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Introduction
• Qualitative traits - few genes, with large effect, low environmental bias, and high h2

• Quantitative traits - many genes, little effect, with high environmental bias, and low h2

• How to select for these traits?
• “Traditional” Breeding
• Molecular markers associated with quantitative trait loci (QTL)
• Marker Assisted Selection (major QTL or QTL with large effect)
• Genomic Selection (many QTL with little effect)

• GWAS is more interested to find the causal relationship between genetic polymorphism within a specie
than the phenotypic differences observed between individuals

• Also, how it is passed to the next generation



Trait-marker association
• How to identify trait‐marker association?
• QTL mapping based on biparental population 
• It is still a powerful method to identify regions of the genome that co‐segregate with a given trait 
• F2:3 populations or Recombinant Inbred Line (RIL) families 

• Limitations of QTL mapping: 
• Low allelic diversity: 
• It is limited between two parents (alleles) of a particular cross
• Lower resolution:
• Few recombination events happen during the creation of the RIL
• When the resolution is low the QTL interval is large
• 10 Mb interval in maize might have more than 200 genes
• Biparental population need to be created 
• It takes a long time



GWAS vs. QTL mapping
• A GWAS is an approach that uses whole genome markers to find genetic variations associated with a trait

• High‐resolution power due to high amount of historical recombination
• Low LD
• High genetic diversity (diverse populations)
• Biological adaptation and geographical distribution 
• No need to create mapping population (time saving)
• Study various regions of the genome simultaneously
• Greater capacity for detecting more alleles



GWAS limitations and advantages
• Limitations
• Reproducibility: sometimes results are not replicated across populations
• Results need to validate by replication in independent samples in different populations (validation test)
• Size of population: population should be enough large to detect a QTL (statistical power)
• Marker dataset size: a large number of markers is required to cover the whole genome
• Detects association not causation
• Noncoding variants with unknown effect: most of the identified variants in GWAS are far from

discovered protein‐coding gene
• Detection of rare variant: detects only variants that their frequency >5% in a population
• SNPs only explains a small fraction of phenotypic variation of a trait

• Advantages
• Discover novel candidate genes or QTL for measured trait(s)
• Determine aspects of the genetic architecture of complex trait:
• Number of loci that contributed to the phenotype
• Respective contribution of loci to the phenotype



Linkage disequilibrium (LD)
• Non-random association between two or more loci
• Not necessarily on the same chromosome
• Some combinations are more frequent than expected • LD after t gerations

• Recombination rate (c)

• How many generations to reduce 20% of LD?
• c = 0.05
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GWAS assumptions and populations
• Assumptions
• Genetic variants contribute to development of trait
• A marker associated with a certain trait is in or near a gene that contributes to that trait
• Common variants explain a significant proportion of the genetic variation in the population
• Population homogeneity
• Populations normally used
• Pool of genotypes from a breeding program 
• Multiple cross populations: NAM, MAGIC
• Lines derived from diallel crosses 
• Germplasm collection: landraces, accessions 



Power of GWAS
• Proportion of phenotypic variation explained by the SNP – increase the heritability

• The effect size of the two allelic variants: how they differ in their phenotypic effect (no way to change)

• Sample size (evaluate more individuals)

• Frequency of allelic variants in the sample (change the mating design, increasing the rare alleles)

• Population structure: introduce heterogeneity resulting in an association that is not true
• Geographical distribution
• Growth habit: winter and spring wheat 
• Unequal familial relationship
• Different LD pattern



Population structure
• Systematic difference in allele frequencies between subpopulations
• May be due to different ancestry: geographical and climate distance, familial relationship, …
• Violates assumptions: population homogeneity 
• It ends up in spurious association ==> False positives (Type I error)
• Over estimation of significance of associations 

• Solution: regression on on covariates - quantitative (PCs ) or binary (sex, origin)
• For instance, including 1‐3 PCs in the mixed linear model

• Example: SNP1
• Assumed the SNP is associated with plant height or disease resistance 
• North America lines are: 

