A basis is a set of independent vectors_that span a _space. Geometrically, it is a set of
coordinate axes. A vector space is defined without those axes, but every time I think of
pendicular! The coordinate axes that the imagination constructs are practically always
orthogonal. In choosing a basis, we tend to choose an orthogonal basis.

The 1dea of an orthogonal basis is one of the foundations of linear algebra. We need
a basis to convert geometric constructions into algebraic calculations, and we need an
orthogonal basis to make those calculations simple. A further specialization makes the
basis just about optimal: The vectors should have length 1. For an orthonormal basis
(orthogonal unit vectors), we will find

1. the length [|x|| of a vector;
2. thetest x'y = O for perpendicular vectors; and
3. how to create perpendicular vectors from linearly independent vectors.

More than just vectors, subspaces can also be perpendicular. We will discover, so
beautifully and simply that it will be a delight to see, that the fundamental subspaces
meet at right angles. Those four subspaces are perpendicular in pairs, two in R™ and
two in R". That will complete the fundamental theorem of linear algebra.

The first step is to find the length of a vector. It is denoted by ||x||, and in two
dimensions it comes from the hypotenuse of a right triangle (Figure 3.1a). The square
of the length was given a long time ago by Pythagoras: ||x|?> = x? + x3.

(0,0,3/)/§ ----- ;
(0, 2)l (1,2) o2 = 22+ 22 + 22 3‘/‘ ''''' .(:1’ 2,3) has length v/14
“\/g 5 5 = 12+ 22 y
N s A A VA
D | S (0.2.0)
(1, 0,0)1 S 3‘:(1,'2, 0) has length v/5
() ) (b)

Figure 3.1 The length of vectors (x{, x2) and (x1, x2, X3).
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In three-dimensional space, x = (x1, X2, x3) is the diagonal of a box (Figure 3.1t
Its length comes from two applications of the Pythagorean formula. The two-dimension
case takes care of (x1, x2,0) = (1, 2, 0) across the base. This forms a right angle wi
the vertical side (0, 0, x3) = (0, 0, 3). The hypotenuse of the bold triangle (Pythagor
again) is the length ||x || we want:

Lengthin3D  [x|*=1*4+2*43%> and |x| = \ﬂc% + x% + x2.

The extension to x = (x;, ..., x,) in n dimensions is immediate. By Pythagor:
n — 1 times, the length ||x|| in R" is the positive square root of x x:

Length squared

The sum of squares matches x 'x—and the length of x = (1, 2, —3) is +/14:
aRE
xTx=[1 2 =3]| 2| =1242°+(-3)*=14.
| =3
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How can we decide whether two vectors x and y are perpendicular? What is the test fc
orthogonality in Figure 3.27 In the plane spanned by x and y, those vectors are orthogone
provided they form a right triangle. We go back to a* + b* = ¢*:

Sides of a right triangle | x|?> + |[y||*> = ||lx — vl 2
Applying the length formula (1), this test for orthogonality in R"” becomes .
(x4 4x7) + Of - 4ys) = Gr—y)+ 4 a— )
The right-hand side has an extra —2x;y; from each (x; — y;)*:
right—hand side = (xl2 +-- +x,f) —2(x1y1+ -+ X yn) + (yl2 + o y,f)

We have a right triangle when that sum of cross-product terms Xx;y; is zero:

Orthogonal vectors X'y (3
This sumis xTy = Y x; 3 = y"x, the row vector xT times the column vector y:
o
Inner product  x'y=[x; ... x| || =x9 4+ + X Yn 4
| Vn |
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Right angle
rty =0

Ty =0 | a:y<0 \Z zty >0
greater than 90° ",' « less than 90°

Figure 3.2 A right triangle with 5 4- 20 = 25. Dotted angle 100°, dashed angle 30°.

This number is sometimes called the scalar product or dot product, and denoted by (x, y)
or x - y. We will use the name irner product and keep the notation x"y.

he On_al_VeC?tors
is greater than 90°.

The length squared is the inner product of x with itself: x'x = x{+ -+ +x2'= |x||%
The only vector with length zero—the only vector orthogonal to 1tself—-—13 the zero
vector. This vector x = 0 is orthogonal to every vector in R”.

(2,2, —1) is orthogonal to (—1, 2, 2). Both have length +/4 +4 + 1 = 3.

Useful fact: If nonzero vectors vy, ..., bk are mutually orthogonal (every vector is
perpendicular to every other), then those vectors are linearly independent.

Proof Suppose civ; + - - + cvr = 0. To show that ¢; must be zero, take the inner
product of both sides with v;. Orthogonality of the v’s leaves only one term:
vf(clvl + o) = clvrlrvl = 0. " (5)

The vectors are nonzero, so v;v; # 0 and therefore ¢; = 0. The same is true of every
c¢;. The only combination of the v’s producing zero has all ¢; = 0: independence!

The coordinate vectors ey, . .., ¢, in R" are the most important orthogonal vectors.
Those are the columns of the identity matrix. They form the simplest basis for R", and
they are unit vectors—each has length ||e;|| = 1. They point along the coordinate axes. If
these axes are rotated, the result is a new orthonormal basis: a new system of murually
orthogonal unit vectors. In R? we have cos? @ + sin® 8 = 1:

Orthonormal vectors in R? v; = (cos@, sinf) and v, = (—sinf, cosh).

Orthogonal Subspaces

We come to the orthogonality of two subspaces. Every vector in one subspace must be
orthogonal to every vector in the other subspace. Subspaces of R? can have dimension
0, 1, 2, or 3. The subspaces are represented by lines or planes through the origin—and in
the extreme cases, by the origin alone or the whole space. The subspace {0} is orthogonal
to all subspaces. A line can be orthogonal to another line, or it can be orthogonal to a
plane, but a plane cannot be orthogonal to a plane.



I have to admit that the front wall and side wall of a room look like perpendicular
planes in R>. But by our definition, that is not so! There are lines v and w in the front
and side walls that do not meet at a right angle. The line along the corner is in both walls,
and it 1s certainly not orthogona,l to itself.

33 Two subspaces V a,nd W of the sa,me space R”‘ are orzhogonal 1f every Vector
v in Vis orthogonal to every Vector w 1n W v!w=0forallvand w. 5

Suppose V is the plane spanned by v; = (1,0,0,0) and v, = (1, 1,0, 0). If W is the
line spanned by w = (0, 0, 4, 5), then w is orthogonal to both v’s. The line W will be
orthogonal to the whole plane V.

In this case, with subspaces of dimension 2 and 1 in R*, there is room for a third
subspace. The line L through z = (0, 0, 5, —4) is perpendicular to V and W. Then the
dimensions add to 2 + 1 4- 1 = 4. What space is perpendicular to all of V, W, and L.?

The important orthogonal subspaces don’t come by accident, and they come two
at a time. In fact orthogonal subspaces are unavoidable: They are the fundamental
subspaces! The first pair is the nullspace and row space. Those are subspaces of R"—
the rows have n components and so does the vector x in Ax = 0. We have to show,
usmg Ax = 0, that the rows of A are orthogonal to the nullspace vector x.

w_;-;_-__p.a,ce 1s orthogona,l to. .

3@ Fundamental ff-theorem of orthogonalxtyﬁ._ﬁ 'Th 0 spa
the nullspace (inR™). The column space is orthogonal to the left nullspace (in R™). -

First proof  Suppose x is a vector in the nullspace. Then Ax = 0, and this system of
m equations can be written out as rows of A multiplying x:

-]
I rowl -..] fcl 0]
Every row is e TOW2 - : O]
orthogonal to x Ax = - ' - (6)
rowm -] 0

The main point is already in the first equation: row 1 is orthogonal to x. Their inner
product is zero; that is equation 1. Every right-hand side is zero, so x is orthogonal to
every row. Therefore x is orthogonal to every combination of the rows. Each x in the
nullspace is orthogonal to each vector in the row space, so N(A) L C(A"Y).

The other pair of orthogonal subspaces comes from ATy = 0, or yTA = 0:

=~ —
|

=[0 .- 0] (7)

— B E—~O 6
S BBe~o0

The vector y is orthogonal to every column. The equation says so, from the zeros on
the right-hand side. Therefore y is orthogonal to every combination of the columns.



It is orthogonal to the column space, and it is a typical vector in the left nullspace:
N(AY) L C(A). This.is the same as the first half of the theorem, with A replaced
by AT

Second proof The contrast with this “coordinate-free proof” should be useful to the
reader. It shows a more “abstract” method of reasoning. I wish I knew which proof is
clearer, and more permanently understood.

If x is in the nullspace then Ax = 0. If v is in the row space, it is a combination of
the rows: v = A"z for some vector z. Now, in one line:

Nullspace L. Row space  v'x = (AT7)Tx = 77Ax =270 = 0. (8)

Suppose A has rank 1, so its row space and column space are lines: R

Eww LR ‘:% ‘tr"" 5,

. Y OY Tﬁf‘ w:\ G

Rank-1 matrix A= |2 6]. 1% LA
v;\a\r 3 9

The r@ws are multiples of (1, 3). The nullspace contains x = (—3, 1), which is orthogonal
o al]{ the rows. The nullspace and row space are perpendicular lines in R?:

S 1 3] {_ﬂ =0 and [2 6] [_ﬂ =0 and [3 9] [_ﬂ =0.

In contrast, the other two subspaces are in R>. The column space is the line through
(1, 2, 3). The left nullspace must be the perpendicular plane y; + 2y, + 3y; = 0. That
equation is exactly the content of yT A = 0.

The first two subspaces (the two lines) had dimensions 1 + 1 = 2 in the space R?.
The second pair (line and plane) had dimensions 1 + 2 = 3 in the space R>. In general,
the row space and nullspace have dimensions that add to r + (n — r) = n. The other
pair adds to r + (m — r) = m. Something more than orthogonality is occurring, and I
have to ask your patience about that one further point: the dimensions.

It is certainly true that the nullspace is perpendicular to the row space—but it is not
the whole truth. N (A) contains every vector orthogonal to the row space. The nullspace
was formed from all solutions to Ax = 0.

DEFINITION Given a subspace V of R”, the space of all vectors orthogonal to V is
called the orthogonal complement of V. It is denoted by V* = “V perp.”

Using this terminology, the nullspace is the orthogonal complement of the row
space: N(A) = (C(AT))*. At the same time, the row space contains all vectors that are
orthogonal to the nullspace. A vector z can’t be orthogonal to the nullspace but outside
the row space. Adding z as an extra row of A would enlarge the row space, but we know
that there is a fixed formula r + (n — r) = n:

Dimension formula dim(row space) + dim(nullspace) = number of columns.

Every vector orthogonal to the nullspace is in the row space: C(A") = (N (A)) .
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The same reasoning applied to AT produces the dual result: The left nullspace N (AT)
and the column space C(A) are orthogonal complements. Their dimensions add up to
(m —r) +r = m. This completes the second half of the fundamental theorem of linear
algebra. The first half gave the dimensions of the four subspaces, including the fact that
row rank = column rank. Now we know that those subspaces are perpendicular. More
than that, the subspaces are orthogonal complements. |

The nullspace is the orthogonal complement of the row space in R".
' The left nullspace is the orthogonal complement of the column space in R™.

