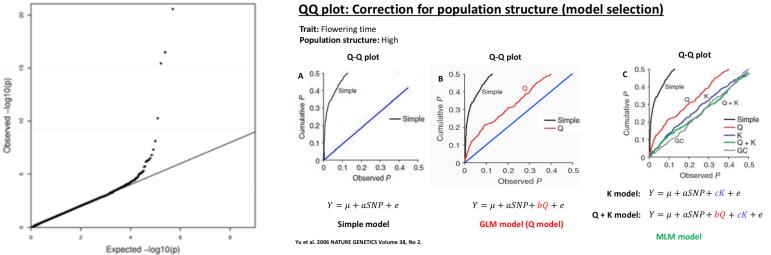
1- Sort the markers by their p-values 2 – From the largest value compare it to its p_i^* -value 3 – Find the first p_i -value that is \leq than its p_i^* -value


 $q^* = 0.05$ $\alpha_B = 0.05 / 15 = 0.003$ $pi^* = q^*(i / Nm)$

marker i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p-value	0.0001	0.0002	0.0015	0.004	0.02	0.03	0.1	0.18	0.2	0.32	0.4	0.56	0.75	0.8	0.92
q*	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
pi*-value	0.003	0.007	0.010	0.013	0.017	0.020	0.023	0.027	0.030	0.033	0.037	0.040	0.043	0.047	0.050
Nm	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15

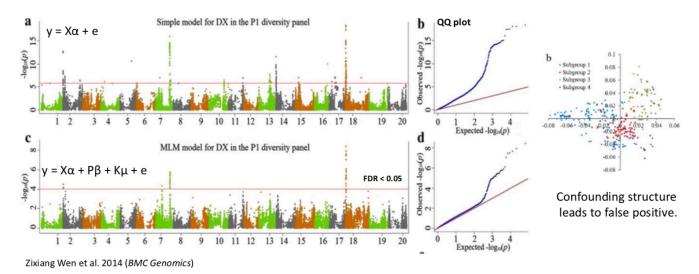
- The markers from this point are declared significant
- 15 SNP, *p*-value = 0,05 and 4 SNP considered as significant:
- **FDR** = $15x \ 0.05/4 = 0.1875$
- 18.75 % of the SNP are false positive

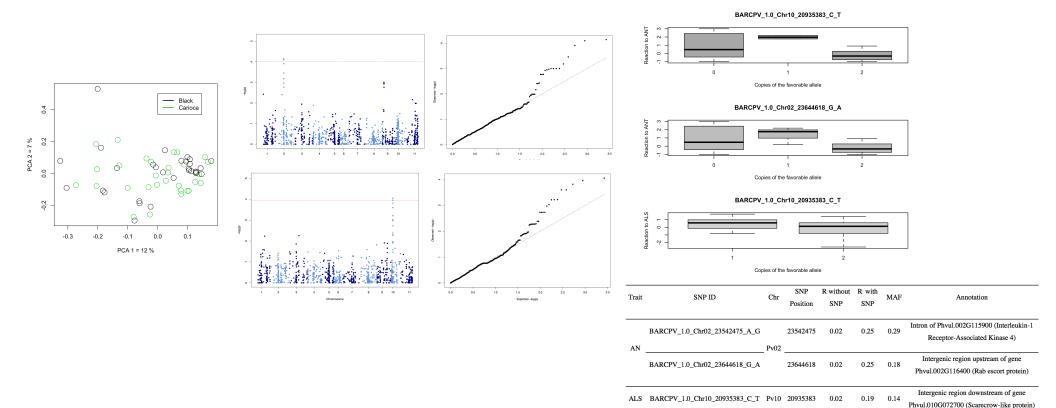
Building your own threshold


- Resampling method
- First, the phenotypic values are shuffled, breaking their association with marker
- Then, the random association between all markers to the phenotype is estimated
- The corresponding best marker score (minimum *p*-value among all markers) is recorded
- This procedure is repeated hundred times for each trait a distribution of random p-values
- Based on that, define the 95 % quantile
- It is defined as the newest threshold (based in your data) to declare a significant association

X & Z : known design matrices

Quantile–Quantile (QQ) plot


- It is a plot of the quantile distribution of observed p-values (on the y-axis) on the quantile distribution of expected p-values (on x-axis)
- The expected p-values have a random uniform distribution
- If a QQ plot is a line with a tail, there are some casual polymorphisms
- A few of the p-values are in LD with a causal polymorphism and had significant p-values.
- It is a statistical tool used to visualize GWAS output and power
- Most of the observed p-values have a uniform distribution (*not in LD with a causal polymorphism*)


Results: More complex populations need more complex model!

Manhattan plot

- It is a graphical tool to show significant hits associated with the trait under test
- Each data point represents a genotyped SNP, ordered across the chromosomes (Xaxis)
- Yaxis = -log(p-value)
- Soybean cultivars (392 individuals)
- Sudden death syndrome (SDS) disease index (DX)
- The simple model (using only SNPs) leads to heavily inflated p-values

Common beans reaction for ANT and ALS