• Taller and susceptible 
• Allele T could be associated with either trait 

• South America lines are 
• Shorter and tolerant 
• Allele G could be associated with either trait 



Unequal familial relationship
• Coefficient of coancestry: the probability that an allele selected randomly from individual X and an allele

selected randomly from the same autosomal locus of individual Y are in identity by descent (IBD)

• K (kinship) = twice of the coancestry

• Genomic relationship matrix (G or K )
• Molecular markers are using to estimate relationships
• Two individuals sharing lots of genotypes at SNPs are likely belong to the same family



GWAS models
• GLM: all the factors included in a GLM are fixed effects
• This model is built and solve for each trait and marker information
• Includes:
• Phenotypic dataset (observation for each trait)
• Each individual could have several observations (e.g. replicates, locations, years)
• The adjusted mean value for each genotype is used in GWAS
• Marker data (e.g. SNP)
• Covariates
• Any covariates that can be used to control field variations, and individuals (e.g. winter and spring wheat, geographical

distribution, fertility variation of field ,...)
• 1‐3 PCs (or Qs) to control population structure

• MLM: Factors in MLM include both fixed and random effects
• Individuals in MLM are random
• Kinship matrix added to MLM to control unequal familial relationship



GWAS model example
Crop: Maize 
Trait: Ear height 



How is marker-trait tested?

• Testing full model over reduced model to see if SNP has significant effect on trait

• LRT = Chi‐ square test χ2 (df = 1)
• anova(Full.m, Red.m) in R
• Compare p value with threshold p value (0.05) 

• Multiple hypothesis testing 
• In GWAS we perform many marker‐trait hypothesistests (#tests = #markers) 
• It creates a challenge with Type I error called Multiple testing problem
• For N independent testes ==> N*0.05. So by increasing N we make lots of errors
• Thus, p-value by Bonferroni is equal to 0.05/N



False Discovery Rate - FDR
• The expected proportion of false positive QTL

1- Sort the markers by their p-values
2 – From the largest value compare it to its pi*-value
3 – Find the first pi-value that is ≤ than its pi*-value

• The markers from this point are declared significant
• 15 SNP, p-value = 0,05 and 4 SNP considered as significant:
• FDR = 15x 0.05/4 = 0.1875
• 18.75 % of the SNP are false positive

marker i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p-value 0.0001 0.0002 0.0015 0.004 0.02 0.03 0.1 0.18 0.2 0.32 0.4 0.56 0.75 0.8 0.92

q* 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
pi*-value 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027 0.030 0.033 0.037 0.040 0.043 0.047 0.050
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Building your own threshold
• Resampling method
• First, the phenotypic values are shuffled, breaking their association with marker
• Then, the random association between all markers to the phenotype is estimated
• The corresponding best marker score (minimum p-value among all markers) is recorded
• This procedure is repeated hundred times for each trait – a distribution of random p-values
• Based on that, define the 95 % quantile
• It is defined as the newest threshold (based in your data) to declare a significant association



Quantile–Quantile (QQ) plot
• It is a plot of the quantile distribution of observed p‐values (on the y‐axis) on the quantile distribution of

expected p‐values (on x‐axis)
• The expected p‐values have a random uniform distribution
• If a QQ plot is a line with a tail, there are some casual polymorphisms
• A few of the p‐values are in LD with a causal polymorphism and had significant p‐values.
• It is a statistical tool used to visualize GWAS output and power
• Most of the observed p‐values have a uniform distribution (not in LD with a causal polymorphism)



Manhattan plot
• It is a graphical tool to show significant hits associated with the trait under test
• Each data point represents a genotyped SNP, ordered across the chromosomes (Xaxis)
• Yaxis = -log(p-value)

• Soybean cultivars (392 individuals)
• Sudden death syndrome (SDS) disease index (DX)
• The simple model (using only SNPs) leads to heavily inflated p‐values



Common beans reaction for ANT and ALS