To repeat, the row space contains everything orthogonal to the nullspace. The column
space contains everything orthogonal to the left nullspace. That is just a sentence,
hidden in the middle of the book, but it decides exactly which equations can be solved!
Looked at directly, Ax = b requires b to be in the column space. Looked at indirectly,
Ax = b requires b to be perpendicular to the left nulispace.

The direct approach was “b must be a combination of the columns.” The indirect ap-
proach is “b must be orthogonal to every vector that is orthogonal to the columns.”
That doesn’t sound like an improvement (to put it mildly). But if only one or two
vectors are orthogonal to the columns, it is much easier to check those one or two
conditions y'b=0. A good example is Kirchhoff’s Voltage Law in Section 2.5. Test-
ing for zero around loops is much easier than recognizing combinations of the
columns.

When the left-hand sides of Ax = b add to zero, the right-hand sides must, too:

X1 “X2=791 1 -1 0}
Xy — X3 = b, 1is solvable if and only if b1 +by+b3=0. Here A =| O 1 -1}
X3 — X1 :bg, —1 0 1

o el

This test by + by + by = 0 makes b orthogonal to y = (1, 1, 1) in the left nullspace.
By the Fundamental Theorem, & is a combination of the columns!

The Matrix and the Subspaces

We emphasize that V and W can be orthogonal without being complements. Their
dimensions can be too small. The line V spanned by (0, 1, 0) is orthogonal to the line
W spanned by 0,0, 1), but V is not WL, The orthogonal complement of W is a two-
dimensional plane, and the line is only part of W-. When the~dimensions are right,
orthogonal subspaces are necessarily orthogonal complements:

If W=V- then V=W" and dimV+dimW =n.

In other words V1+ = V. The dimensions of V and W are right, and the whole space
R” is being decomposed into two perpendicular parts (Figure 3.3).
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W W
T'wo orthogonal axes in R3 Line W perpendicular to plane V
Not orthogonal complements Orthogonal complements V = W+

A v _ K 1
7

Figure 3.3 Orthogonal complements in R3: a plane and a line (not two lines).

Splitting R” into orthogonal parts will split every vector into x = v + w. The vector

of x onto W. The next sections show how to find those projections of x. They lead to
what is probably the most important figure in the book (Figure 3.4).

Figure 3.4 summarizes the fundamental theorem of linear algebra. It illustrates
the true effect of a matrix—what is happening inside the multiplication Ax. The nullspace
1s carried to the zero vector. Every Ax is in the column space. Nothing is carried to
the left nullspace. The real action Is between the row space and column space, and you
see it by looking at a typical vector x. It has a “row Space component” and a “nullspace
component,” with x = x, X». When multiplied by A, this is Ax = Ax, + Ax,:

The nullspace component goes to zero: Ax, = (.
The row space component goes to the column space: Ax, = Ax.

Of course everything goes to the column Space—the matrix cannot do anything else. I
tried to make the row and column spaces the same size, with equal dimension r.

*ace. 4

left
nullspace

dim m — r

gure 3.4 The true action Ax — A (Xpow + Xpap) Of any m by n matrix.
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Proof Every b in the column space is a combination Ax of the columns. In fact, b is
Ax,, with x, in the row space, since the nullspace component gives Ax, = 0. If another
vector x/ in the row space gives Ax] = b, then A(x, —x,) = b—b = 0. This puts x, — x;
in the nullspace and the row space, which makes it orthogonal to itself. Therefore it is
zero, and x, = x,. Exactly one vector in the row space is carried to b.

Every matrix transforms its row space onto its column space.

On those r-dimensional spaces A is invertible. On its nullspace A is zero. When A is
diagonal, you see the invertible submatrix holding the » nonzeros.

AT goes in the opposite direction, from R™ to R” and from C(A) back to C(AT).
Of course the transpose is not the inverse! AT moves the spaces correctly, but not the
individual vectors. That honor belongs to A~! if it exists—and itonly exists if r = m = n.
We cannot ask A~! to bring back a whole nullspace out of the zero vector.

When A~ fails to exist, the best substitute is the pseudoinverse A*. This inverts A
where that is possible: AT Ax = x for x in the row space. On the left nullspace, nothing
can be done: ATy = 0. Thus A™ inverts A where it is invertible, and has the same rank .
One formula for A* depends on the singular value decomposition—for which we first
need to know about eigenvalues.

Problem Set 3.1
1. Find the lengths and the inner productof x = (1,4,0,2) and y = (2, —2, 1, 3).

2 Give an example in R? of linearly independent vectors that are not orthogonal. Also.
" give an example of orthogonal vectors that are not independent.

@1 Two lines in the plane are perpendicular when the product of their slopes is —1.
Apply this to the vectors x = (x1, x2) and y = (y;, y,), whose slopes are x,/x; and
v,/ 1, to derive again the orthogonality condition xTy = 0.

4. How do we know that the ith row of an invertible matrix B is orthogonal to the jth
column of B™1,if i £ j?

5. Which pairs are orthogonal among the vectors vy, vy, vz, v4?

1 4 1 1

2 0 —1 1

V1 = 9> Uy = E V3 = 10’ Vg = 1
i 1_ 0 _~—-1_J 1

6. Find all vectors in R® that are orthogonal to (1, 1, 1) and (1, —1, 0). Produce an
orthonormal basis from these vectors (mutually orthogonal unit vectors).

-

7. Find a Vecto@ orthogonal to the IOW space 01(@0 and a vector 'y _orthogonal-to-the
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. If Vand W are orthogonal subspaces, show that the only vector they have in common

is the zero vector: VW = {0}.

. Find the orthogonal complement of the plane spanned by the vectors (1 1, 2) and

(1,2, 3), by taking these to be the rows of A and solving Ax = 0. Remember that
the complement is a whole line.

Construct a homogeneous equation in three unknowns whose solutions are the linear
combinations of the vectors (1, 1, 2) and (1, 2, 3). This is the reverse of the previous
exercise, but the two problems are really the same.

. The fundamental theorem is often stated in the form of Fredholm’s alternative: For

any A and b, one and only one of the following systems has a solution:

(1) Ax =b.

(i) ATy =0, yTb #£ 0.

Either b is in the column space C(A) or there is a y in N(AT) such that y'b # 0.
Show that it is contradictory for (i) and (ii) both to have solutions.

. ‘Find a basis for the orthogonal complement of the row space of A:

1 0 2
Az{l 1 4}

Split x = (3, 3, 3) into a row space component x, and a nullspace component x,,.

Ilustrate the action of AT by a picture corresponding to Figure 3.4, sending C (A)
back to the row space and the Ieft nullspace to zero.

Show that x — y is orthogonal to x + y if and only if [lx| = ||y].

Find a matrix whose row space contains (1,2, 1) and whose nullspace contains
(1, =2, 1), or prove that there is no such matrix.

Find all vectors that are perpendicular to (1,4, 4, 1) and (2, 9, 8, 2).

If V is the orthogonal complement of W in R”, is there a matrix with row space V
and nullspace W? Starting with a basis for V, construct such a matrix.

If S = {0} is the subspace of R* containing only the zero vector, what is S*? If S is
spanned by (0, 0, 0, 1), what is S*? What is (S1)1?

Why are these statements false?

(a) If V is orthogonal to W, then V- is orthogonal to W+.

(b) V orthogonal to W and W orthogonal to Z makes V orthogonal to Z.

Let S be a subspace of R”. Explain what (S+)+ = S means and why it is true.

Let P be the plane in R? with equation x + 2y — z = 0. Find a vector perpendicular
to P. What matrix has the plane P as its nullspace, and what matrix has P as its row
space?

Let S be the subspace of R* containing all vectors with x; + x, + x3 + x4 = 0. Find
a basis for the space S*, containing all vectors orthogonal to S.
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23.
24.

25.

1 2 1
(b) Row space contains [ 2} and [-3} , hullspace contains [1J

26.
27.

28.

29.

30.

31.

32.

33.

1 2 1
"(a) Column space contains { 2} and [—G},nullspace contains {1}

Orthogonality

Construct an unsymmetric 2 by 2 matrix of rank 1. Copy Figure 3.4 and put one
vector in each subspace. Which vectors are orthogonal?

Redraw Figure 3.4 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R? is x, =

Construct a matrix with the required property or say why that is impossible.

-3 5 1

-3 5 1

1 1 0
(c) Ax = {1} has a solution and A” {8} = {8}
1

(d) Every row is orthogonal to every column (A is not the zero matrix).
(e) The columns add up to a column of Os, the rows add to a row of 1s.

If AB = 0 then the columns of B are in the of A. The rows of A are in the
of B. Why can’t A and B be 3 by 3 matrices of rank 27
(a) If Ax = b has a solution and ATy = 0, then y is perpendicular to

(b) If ATy = c has a solution and Ax = 0, then x is perpendicular to

This is a system of equations Ax = b with no solution:

x+2y+2z=35
2x +2y+3z=175
3x +4y+5z=09.

Find numbers y;, y,, y3 to multiply the equations so they add to O = 1. You have
found a vector y in which subspace? The inner product y*b is 1.

In Figure 3.4, how do we know that Ax, is equal to Ax? How do we know that this

vector is in the column space? If A = [i H and x = [(ﬂ what is x,?

If Ax is in the nullspace of AT then Ax = 0. Reason: Ax is also in the of A
and the spaces are . Conclusion: AT A has the same nullspace as A.

Suppose A is a symmetric matrix (AT = A).

(a) Why is its column space perpendicular to its nullspace?
(b) If Ax = 0 and Az = 5z, which subspaces contain these “eigenvectors” x and
z? Symmetric matrices have perpendicular eigenvectors (see Section 5.5).

(Recommended) Draw Figure 3.4 to show each subspace for -
12 1 0
A= [3 6} and B = {3 0} \

Find the pieces x, and x,, and draw Figure 3.4 properly, if

1 —1 N
A=10 0 and xzz{o}.
0O O
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Problems 34-44 are about orthogonal subspaces.

34. Put bases for the orthogonal subspaces V and W into the columns of matrices V
and W. Why does VTW = zerp matrix? This matches vTw = 0 for vectors.

35. The floor and the wall are not orthogonal subspaces because they share a nonzero
vector (along the line where they meet). Two planes in R3 cannot be orthogonal!
Find a vector in both column spaces C'(A) and C(B):

1 2] 5 4]
A= 1|1 3 and B= |6 3]|.
1 2_J 5 IJ

This will be a vector Ax and also B%. Think 3 by 4 with the matrix [A B].

36. Extend Problem 35 to a p-dimensional subspace V and a g-dimensional subspace
W of R". What inequality on p + 4 guarantees that V intersects W in a nonzero
vector? These subspaces cannot be orthogonal.

37. Prove that every y in N (A") is perpendicular to every Ax in the column space, using
the matrix shorthand of equation (8). Start from Aly = 0.

38. IfSisthe subspace of R? containing only the zero vector, whatis ST?2If § is spanned
by (1, 1, 1), what is SL2 If § is spanned by (2, 0, 0) and (0, 0, 3), what is §1?

39. Suppose S only contaih_s (1,5,1) and (2, 2,2) (not a subspace). Then S+ is the
nullspace of the matrix 4 — .8~ is a subspace even if § is not. |

40, Suppose L is a one-dimensional subspace (a line) in R3. Its orthogonal comple_meht
Lt is the perpendicular to L. Then (L) is a perpendicular to L.
In fact (L+)* is the same as

41. Suppose V is the whole space R*. Then V+ contains only the vector . Then
(VHHtlis . So (V1) is the same as

42, Suppose S is spanned by the vectors (1, 2,2,3) and (1, 3, 3, 2). Find two vectors
that span S-+. This is the same as solving Ax = 0 for which A?

43. If P is the plane of vectors in R4 satisfying x; + x, + x, + x4 = 0, write a basis
for P+. Construct a matrix that has P as its nullspace.

44. If a subspace S is contained in a subspace V, prove that SL contains V-,

Problems 45-50 are about perpendicular columns and rows,

45. Suppose an n by 7 matrix is invertible: AA™! = I. Then the first column of A-! i
orthogonal to the space spanned by which rows of A?

46. Find AT A if the columns of A are unit vectors, all mutually perpendicular

47. Construct a 3 by 3 matrix A with no zero entries whose columns are mutually
perpendicular. Compute ATA. Why is it a diagonal matrix?

48. The lines 3x -+ Y = by and 6x + 2y = b, are . They are the same line
if - In that case (by, b,) is perpendicular to the vector . The nullspace
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of the matrix is the line 3x +y = ___ . One particular vector in that nullspace
is
49. Why is each of these statements false?
(a) (1,1,1) is perpendicular to (1,1, —2), so the planes x + y + z = 0 and
x + vy — 2z = 0 are orthogonal subspaces.
(b) The subspace spanned by (1,1,0,0,0) and (0,0,0, 1, 1) is the orthogonal
complement of the subspace spanned by (1, —1, 0,0, 0) and (2, -2, 3, 4, —4).
(¢) Two subspaces that meet only in the zero vector are orthogonal.
50. Find a matrix with v = (1, 2, 3) in the row space and column space. Find another
matrix with v in the nullspace and column space. Which pairs of subspaces can v
- notbe in?
51. Suppose Ais3 by 4, Bis4 by 5, and AB = 0. Prove rank(A) 4+ rank(B) < 4.
52. The command N = nuli(A) will produce a basis for the nullspace of A. Then the
command B = null(N’) will produce a basis for the of A.

Vectors with xTy = 0 are orthogonal. Now we allow inner products that are not zero,
and angles that are not right angles. We want to connect inner products to angles, and
also to transposes. In Chapter 1 the transpose was constructed by flipping over a matrix
as if it were some kind of pancake. We have to do better than that.

One fact is unavoidable: The orthogonal case is the most important. Suppose

we want to find the distance from a point b to the line in the direction of the vector a
We are looking along that line for the point p closest to b. The key is in the geometry
The line connecting b to p (the dotted line in Figure 3.5) is perpendicular to a. Thi:
fact will allow us to find the projection p. Even though a and b are not orthogonal, the
distance problem automatically brings in orthogonality.

b
\
\
ve=b—p
\ a -
\ .
~ projection of b ‘4
0 P= onto line through a

Figure 3.5 The projection p is the point (on the line through a) closest to b.

The situation is the same when we are given a plane (or any subspace S) instez

of a line. Again the problem is to find the point p on that subspace that is closest to
This point p is the projection of b onto the subspace. A perpendicular line from &
S meets the subspace at p. Geometrically, that gives the distance between points b ar
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subspaces S. But there are two questions that need to be asked:

1. Does this projection actually arise in practical applications?
2. If we have a basis for the subspace S, is there a formula for the projection p?

- The answers are certainly yes. This is exactly the problem of the least-squares
solution to an overdetermined system. The vector b represents the data from experiments
or questionnaires, and it contains too many errors to be found in the subspace S. When
we try to write b as a combination of the basis vectors for S, it cannot be done—the
equations are inconsistent, and Ax = b has no solution.

- The least-squares method selects p as the best choice to replace b. There can be no
doubt of the importance of this application. In economics and statistics, least squares
enters regression analysis. In geodesy, the U.S. mapping survey tackled 2.5 million
equations in 400,000 unknowns.

A formula for p is easy when the subspace is a line. We will project » onto a in
several different ways, and relate the projection p to inner products and angles. Projection
onto a higher dimensional subspace is by far the most important case; it corresponds
to a least-squares problem with several parameters, and it is solved in Section 3.3. The
formulas are even simpler when we produce an orthogonal basis for S.

Inner Products and Cosines

We pick up the discussion of inner products and angles. You will soon see that it 1s not
the angle, but the cosine of the angle, that is directly related to inner products. We look
back to trigonometry in the two-dimensional case to find that relationship. Suppose the
vectors a and b make angles o and 8 with the x-axis (Figure 3.6).

\ o S ‘k"i\" y
[6089] b b= (by,by)
}

sin 6

0

0 \ _ {1] .

u -2 =cosbh

Figure 3.6 The cosine of the angle & = B — « using inner products.

The length ||a|| is the hypotenuse in the triangle Oa Q. So the sine and cosine of « are

. aj ai
SN = ——, COS¢ = ——

lall lall

For the angle 8, the sine is b, /||b|| and the cosine is b;/||b||. The cosine of 6 = B — «
comes from an identity that no one could forget:

ab b
Cosine formula cosf = cos Bcosc + sin B sinw = 1” ! H_I_HZTI 2, (D)
a




er3 Orthogonality

The numerator in this formula is exactly the inner product of a and b. It gives the
relationship between a’b and cos 0

3G The cosine of the angle between any nonzero vectors a and bis

alh

IR EEE ”‘"Cosine of 0 B cosf = ‘
S o lall 112

This formula is dimensionally correct; if we double the length of b, then both numeratos
and denominator are doubled, and the cosine is unchanged. Reversing the sign of b, or
the other hand, reverses the sign of cos 8—and changes the angle by 180°.

There is another law of trigonometry that leads directly to the same result. It is nof
so unforgettable as the formula in equation (1), but it relates the lengths of the sides of
any triangle:

Law of Cosines 16— al|* = ||b||* + ||al|* — 2||b]| ||a]| cos@. (3)

When 6 is a right angle, we are back to Pythagoras: ||b — a|?> = ||b||*> + ||a||?. For any
angle 0, the expression ||b — a||*is (b — a)T(b — a), and equation (3) becomes

b™b —2a"b +a'a = bTb +ata — 2||b|| ||a| cos 6.

Canceling b and aa on both sides of this equation, you recognize formula (2) for the
cosine: a'h = |la|| ||b| cos 8. In fact, this proves the cosine formula in # dimensions,
since we only have to worry about the plane triangle Oab.

Now we want to find the projection point p. This point must be some multiple p = xa of
the given vector a—every point on the line is a multiple of a. The problem is to compute
the coefficient x. All we need is the geometrical fact that the line from b to the closest
point p = Xxa is perpendicular to the vector a:
(b—xa) La, or a(b—-Xxa)=0, or x=—. (4)
ala
That gives the formula for the number X and the projection p:

| 3%‘5 ..:”'._Th?-PrOjeC:ti_Qn of the vector b onto the line in the direction of ais p=Xxa: :

This allows us to redraw Figure 3.5 with a correct formula for p (Figure 3.7).

This leads to the Schwarz inequality in equation (6), which is the most important
inequality in mathematics. A special case is the fact that arithmetic means 1 (x + y) are
larger than geometric means ,/xy. (It is also equivalent—see Problem 1 at the end of
this section—to the triangle inequality for vectors.) The Schwarz inequality seems to
come almost accidentally from the statement that ||e||? = ||b — plI? in Figure 3.7 cannot
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b
\
\
ve=b—p _.
\ a
\ A alh
= I e (]
V) P = Ta
/
, o . Op a'h
Figure 3.7 The projection p of b onto a, with cos § = = :
Ob  |lall ||b]]

be negative:

Tb 2
Ilb—— 224 =pTh -2

ala

(@Th)? (@ ZaT @"p)(@"a) ~ @b _
aoy T,
ala aTa (aTa) -

This tells us that (b*b)(a'a) > (aTh)*—and then we take square roots:

31 All vectors a and b satisfy the Schwarz inequality, which is | cos 6| < 1 in R”:

Schwarz inequality lahb| < ||la| ||b]|. (6)

According to formula (2), the ratio between ad and ||a|| ||b| is exactly | cos@]|. Since
all cosines lie in the mterval —1 < cosfd < 1, this gives another proof of equation (6):
the Schwarz inequality is the same as | cos 6| < 1. In some ways that is a more easily
understood proof, because cosines are so familiar. Either proof is all right in R”, but
notice that ours came directly from the calculation of ||b — p||?. This stays nonnegative
when we introduce new possibilities for the lengths and inner products. The name of
Cauchy is also attached to this inequality |a'd| < ||a|| |||, and the Russians refer to it as
the Cauchy-Schwarz-Buniakowsky inequality! Mathematical historians seem to agree
that Buniakowsky’s claim 1s genuine.

One final observation about |a*h| < ||a|| |b|. Equality holds if and only if b is a
multiple of a. The angle 1s 0 = 0° or 8 = 180° and the cosine is 1 or —1. In this case b
is identical with its projection p, and the distance between b and the line is zero.

Project b = (1, 2, 3) onto the line through a = (1, 1, 1) to get X and p:

T, 6
X = a2 = — = 2.
ata 3
The projection is p :Ea = (2, 2, 2). The angle between a and b has
Y a'b 6

f = — = .
=l T /1a lal 12l ~ V314

The Schwarz inequality |aTd| < ||a|| ||b] is 6 < ~/3+/14. If we write 6 as 4/36, that is
the same as +/36 < 4/42. The cosine is less than 1, because b is not parallel to a.

and also cosf =



Projection Matrix of Rank 1

The projection of b onto the line through a lies at p = a(a'b/a'a). That is our formula
p = Xxa, but it is written with a slight twist: The vector a is put before the number
% = a"b/a"a. There is a reason behind that apparently trivial change. Projection onto
a line is carried out by a projection matrix P, and written in this new order we can see
what it is. P is the matrix that multiplies b and produces p:

alh

P =a—— so the projection matrix is P=— (7)

That is a column times a row—a square matrix—divided by the number a'a.

The matrix that projects onto the line through a = (1, 1, 1) is

1 -1 1 19
aat 1 31’ i i’
1 I 11
- - .3 3 3

This matrix has two properties that we will see as typical of projections:

1. P is a symmetric matrix.
2. Its square is itself: P> = P.

P2b is the projection of Pb—and Pb is already on the line! So P?b = Pb. This matrix
P also gives a great example of the four fundamental subspaces:

The column space consists of the line througha = (1,1, 1).
The nullspace consists of the plane perpendicular to a.
The rankisr = 1.

Every column is a multiple of a, and so is Pb = xa. The vectors that project to p = 0
are especially important. They satisfy a'b = 0—they are perpendicular to a and their
component along the line is zero. They lie in the nullspace = perpendicular plane.

Actually that example is too perfect. It has the nullspace orthogonal to the column
space, which is haywire. The nullspace should be orthogonal to the row space. But
because P is symmetric, its row and column spaces are the same.

Remark on scaling  The projection matrix aa® /aa is the same if a is doubled:

- - -1 1 1
2 1 2 3 3 3
_ ~ — — |1l 1 1
a= |2 gives P = 2 [2 2 2] = as before.
12 3 3 3
2 2 I 1 1
- - - - L3 3 3

The line through a is the same, and that’s all the projection matrix cares about.

If @ has unit length, the denominator is aTa = 1 and the matrix is just P = aa’”.



Project onto the “O-direction” in the x-y plane. The line goes through a = (cos 8, sin )
and the matrix is symmetric with P? = P:

) e
PmaTa_[C S]mw[ }

Here ¢ is cosé, s is sin®, and ¢? + s? = 1 in the denominator. This matrix P was
discovered in Section 2.6 on linear transformations. Now we know P in any number of
dimensions. We emphasize that it produces the projection p:

1o project b onto a, multiply by the projection matrix P: p = Pb.

Transposes from Inner Products

Finally we connect inner products to AT. Up to now, AT is simply the reflection of A
across its main diagonal; the rows of A become the columns of AT, and vice versa. The
entry in row i, column j of A7 is the (j, i) entry of A:

Transpose by reflection (A7), = (A);;.

There is a deeper significance to A'. Its close connection to inner products gives a new
and much more “abstract” definition of the transpose:

This definition gives us another (better) way to verify the formula (AB)T = BTA™. Use
equation (8) twice:

Move A thenmove B (ABx)"y = (Bx)T(ATy) = xT(BTATy).

The transposes turn up in reverse order on the right side, just as the inverses do in the
formula (AB)~! = B~ A~!. We mention again that these two formulas meet to give the
remarkable combination (A~1)T = (AT)~L.

Problem Set 3.2

1. (a) Given any two positive numbers x and y, choose the vector b equal to (\/x, /),
and choose a = (,/y, v/x). Apply the Schwarz inequality to compare the arith-
metic mean %(x + y) with the geometric mean ,/xy.

(b) Suppose we start with a vector from the origin to the point x, and then add
a vector of length ||y|| connecting x to x + y. The third side of the triangle
goes from the origin to x + y. The triangle inequality asserts that this distance
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cannot be greater than the sum of the first two:
X +yll < lixll + 1yl

After squaring both sides, and expanding (x -+ y)T(x + y), reduce this to the
Schwarz inequality.

2. Verify that the length of the projection in Figure 3.7 is || p|| = ||b|| cos#, using
formula (3).

.{i\_What multiple of a = (1,1, 1) is closest to the point b = (2, 4, 4)? Find also the
7 point closest to a on the line througg‘i b. /f

‘“\\nw st “‘Hm._ﬁ.*m_’fm

4. Explain why the Schwarz inequality becomes an equality in the case that a and /
lie on the same line through the origin, and only in that case. What if they lie ox

opposite sides of the origin?

% In n dimensions, what angle does the vector (1, 1, ..., 1) make with the coordinats
&7 axes? What is the projection matrix P onto that Vector‘?

6. The Schwarz inequality has a one-line proof if a and b are normalized ahead of tim
to be unit vectors:

2+ 1b;)? 1 1
a1 = Y asb;] = Ylagliby = IR 2 g,

Which previous problem justifies the middle step?

N |

7. By choosing the correct vector b in the Schwarz inequality, prove that
(a1 + - -+ ay)’ __<_n(af—l~--~+a§).

When does equality hold?

8. The methane molecule CH, 1s arranged as if the carbon atom were at the center of
regular tetrahedron with four hydrogen atoms at the vertices. If vertices are place
at (0,0,0), (1, 1,0), (1,0, 1), and (0, 1, 1)—note that all six edges have length V!
so the tetrahedron is regular-——what is the cosine of the angle between the rays goir
from the center (3, 1, 3) to the vertices? (The bond angle itself is about 109.5°, ¢

old friend of chemists.)

9. Square the matrix P = aa' /a'a, which projects onto a line, and show that P? = |
(Note the number a’a in the middle of the matrix aaTaa™!)

0.) Is the projection matrix P invertible? Why or why not?

5 i
e
Vpparts

11. (a) Find the projection matrix P; onto the line through a = B} and also th\g matr
P, that projects onto the line perpendicular to a.
(b) Compute P; + P, and P; P, and explain.

(124 Find the matrix that projects every pomt in the plane onto the line x + 2y = 0.

always equals 1.



14.

15.

16.
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What matrix P pro;ects every point in R® onto the line of intersection of the planes
x+y+t=0andx —¢t =07?

Show that the length of Ax equals the length of ATx if AAT = ATA.

Suppose P is the projection matrix onto the line through a.

(a) Why 1s the inner product of x with Py equal to the inner product of Px
with y?

(b) Are the two angles the same? Find their cosines ifa = (1, 1, ~1),x = (2,0, 1),
y=(2,1,2).

(c) Why is the inner product of Px with Py again the same? What is the angle
between those two?

Problems 17-26 ask for projections onto lines. Also errors e =b — p and

matrices P.
ﬁ’;@g Project the vector b onto the line through a. Check that e is perpendlcular to a:
- 1] 1] 1] 1]
(a) b= |2 and a= |1}. (b) b= |3 and a= |-—3].
| 2 1 1 -1

18.

19.

20.

Draw the projection of b onto a and also compute it from p = xa:

(@) b = [Zﬁfﬂ and a= H (b) b= m and a= [__ﬂ

In Problem 17, find the projection matrix P = aa'/a'a onto the line through each
vector a. Verify in both cases that P? = P. Multiply Pb in each case to compute
the projection p.

Construct the projection matrices P; and P, onto the lines through the a’s in Prob-
lem 18. Is it true that (P, + P,)? = P; + P,? This would be true if P; P, = 0.

For Problems 21-26, consult the accompanying figures.

21.

al i .
P1P2a1 [0}

Problems 21-23 Problems 2426

Compute the projection matrices aa’/a"a onto the lines through a; = (-1, 2, 2) and
= (2, 2, —1). Multiply those projection matrices and explain why their product
P; P, 1s what 1t 1s.
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22. Project b = (1, 0, 0) onto the lines through a; and a, in Problem 21 and also onto
as = (2, —1, 2). Add the three projections p; + p, + ps.

23. Continuing Problems 21-22, find the projection matrix P; onto az = (2, —1, 2).
Verify that P; + P, + P; = I. The basis ay, a,, a3 is orthogonal!

24. Project the vector b = (1, 1) onto the lines through a; = (1,0) and a; = (1, 2).
Draw the projections p; and p, and add p; + p,. The projections do not add to b
because the a’s are not orthogonal.

25. In Problem 24, the projection of b onto the plane of a; and a, will equal b. Find
P=AMTA) AT for A=[a @] =|§ 3]

26. Projecta; = (1, 0) onto a; = (1, 2). Then project the result back onto a;. Draw these
projections and multiply the projection matrices P; P,: Is this a projection?

Up to this point, Ax = b either has a solution or not. If b is not in the column space
C(A), the system is inconsistent and Gaussian elimination fails. This failure is almost
certain when there are several equations and only one unknown:

More equations 2x = by
than unknowns— 3x = by
no solution? 4x = bs.

This is solvable when b1, by, b3 are in the ratio 2:3:4. The solution x will exist only if b
is on the same line as the column a = (2, 3, 4).

In spite of their unsolvability, inconsistent equations arise all the time in practice.
They have to be solved! One possibility is to determine x from part of the system, and
ignore the rest; this is hard to justify if all m equations come from the same source.
Rather than expecting no error in some equations and large errors in the others, it is
much better to choose the x that minimizes an average error E in the m equations.

The most convenient “average” comes from the sum of squares:

Squared error  E? = (2x — b))* + (3x — by)? + (4x — b3)°.

If there is an exact solution, the minimum error is £ = 0. In the more likely case that b
is not proportional to a, the graph of E* will be a parabola. The minimum error is at the
lowest point, where the derivative is zero: | \4

dE”

— = 20@x = b2+ Bx — by)3 + (4x — by)4] =0.

Solving for x, the least-squares solution of this model system ax = b is denoted by X:

. . 2b1 +3by +4bs alhb
Least-squares solution X = — ,
22 +32 442 aa
You recognize ab in the numerator and a®a in the denominator.
The general case is the same. We “solve” ax = b by minimizing

E2 = “ax - b”2 = (alx - b1)2 + e + (amx - bm)2~
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The derivative of E? is zero at the point X, if
(al/x\ ~byar +---+ (am/x\ — bp)am = 0.

We are minimizing the distance from b to the line through a, and calculus gives the same
answer, X = (a1by + - -+ + awbn)/(a? + - - - + a2), that geometry did earlier:

You see that we keep coming back to the geometrical interpretation of aleast-squares
problem—to minimize a distance. By setting the derivative of E* to zero, calculus
confirms the geometry of the previous section. The error vector e connecting b to p must
be perpendicular to a:

a'hb
Orthogonalityofaande 4" (b —Xa) =a'b — %aTa = 0.

As a side remark, notice the degenerate case a = 0. All multiples of a are zero, and
the line is only a point. Therefore p = 0 is the only candidate for the projection. But
the formula for X becomes a meaningless 0/0, and correctly reflects the fact that X is
completely undetermined. All values of x give the same error E = |[|0x — b||, so E? is
a horizontal line instead of a parabola. The “pseudoinverse” assigns the definite value
x = 0, which is a more “symmetric” choice than any other number.

Least-Squares Problems with Several Variables

Now we are ready for the serious step, to project b onto a subspace—rather than just
onto a line. This problem arises from Ax = b when A is an m by » matrix. Instead
of one column and one unknown x, the matrix now has » columns. The number m of
observations is still larger than the number n of unknowns, so it must be expected that
Ax = b will be inconsistent. Probably, there will not exist a choice of x that perfectly
fits the data b. In other words, the vector b probably will not be a combination of the
columns of A; it will be outside the column space.

Again the problem is to choose X so as to minimize the error, and again this mini-
mization will be done in the least-squares sense. The error is E = ||Ax — b||, and this
is exactly the distance from b to the point Ax in the column space. Searching for the
least-squares solution X, which minimizes E, is the same as locating the point p = AX
that is closer to b than any other point in the column space.

We may use geometry or calculus to determine X. In n dimensions, we prefer
the appeal of geometry; p must be the “projection of b onto the column space.”
The error vector e = b — AX must be perpendicular to that space (Figure 3.8). Find-
ing x and the projection p = AX is so fundamental that we do it in two ways:

1. All vectors perpendicular to the column space lie in the left nullspace. Thus the error
vector e = b — Ax must be in the nullspace of A':

AT —-AX)=0  or
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T, _
column ay a;e =0

T,
aze =70

combine into
Ate = AT(b - AZ) =0

column as

Figure 3.8 Projection onto the column space of a 3 by 2 matrix.

2. The error vector must be perpendicular to each column a, . . ., a, of A:
al (b — Ax) =0 | al 1T ]
5 or : b— Az | =0
a,f (b—Ax)=0 I a,f ]

This is again AT(b — AX) = 0and ATAx = ATb. The calculus way is to take partia
derivatives of E? = (Ax — b)T(Ax — b). That gives the same 2ATAx — 24™h = (
The fastest way is just to multiply the unsolvable equation Ax = b by AT. Al
these equivalent methods produce a square coefficient matrix ATA. It is symmetri
(its transpose is not AAT!) and it is the fundamental matrix of this chapter.

The equations ATAX = ATh are known in statistics as the normal equations.

| 3&. When Ax = b is inconsistent, its least-squares snlutlon ﬁ1n1m1zes || Ax — sz
o Normal equations - ATAx = ATb (1)
| ATA 1 1nvert1ble exactly when the columns of A are 11near1y mdependent' Then
 Best estlmatex | = (ATA) tATh, o (2) |

The prOJecuon of b onto the column space is the nearest point {x:

PrOJeCthIl p =A% = A(ATA)1ATh, (3)

We choose an example in which our intuition is as good as the formulas:

L2 4 Ax = b has no solution
A= 1|1 3}, b= |5], R |
0 0 6 ATAx = A™b gives the best x.
. . -

Both columns end with a zero, so C (A) 1s the x-y plane within three-dimensional space.
The projection of b = (4, 5, 6) is p = (4, 5, O)—the x and y components stay the same
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but z = 6 will disappear. That is confirmed by solving the normal equations:

i 1 2
110 2 5
ATA = } 1 3 :[ ]

2 3 0 0 0 5 13

(13 =5][1 1 0 4 2
~ T —1 ATy __ — —
r=AATAb= 2} 2 3 o} 2 “H

| (1 2] 5 ]
Projection p=Ax= |1 3 L} = |5].
0 0 0

In this special case, the best we can do is to solve the first two equations of Ax = b.
Then x; = 2 and x, = 1. The error in the equation Ox; + Ox, = 6 is sure to be 6.

Remark I Suppose b is actually in the column space of A—itis a combination b = Ax
of the columns. Then the projection of b is still b:

bin column space  p = A(ATA)'ATAx = Ax = b.

The closest point p is just b itself—which is obvious.

Remark 2 At the other extreme, suppose b is perpendicular to every column, so
ATh = 0. In this case b projects to the zero vector:

b in left nullspace  p = A(ATA)'ATh = A(ATA)TI0=0.
Remark 3 When A is square and invertible, the column space is the whole space.
Every vector projects to itself, p equals b, and X = x:
If Aisinvertible p=A(ATA)'ATh = A4 (A 'AYD = b.

This is the only case when we can take apart (ATA)™!, and write it as A=1(AT)~!. When

A is rectangular that is not possible.

Remark 4 Suppose A has only one column, containing a. Then the matrix AT A is the
number a’a and X is a*b/a*a. We return to the earlier formula.

The Cross-Product Matrix AT 4

The matrix AT A is certainly symmetric. Its transpose is (ATA)T = ATA™T, whichis ATA
again. Its i, j entry (and j, i entry) is the inner product of column i of A with column j
of A. The key question is the invertibility of A* A, and fortunately

AT A has the same nullspace as A.

Certainly if Ax = 0 then ATAx = 0. Vectors x in the nullspace of A are also in the
nullspace of AT A. To go in the other direction, start by supposing that ATAx = 0, and



take the inner product with x to show that Ax = 0:
xTATAx =0, or [JAx|*=0, or Ax=0.

The two nullspaces are identical. In particular, if A has independent columns (and only
x = 01is in its nullspace), then the same is true for ATA:

3 IfA has mdependent :CQl_umliS,'ﬂfhen_ﬂATA iS'.'.Squar_e, aynémétric,_ and invertible.

We show later that AT A is also positive definite (all pivots and eigenvalues are positive).
This case is by far the most common and most important. Independence is not so
hard in m-dimensional space if m > n. We assume it in what follows.

Projection Matrices

We have shown that the closest point to b is p = A(ATA)~' ATb. This formula expresses
in matrix terms the construction of a perpendicular line from b to the column space of
A. The matrix that gives p is a projection matrix, denoted by P:

Projection matrix P — A (ATA)“'IAT 4)

This matrix projects any vector b onto the column space of A.* In other words, p = Pb
is the component of b in the column space, and the error e = b — Pb is the component
in the orthogonal complement. (/ — P is also a projection matrix! It projects b onto the
orthogonal complement, and the projectionis b — Pb.)

In short, we have a matrix formula for splitting any b into two perpendicular com-
ponents. Pb is in the column space C(A), and the other component (I — P)b is in the
left nullspace N (AT)—which is orthogonal to the column space.

These projection matrices can be understood geometrically and algebraically.

3&3 The prOJeCthn matnx P A(ATA) lAT has two ba31c propertles

(1) It equals 1ts. square pz _ P

(11) It equals its tran:s'p'ose PT

COHVerselyanysymme ric matrix with P2 = P represents & projection.

Proof Itiseasy to see why P? = P.If we start with any b, then Pb lies in the subspace
we are projecting onto. When we project again nothing is changed. The vector Pb is
already in the subspace, and P (PD) 1s still Pb. In other words P? = P.Two or three or
fifty projections give the same point p as the first projection:

P2 = A(ATA)TATAATA) AT = A(ATA) 14T = P.

* There may be a risk of confusion with permutation matrices, also denoted by P, but the risk
should be small, and we try never to let both appear on the same page.



To prove that P is also symmetric, take its transpose. Multiply the transposes in
reverse order, and use symmetry of (ATA)™!, to come back to P:

PT = (ADHT((ATA™HTAT = A((ATA)H) AT = A(ATA) AT = P.

For the converse, we have to deduce from P? = P and PT = P that Pb is the
projection of b onto the column space of P. The error vector b — Pb is orthogonal to
the space. For any vector Pc in the space, the inner product is zero:

(b — Pb)TPc =bT(I — P)"Pc = bT(P — PY)c = 0.

Thus » — Pb is orthogonal to the space, and Pb is the projection onto the column
space.

Suppose A is actually invertible. If it is 4 by 4, then its four columns are independent
and its column space is all of R*. What is the projection onto the whole space? It is the
identity matrix. |

P =AATA) AT = AA7 1 (ADH1AT = T (5)

The identity matrix is symmetric, I? = I, and the error b — Ib is zero.

The point of all other examples is that what happened in equation (5) is not
allowed. To repeat: We cannot invert the separate parts A and A when those matrices
are rectangular. It is the square matrix AT A that is invertible.

Least-Squares Fitting of Data

Suppose we do a series of éxperiments, and expect the output b to be a linear function
of the input ¢. We look for a straight line b = C + Dt. For example:

1. At different times we measure the distance to a satellite on its way to Mars. In this
case ¢ is the time and b is the distance. Unless the motor was left on or gravity is
strong, the satellite should move with nearly constant velocity v: b = bgy -+ vt.

2. We vary the load on a structure, and measure the movement it produces. In this
experiment ¢ is the load and b is the reading from the strain gauge. Unless the load
is so great that the material becomes plastic, a linear relation b = C + Dt is normal
in the theory of elasticity.

3. The cost of producing ¢ books like this one is nearly linear, b = C + D¢, with editing
and typesetting in C and then printing and binding in D. C is the set-up cost and D
is the cost for each additional book. |

How to compute C and D? If there is no experimental error, then two measurements
of b will determine the line » = C + Dt. But if there is error, we must be prepared to
“average” the experiments and find an optimal line. That line is not to be confused with
the line through a on which b was projected in the previous section! In fact, since there
are two unknowns C and D to be determined, we now project onto a two-dimensional
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subspace. A perfect experiment would give a perfect C and D:

C + Dty = by
C + Dty = by

©
C + Dt, = b,,.

This is an overdetermined system, with m equations and only two unknowns. If errors
are present, it will have no solution. A has two columns, and x = (C, D):

1 tl- rblw

1 I bz

{g:} = | or Ax = b. (7
..1 tm... me-

The best solution (6’, 5) is the X that minimizes the squared error E?:
Minimize E?=||b—Ax|*=®—C —Dt))*>+---+ (b, — C — Dt,)*.

The vector p = AX is as close as possible to b. Of all straight lines b = C + D¢, we
are choosing the one that best fits the data (Figure 3.9). On the graph, the errors are the
vertical distances b — C — Dt to the straight line (not perpendicular distances!). It is the
vertical distances that are squared, summed, and minimized.

|~ ~ien

r

(a) -

Figure 3.9 Straight-line approximation matches the projection p of b.

Three measurements b, b,, by are marked on Figure 3.9a:
b=1 at t=-1, b=1 at =1, b=3 at t=2.

Note that the values t = —1, 1, 2 are not required to be equally spaced. The first step
is to write the equations that would hold if a line could go through all three points.
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Then every C 4 Dt would agree exactly with b:

C — D 1 1 —1] 1
1 or 1 1 [C}: 11.
3

I

I

Ax=b 1s C -+ D
C +2D =3 1

If those equations Ax = b could be solved, there would be no errors. They can’t be
solved because the points are not on a line. Therefore they are solved by least squares:

tae o . 3 2]7€] 5
A" Ax =Ab 1s {2 6}[13}_[6}

The best solution is C = % D= % and the best line is % ~+- %t.

Note the beautiful connections between the two figures. The problem is the same
but the art shows it differently. In Figure 3.9b, b is not a combination of the columns
(1,1, 1) and (-1, 1, 2). In Figure 3.9, the three points are not on a line. Least squares
replaces points b that are not on a line by points p that are' Unable to solve Ax = b, we
solve AX = p

The line 2 + 2¢ has heights 2, L, U at the measurement times —1, 1, 2. Those
points do lie on a line. Therefore the vector p = (2, £, &) is in the column space.
This vector is the projection. Figure 3.9b is in three dimensions (or m dimensions if
there are m points) and Figure 3.9a is in two dimensions (or # dimensions if there are n
parameters).

Subtracting p from b, the errors are e = (2, —£, 2). Those are the vertical errors in
Figure 3.9a, and they are the components of the dashed Vector 1n Figure 3.9b. This error
vector is orthogonal to the first column (1, 1, 1) smce —72— — = -I- = =0.1Itis orthogonal to
the second column (—1, 1, 2), because ———72- -2 + = =0. It s orthogonal to the column
space, and it is in the left nullspace.

Question: If the measurements b = (2, —2, ) were those errors, what would be
the best line and the best X? Answer: The zero line—which is the horizontal axis-—and
x = 0. Projection to zero.

We can quickly summarize the equations for fitting by a straight line. The first
column of A contains 1s, and the second column contains the times ¢;. Therefore ATA

contains the sum of the 1s and the # and the ¢2:

3@ The measurements by, .. b are given at distinct pomts tl, tm Then the o
stralght hne C + Dt Wthh mmmuzes E2 comes from least squares

,_ __T o oF [
.._.A b [Zt Ztiz — Ztibl}.

ATA

Remark The mathematics of least squares is not limited to fitting the data by straight
lines. In many experiments there is no reason to expect a linear relationship, and it would
be crazy to look for one. Suppose we are handed some radioactive material. The output
b will be the reading on a Geiger counter at various times . We may know that we
are holding a mixture of two chemicals, and we may know their half-lives (or rates of



decay), but we do not know how much of each is in our hands. If these two unknown
amounts are C and D, then the Geiger counter readings would behave like the sum of
two exponentials (and not like a straight line):

b=Ce ™+ De ™, (8)

In practice, the Geiger counter is not exact. Instead, we make readings by, ..., by,
at times 1, . .., I, and equation (8) is approximately satisfied:

—~AF —UH A
Ce ™ 4 De ™ 1 = b
Ax =0b 1s X
. —At —~MUln v
Ce™m 4 De #m =~ b,,.

If there are more than two readings, m > 2, then in all likelihood we cannot solve
for C and D. But the least-squares principle will give optimal values C and D.

The situation would be completely different if we knew the amounts C and D, and
were trying to discover the decay rates A and w. This is a problem in nonlinear least
squares, and it is harder. We would still form E 2, the sum of the squares of the errors,
and minimize it. But setting its derivatives to zero will not give linear equations for the
optimal A and w. In the exercises, we stay with linear least squares.

Weighted Least Squares

A simple least-squares problem is the estimate x of a patient’s weight from two obser-
vations x = by and x = b,. Unless b; = b,, we are faced with an inconsistent system of

two equations in one unknown:
1 by
o= 1)

Up to now, we accepted by and b, as equally reliable. We looked for the value X that
minimized E? = (x — b)) + (x — by)*:
by + by

dE’ .

= 0 at X = 5
The optimal ¥ is the average. The same conclusion comes from ATAX = ATh. In fact
ATA is a 1 by 1 matrix, and the normal equation is 2X = b; + b,.

Now suppose the two observations are not trusted to the samejdegree. The value

x = by may be obtained from a more accurate scale—or, in a statistical problem, from a
larger sample—than x = b,. Nevertheless, if b, contains some information, we are not
willing to rely totally on b;. The simplest compromise is to attach different weights w?
and w2, and choose the Xy that minimizes the weighted sum of squares:

Weighted error E* = w%(x — b)) + w%(x — by)?.

If w; > w,, more importance 1s attached to b;. The minimizing process (derivative = 0)
tries harder to make (x — b;)? small:

- dE? ) )
— =2[w1(x—b1)+w2(x——b2)] =0 at

©)



Instead of the average of by and b, (for w; = w, = 1), Xy is a weighted average of the
data. This average is closer to by than to b,.

The ordinary least-squares problem leading to xXw comes from changing Ax = b
to the new system WAx = Wb. This changes the solution from X to Xy . The matrix
WTW turns up on both sides of the weighted normal equations:

What happens to the picture of b projected to Ax? The projection AXy is still
the point in the column space that is closest to b. But the word “closest” has a new
meaning when the length involves W. The weighted length of x equals the ordinary
length of Wx. Perpendicularity no longer means y'x = 0; in the new system the test
is (Wy)T(Wx) = 0. The matrix W'W appears in the middle. In this new sense, the
projection AXy and the error b — AXy are again perpendicular.

That last paragraph describes all inner products: They come from invertible
matrices W. They involve only the symmetric combination C = W'W. The inner
product of x and y is y*Cx. For an orthogonal matrix W = Q, when this combination
is C = QTQ = I, the inner product is not new or different. Rotating the space leaves
the inner product unchanged. Every other W changes the length and inner product.

For any invertible matrix W, these rules define a new inner product and length:
Weighted by W (x, y)w = (Wy)'(Wx)  and  |xllw = [Wx|. (10)

Since W is invertible, no vector is assigned length zero (except the zero vector). All
possible inner products—which depend linearly on x and y and are positive when x =
y s O—are found in this way, from some matrix C = WTW.

In practice, the important question is the choice of C. The best answer comes from
statisticians, and originally from Gauss. We may know that the average error is zero.
That is the “expected value” of the error in »—although the error is not really expected to
be zero! We may also know the average of the square of the error; that is the variance.
If the errors in the b; are independent of each other, and their variances are o7, then
the right weights are w; = 1/0;. A more accurate measurement, which means a smaller
variance, gets a heavier weight. -

In addition to unequal reliability, the observations may not be independent. If the
errors are coupled—the polls for President are not independent of those for Senator,
and certainly not of those for Vice-President—then W has off-diagonal terms. The best
unbiased matrix C = WTW is the inverse of the covariance matrix—whose i, j entry
is the expected value of (error in b;) times (error in b;). Then the main diagonal of C~*
contains the variances o?, which are the average of (error in b;)?.

Suppose two bridge partners both guess (after the bidding) the total number of spades
they hold. For each guess, the errors —1, 0, 1 might have equal probability % Then the

expected error is zero and the variance is :

E() =3(-1)+1(0)+ ;1) =0
E(@) = (=D + 307 +3(1)* =%
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The two guesses are dependent, because they are based on the same bidding—but n
identical, because they are looking at different hands. Say the chance that they a
both too high or both too low is zero, but the chance of opposite errors is 5. The
E(ejez) = %(—1), and the inverse of the covariance matrix is W W

T
— =C=W'W.
1 2

This matrix goes into the middle of the weighted normal equations.

W= LI
WD W=

E(e%) E(elez)} - _
E(eies) E(ey) -

Problem Set 3.3

1. Find the best least-squares solution X to 3x = 10, 4x = 5. What error E 2 is min
imized? Check that the error vector (10 — 3x,5 — 4x) is perpendicular to th
column (3, 4).

2. Suppose the values b; = 1 and b, = 7 attimes #; = 1 and ¢, = 2 are fitted by a ling
b = Dt through the origin. Solve D = 1 and 2D = 7 by least s squares, and sketcl
the best line.

......

"1 0 1]
A= 10 1], b= |1].
11 0]

Verify that the error b — p is perpendicular to the columns of A.

4/ @}Wﬂte out E? = ||Ax — b|? and set to zero 1ts derlvatlves with respect to u and v, if

1 0] (1]
A= 1|0 1}, xzm, b= 3]
11 ’ 4

Compare the resulting equations with ATAX = ATh, confirming that calculus as
‘well as geometry gives the normal equations. Find the solution X and the projection
p = Ax. Why is p = b?

5. The following system has no solution:

(1 1 Y
Ax=|1 0 m-—m— 5| =b.
11 9

Sketch and solve a straight-line fit that leads to the minimization of the quadratic
(C — D — 4)? 4+ (C — 5)% + (C + D — 9)2. What is the projection of » onto the
column space of A?

6. Find the projection of b onto the column space of A:

1 1] 1]
A=| 1 —1{, b=|2].
sz 44 _.7..4
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Split b into p + ¢, with p in the column space and ¢ perpendicular to that space.
Which of the four subspaces contains q?

Find the projection matrix P onto the space spanned by a; = (1,0, 1) and q, =
(1, 1, —1).

. If P is the projection matrix onto a k-dimensional subspace S of the whole space

R", what is the column space of P and what is its rank?

(@) If P = PTP,show that P is a projection matrix.
(b) What subspace does the matrix P — 0 project onto?

If the vectors ai, a,, and b are orthogonal, what are ATA and A'b? What is the
projection of b onto the plane of a; and a,?

. Suppose P is the projection matrix onto the subspace S and Q is the projection onto

the orthogonal complement S*. What are P + Q and PQ? Show that P — Q is its
Oown inverse.

If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find

(a) abasis for the orthogonal complement V.
(b) the projection matrix P onto V.
(c) the vector in V closest to the vector b — 0,1,0, —1) in V-,

Find the best straight-line fit (least squares) to the measurements

b=4 at t=-2, b=3 at t = —1,
b=1 at t=0, b=0 at r=2.

Then find the projection of b = (4, 3, 1, 0) onto the column space of

1 2]
1 1
A=11 %
_1 2J

The vectors a; = (1, 1, 0)anda, = (1, 1, 1) span a plane in R®. Find the projection
matrix P onto the plane, and find a nonzero vector b that is projected to zero.

If P is the projection matrix onto a line in the x-y plane, draw a figure to describe
the effect of the “reflection matrix” H = J — 2 P. Explain both geometrically and

‘algebraically why H? = J.

Show that if  has unit length, then the rank-1 matrix P = uuT is a projection matrix:
Ithas properties (i) and (ii) in 3N. By choosing u = a/||al|, P becomes the projection
onto the line through a, and Pb is the point p = Xa. Rank-1 projections correspond
exactly to least-squares problems in-one unknown.

What 2 by 2 matrix projects the x- y plane onto the —45° line x + y = (?
We want to fit a plane y = C + D¢ + E7 to the four points

y=3 at t=1,z=1 y=6 at
y=5 at t=2,z=1 y=0 at



(a) Find 4 equations in 3 unknowns to pass a plane through the points (if there is

such a plane).
(b) Find 3 equations in 3 unknowns for the best least-squares solution.

19. If P = A(ATA)"'AT is the projection onto the column space of A, what is the
projection Pg onto the row space? (It is not P[!)

20. If P is the projection onto the column space of A, what is the projection onto the
left nullspace?

21. Suppose L; is the line through the origin in the direction of a; and L, is the line
through & in the direction of a,. To find the closest points x;a; and b + x,a; on the
two lines, write the two equations for the x; and x, that minimize ||x;a; — x,a, — b|.
Solve forx ifa; = (1, 1,0),a, = (0,1,0), b = (2, 1, 4).

22! Find the best line C + Dt to fith = 4,2, —1,0,0 at times t = —2, —1, 0, 1, 2.

£3 \ Show that the best least-squares fit to a set of measurements y, ..., y, by a hori-
- zontal line (a constant function y = C) is their average
C = Y1 Y |
m
24. Find the best straight-line fit to the following measurements, and sketch your
solution:

y= 2 at t=~1,- y= 0 at t=0,
y:-—3 at t:1, y='—5 at = 2.

25. Suppose that instead of a straight line, we fit the data in Problem 24 by a parabola:
y = C + Dt + Et*. In the inconsistent system Ax = b that comes from the four
measurements, what are the coefficient matrix A, the unknown vector x, and the
data vector b? You need not compute x.

26. A Middle-Aged man was stretched on a rack to lengths L = 5, 6, and 7 feet under
applied forces of F' = 1, 2, and 4 tons. Assuming Hooke’s law L = a + bF, find
his normal length a by least squares.

Problems 27-31 introduce basic ideas of statistics—the foundation for least squares.

27. (Recommended) This problem projects b = (b4, ..., b,) onto the line through
a=(1,...,1). Wesolve m equations ax = b in 1 unknown (by least squares).

(a) Solve aTax = ab to show that X is the mean (the average) of the b’s.

(b) Find e = b — aX, the variance ||e||*, and the standard deviation |le|.

(¢c) The horizontal line » = 3 is closest to b = (1, 2, 6). Check that p = (3, 3, 3)
is perpendicular to e and find the projection matrix P.

28. First assumption behind least squares: Each measurement error has mean zero.
Multiply the 8 error vectors b — Ax = (%1, £1, +1) by (ATA)"1AT to show that
the 8 vectors X — x also average to zero. The estimate X is unbiased.

29. Second assumption behind least squares: The m errors e; are independent with
variance o2, so the average of (b — Ax)(b — Ax)T is o?1. Multiply on the left by
(ATA)'AT and on theright by A(AY A)~! to show that the average of (x —x) (¥ —x)
is 02(ATA)~!. This is the all-important covariance matrix for the error in x.



30. A doctor takes four readings of your heart rate. The best solutiontox = by, ..., x =
b, is the average x of b1, ..., bsy. The matrix A is a column of 1s. Problem 29 gives
the expected error (X — x)* as 62(ATA)™! = . By averaging, the variance
drops from o2 to 0% /4.

r""""‘*\

;3?1 ) If you know the average Xo of 9 numbers by, .. ., bg, how can you quickly find the
average X1 with one more number b;y? The idea of recursive least squares is to
avoid adding 10 numbers. What coefﬁc1ent of Xo correctly gives xio?

e !

X10 = 35b10 + _[0%o = 55 (b1 + -+ - + bio).
Problems 32-37 use four points b = (0, 8, 8, 20) to bring out more ideas.

32. With 5=0,8,8,20 at t=0,1,3,4, set up and solve the normal equations
ATAX = ATb For the best straight line as in Figure 3 Oa, ﬁnd 1ts four helghts Di
and four errors e;. What is the minimum value E* = e? + 3 + €3 + ¢}

33. (Line C + Dt does go through p’s) With b = 0, 8, 8,20 at times t = 0,1, 3, 4,
write the four equations Ax = b (unsolvable). Change the measurements to p =
1,5, 13, 17 and find an exact solution to Ax = p.

34. Check thate = b — p = (—1,3, -5, 3) is perpendicular to both columns of A.
What is the shortest distance ||e|| from b to the column space of A?

35. For the closest parabola b = C + Dt + Et? to the same four points, write the
unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the three
normal equations ATAX = ATb (solution not required). You are now fitting a
parabola to four points—what is happening in Figure 3.9b?

36. For the closest cubic b = C + Dt -+ Et* + Ft3 to the same four points, write the
four equations Ax = b. Solve them by elimination. This cubic now goes exactly
through the points. What are p and e?

37. The average of the four times is 7 = 4(O + 1+ 3 +4) = 2. The average of the
four b’s is b = 4(0—&-8—[—8—{—20) =0,

(a) Verify that the best line goes through the center point (z, b) = (2,9).
(b) Explain why C + Dt = b comes from the first equation in ATAx = ATb.

38. What happens to the weighted average Xy = (w?b; + w3b,)/(wi + w3) if the first
weight w; approaches zero? The measurement b, is totally unreliable.

39. From m independent measurements b1, ..., b, of your pulse rate,” weighted by
wi, ..., Wy, What is the weighted average that replaces equatmn (9)‘7 It is the best
estlmate when the statistical variances are ot =1/ w?

40. If W = [S 1}, find the W-inner product of x =(2,3) and y=(1, 1), and the
W-length of x. What line of vectors is W-perpendicular to y?

41. Find the weighted least-squares solution Xxy.to Ax = b:

~ - e - -

1 O 0 2 00
A= 1|1 1 b= 1|1 W=10 1 0}.
1 2] 1] 0 0 1




Check that the projection Axy is still perpendicular (in the W-inner product!) to the
error b — Axw.

42. (a) Suppose you guess your professor’s age, making errors e = —2, —1, 5 with
probabilities 3, 1, 7. Check that the expected error E(e) is zero and find the
variance E(e*).

(b) If the professor guesses too (or tries to remember), making errors —1, 0, 1 with
probabilities z, 2, ¢, what weights w; and w, give the reliability of your guess

and the professor’s guess?

T
In an orthogonal basis, every vector is perpendicular to every other vector. The coor-
dinate axes are mutually orthogonal. That is just about optimal, and the one possible

improvement is easy: Divide each vector by its length, to make it a unit vector. That
changes an orthogonal basis into an orthonormal basis of g’s:

3P - The vectors gy, . .., g, are orthonormal if

. % P O wheneveri £ j, giving the orthogonality;
i) 1 wheneveri = j, giving the normalization.

A matrix with orthonormal columns will be called Q.

The most important example is the standard basis. For the x-y plane, the best-
known axes e; = (1,0) and e, = (0, 1) are not only perpendicular but horizontal and
vertical. Q is the 2 by 2 identity matrix. In » dimensions the standard basis e, ..., e,
again consists of the columns of Q = I:

f'l"' [~ T r“'O"‘

0
Standard 0 (1) 0
basis ‘1= ’ €2 = ’ o en = |0
_O_ _O_ _1_4

That is not the only orthonormal basis! We can rotate the axes without changing the right
angles at which they meet. These rotation matrices will be examples of Q. |
If we have a subspace of R”, the standard vectors e; might not lie in that subspace.
But the subspace always has an orthonormal basis, and it can be constructed in a simple
way out of any basis whatsoever. This construction, which converts a skewed set of axes
into a perpendicular set, is known as Gram-Schmidt orthogonalization.
To summmarize, the three topics basic to this section are:

1. The definition and properties of orthogonal matrices Q.
2. The solution of Qx = b, either n by n or rectangular (least squares).
3. The Gram-Schmidt process and its interpretation as a new factorization A = QOR.



Orthogonal Matrices - a o2

3Q If Q (square or rectangular) has_ort__h_onomal_ _Columns,_ then Q'Q=1:

e o LéhT S - 1 0 -
Orthonormal g3 ) R LRSS S V) B
columns q1 42 n =l . T L (1)

An orthogonal matrix is a square matrzx wzth orthonormal columns.* Then Q"
“is Q7. For square orthogonal matrl_cos_,_:the__transposo is the inverse.

When row i of QT multlphes column j of Q, the result is g'g; = 0. On the diagonal
where i = j, we have g'q; = 1. That is the normalization to unit vectors of length 1.
Note that QT Q = I even if Q is rectangular. But then Q7 is only a left-inverse.

cosf® —sinf
o=| |

cosf sinb
sin @ cos 6 '

—sm6B cosb

QT:Q—IZ[

Q rotates every vector through the angle 6, and QT rotates it back through —6. The
columns are clearly orthogonal, and they are orthonormal because sin® 6 + cos?§ = 1.
The matrix Q7 is just as much an orthogonal matrix as Q.

Any permutation matrix P is an orthogonal matrix. The columns are certainly unit vectors
and certainly orthogonal—because the 1 appears in a different place in each column:
The transpose 1s the inverse.

™ - [~

0 1 0 1
If P=1{0 0 then P~ = PT = 0 0}.
1 0 1 0

o= O
O = O

An anti-diagonal P, with P;3 = P>, = P3; = 1, takes the x-y-z axes into the z-y-x
axes—a “right-handed” system into a “left-handed” system. So we were wrong if we
suggested that every orthogonal Q represents a rotation. A reflection is also allowed.
P = [(1) é} reflects every point (x, y) into (y, x), its mirror image across the 45° line.

Geometrically, an orthogonal Q is the product of a rotation and a reflection.

There does remain one property that is shared by rotations and reflections, and in
fact by every orthogonal matrix. It is not shared by projections, which are not orthogonal
or even invertible. Projections reduce the length of a vector, whereas orthogonal matrices

* Orthonormal matrix would have been a better name, but it is too late to change. Also, there is
no accepted word for a rectangular matrix with orthonormal columns. We stﬂl write Q, but we
won’t call it an “orthogonal matrix” unless it is square.
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have a property that is the most important and most characteristic of all:

M . lt'z'hh_catlon by any Q preserves length I e
ed | 0x]| = Ixll

f:?'..f_:__--:-'_-.f_;_-fIt also preserves 1nner products and angles smcei;:.-_(;gx):__-;__-_.:(iQy) = xT QT Q y =x y 5

The preservation of lengths comes directly from QTQ = I:

1Qx|* = Ix||> because (Qx)"'(Qx) =xTQTQx = x"x. 3)

All inner products and lengths are preserved, when the space is rotated or reflected.

We come now to the calculation that uses the special property QT = Q~!. If we
have a basis, then any vector 1s a combination of the basis vectors. This is exceptionally
simple for an orthonormal basis, which will be a key idea behind Fourier series. The
problem is fo find the coefficients of the basis vectors:

Write b as a combination b = x1q1 + x2q9, + -+« + x,q,. l

|

To compute x; there is a neat trick. Multiply both sides of the equation by ql On the
left-hand side is g b. On the right-hand side all terms disappear (because g7 g; = 0)
except the first term. We are left with

le — xl% qi.

Since qTq; = 1, we have found x; = q7b. S1m11arly the second coefficient is x, = g, b;
that term survives when we multiply by g1 . The other terms die of orthogonality. Each
piece of b has a sunple formula and recomblnmg the preces grves back b:

Every vector b is equal to (q1 b)q1 —l— (q;r b)qz + + (q;fb)qn (4)

I can’t resist putting this orthonormal basis into a square matrix Q. The vector
equation x;q; + - -+ + x,9, = b is identical to Qx = b. (The columns of Q multiply
the components of x.) Its solution is x = Q~!b. But since Q' = QT—this is where
orthonormality enters—the solution is also x = QTh:

—af — [ [a¥
x =0 = b| = (5)
i q, 1L]  la:b

The components of x are the inner products g'b, as in equation (4).

The matrix form also shows what happens when the columns are not orthonormal.
Expressing b as a combination x;a; + - - - + x,a, is the same as solving Ax = b. The
basis vectors go into the columns of A. In that case we need A~!, which takes work. In
the orthonormal case we only need Q7.

Remark 1 The ratio a®s/a"a appeared earlier, when we projected b onto a line.
Here a is g, the denominator is 1, and the projection is (¢7b)q;. Thus we have a
new interpretation for formula (4): Every vector b is the sum of its one-dimensional
projections onto the lines through the q’s.
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Since those projections are orthogonal, Pythagoras should still be correct. The square
of the hypotenuse should still be the sum of squares of the components:

161> = (g{)* + (g3b)> + - -+ + (¢'b)* whichis [|QD|>. (6)

Remark 2 Since Q"= Q7', we also have Q0T =1. When Q comes before QT,
multiplication takes the inner products of the rows of Q. (For O Q it was the columns.)

1) Since the result is again the identity matrix, we come to a surprising conclusion: The

G

-~ Orthonormal columns 1 /3 0 Y N

rows of a square matrix are orthonormal whenever the columns are. The rows point

'ag in completely different directions from the columns, and I don’t see geometrically why

they are forced to be orthonormal—but they are.

V3 N2 NG

¢ —  Orthonormal rows

| 1/4/3 —1/42 1/«/8_’

Rectangular Matrices with Orthonormal Columns

- This chapter is about Ax = b, when A is not necessarily square. For Qx = b we now

admit the same possibility—there may be more rows than columns. The n orthonormal
vectors g; in the columns of Q have m > n components. Then Q is an m by n matrix
and we cannot expect to solve Qx = b exactly. We solve it by least squares.

If there is any justice, orthonormal columns should make the problem simple. It
worked for square matrices, and now it will work for rectangular matrices. The key is to
notice that we still have QT Q = I.So Q7 is still the left-inverse of Q.

For least squares that is all we need. The normal equations came from multiplying
Ax = b by the transpose matrix, to give ATAx = ATh. Now the normal equations are
QT0x = Q'b. But QT Q is the identity matrix! Therefore ¥ = Q7Th, whether Q is
square and X is an exact solution, or Q is rectangular and we need least squares.

-;:..the____I‘O_]eCthIl of bis (q1 b)ql —l~ ne
_'=_5?_.f"'f_.the projectlon matrlx is P Q Q T T

The last formulas are like p=AXx and P =A(ATA)"'AT. When the columns are
orthonormal, the “cross-product matrix” ATA becomes QTQ = I. The hard part of
least squares disappears when vectors are orthonormal. The projections onto the axes
are uncoupled, and p is the sum p = (g{b)q; + - - - + (¢ b)ga.

We emphasize that those projections do not reconstruct b. In the square case m = n,
they did. In the rectangular case m > n, they don’t. They give the projection p and
not the original vector b—which is all we can expect when there are more equations
than unknowns, and the g’s are no longer a basis. The projection matrix is usually
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A(ATA)"1AT, and here it simplifies to

thice that QT Q is the # by n identity matrix, whereas Q QT is'an m by m projecti
P. It is the identity matrix on the columns of Q (P leaves them alone). But Q Q" is t
zero matrix on the orthogonal complement (the nullspace of Q).

The following case is simple but typical. Suppose we projectapointh = (x, y, z) onto t
x-y plane. Its projection is p = (x, y, 0), and this is the sum of the separate projectior
onto the x- and y-axes:

1] X 0 0
g1= |0| and (¢;b)g; = |0}; = |1| and (g,b)g= |y]|.
0 0] 0] 0]

The overall projection matrix is

- - e ey e P

1 0 0 | X X
P = qlqlT —l—qzqg = {0 1 0}, and P |y| =1|y]|.
ﬁO 0 O_ | Z | LO_

Projeétion onto a plane = sum of projections onto orthonormal q, and q,.

When the measurement times average to zero, fitting a straight line leads to orthogonal
columns. Take #; = —3, #, = 0, and #; = 3. Then the attempt to fit y = C + D¢ leads to
three equations in two unknowns:

r—n — oo ' W

C + Dty =y 1 -3 C Vi
C+Dty=y,, or 1 0 [D}x 2 i.
C + Dt3 = V3 _1 3_ _y3“

The columns (1,1, 1) and (=3, 0, 3) are orthggonal. We can project y separately onto
each column, and the best coefficients C and D can be found separately:

11 1 » »] -3 0 3] w» )’3]T.

, D=Lt=
12 412 + 12 (—3)2 4 0% 4 32

AN

Notice that C = (y1 + y2 -+ ¥3)/3 1s the mean of the data. C gives the best fit by

a horizontal line, whereas Dt is the best fit by a straight line through the origin. The
columns are orthogonal, so the sum of these two separate pieces is the best fit by any
straight line whatsoever. The columns are not unit vectors, so C and D have the length
squared in the denominator.

Orthogonal columns are so much better that it 1s worth changing to that case. If the
average of the observation times is not zero—itis f = (¢; + - - - + t,,) /m—then the time
origin can be shifted by 7. Instead of y = C + Dt we work with y = ¢ + d(t — ). The
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best line is the same! As in the example, we find

O L N LI M T St

P2+ 12 4 412 B m
s _Je=D o @=Dn o] TG -Dy %
N (tl_’”iﬂ)2+"'+(l‘m“—f)2 N Z(ti'—f)2°

The best ¢ is the mean, and we also get a convenient formula for d. The earlier AT A had
the off-diagonal entries ) ¢, and shifting the time by 7 made these entries zero. This
shift is an example of the Gram-Schmidt process, which orthogonalizes the situation
in advance.

Orthogonal matrices are crucial to numerical linear algebra, because they introduce
no instability. While lengths stay the same, roundoff is under control. Orthogonalizing
vectors has become an essential technique. Probably it comes second only to elimination.
And it leads to a factorization A = QR that is nearly as famous as A = LU.

The Gram-Schmidt P

Suppose you are given three independent vectors a, b, c. If they are orthonormal, life is
easy. To project a vector v onto the first one, you compute (a'v)a. To project the same
vector v onto the plane of the first two, you just add (aTv)a + (b*v)b. To project onto
the span of a, b, ¢, you add three projections. All calculations require only the inner
products a*v, b'v, and ¢Tv. But to make this true, we are forced to say, “If they are
orthonormal.” Now we propose to find a way to make them orthonormal.

The method is simple. We are given a, b, c and we want g1, g2, g3. There is no problem
with g;: it can go in the direction of a. We divide by the length, so that g; = a/||al| is a
unit vector. The real problem begins with g,—which has to be orthogonal to g;. If the
second vector b has any component in the direction of ¢g; (which is the direction of a),
that component has to be subtracted:

rocess

Second vector B =0b— (gq,b)q; and g 9)

B 1s orthogonal to g;. It is the part of b that goes in a new diree iofi, and not in the
direction of a. In Figure 3.10, B is perpendicular to ¢;. It sets the direction for g;.

Figure 3.10 The g; component of b is removed; a and B normalized to g; and g;.

At this point g; and g, are set. The third orthogonal direction starts with c. It will
not be in the plane of ¢g; and g,, which is the plane of a and b. However, it may have a
component in that plane, and that has to be subtracted. (If the resultis C = 0, this signals
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that a, b, ¢ were not independent in the first place.) What is left is the component C
want, the part that is in a new direction perpendicular to the plane:
Third vector C=c—(gic)q — (QZC)?E and g3 = C/||C]. (1

This is the one idea of the whole Gram-Schmidt process, fo subtract from every ne
vector its components in the directions that are already settled. That idea is used ov
and over again.* When there is a fourth vector, we subtract away its components in tl
directions of g1, g2, g3.

Gram-Schmidt Suppose the independent vectors are a, b, c:

-y e =y o amoy

1 2
a= |0}, b= |0}, c= |1].
1] 0] 0

To find g;, make the first vector into a unit vector: g; = a/ V2. To find g, subtract fron
the second vector its component in the first direction:

1, V2] [ 1]

B=b—(gib)q1= |0 —— | 0 | == 0].
. V2 2

AU V2l L

The normalized g, is B divided by its length, to produce a unit vector:

e
0 :
~1/v/2 ]

To find g3, subtract from c its components along ¢g; and g,:

q2 =

C=c—(q0)q —(q,0)q
Vi 1/8/2 [ 1/v/27  [0]
1| =2 0 | =+2| 0 -
1/4/2 |—1/4/2 | 0

This is already a unit vector, so it is gs. I went to desperate lengths to cut down the number
of square roots (the painful part of Gram-Schmidt). The result is a set of orthonormal
vectors qi, g2, g3, which go into the columns of an orthogonal matrix Q:

] 1 T1/v/2 1/4/2 0]
0

Orthonormal basis Q= |q1 g g3 0 1.
1/V2 —1/¥2 0.

I

I

e e L

* If Gram thought of it first, what was left for Schmidt?
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Then QJIStheunlt VectorA]/” AJ” Semmme e

Aj=a;—@lapg ~ -~ (¢ 1a))q,-.

Remark on the calculations 1 think it is easier to compute the orthogonal a, B, C,
without forcing their lengths to equal one. Then Square roots enter only at the end, when
dividing by those lengths. The example above would have the same B and C, without
using square roots. Notice the 5 from a™b /aTa instead of 5 from ¢7b:

1] 1 2] 1] I
B=|0| - 0 andthen C= |1| - |0| —2
0] 1] Of |1 -

B[
O =

H
N
L

The Factorization A = QR

We started with a matrix A, whose columns were a, b, ¢. We ended with a matrix Q,
whose columns are 91> 92, 3. What is the relation between those matrices? The matrices
A and Q are m by n when the 5 vectors are in m-dimensional space, and there has to be
a third matrix that connects them.

The idea is to write the a’s as combinations of the ¢’s. The vector b in Figure 3.10
is a combination of the orthonormal ¢; and 42, and we know what combination it 1s:

b= (q,b)q1 + (¢7b)qs.

Every vector in the plane is the sum of its g1 and g, components. Similarly c is the sum
of its g1, g5, g3 components: ¢ = @i )g1 + (Fc)gy + (93 ©)gs. If we express that in
matrix form we have the new Sactorization A = OR:

QR factors " A= g p 91 92 q3

» . » ..J - | {w@’ .
Notice the zeros in the last matrix! R is upper triangular because of the way Gram-
Schmidt was done. The first vectors ¢ and q1 fell on the same line. Then ¢, g, were in
the same plane as a, b. The third vectors ¢ and g3 were not involved unti] step 3.

The QR factorization is like A = LU » except that the first factor Q has orthonormal
columns. The second factor is called R, because the nonzeros are to the right of the
diagonal (and the letter U/ is already taken). The off-diagonal entries of R are the numbers
qib =1/+/2 and qi ¢ = gfc = /2, found above. The whole factorization is

1 | [Uv2 vz 0] [V2 13 3
A= |0 0 0 1 1/42 2| = OR.
1 1/V2 —1/v/2 0] 1|

I

=Q0R (12

—_ NI
!

OO

2
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You see the lengths of a, B, C on the diagonal of R. The orthonormal vectors g1, g2, g3,
which are the whole object of orthogonalization, are in the first factor Q.

Maybe QR is not as beautiful as LU (because of the square roots). Both factoriza-
tions are vitally important to the theory of linear algebra, and absolutely central to the
calculations. If LU is Hertz, then QR is Avis.

The entries r;; = g, a; appear in formula (11), when ||A4;||g; is substituted for A;:

a; = (qfaj)ql + e (qulaj)qj_l + ||A'j||qj = ( times column jof R. (13)

| ._ 3 i Everym by n matrix with independent columns can be factoredinto A = QR.

- T he columns of Q are orthonormal, and R is upper triangular and invertible.
~ 'When m = n and all matrices are square, Q becomes an orthogonal matrix.

I must not forget the main point of orthogonalization. It simplifies the least-squares
problem Ax = b. The normal equations are still correct, but AT A becomes easier:

AYA = RTQYQOR = R'R. (14)
The fundamental equation AT Ax = ATb simplifies to a triangular system:
RTRx =R™Q™ or Rx=Q". (15)

Instead of solving QRx = b, which can’t be done, we solve Rx = Q7Tb, which is
just back-substitution because R is triangular. The real cost is the mn? operations of
Gram-Schmidt, which are needed to find Q and R in the first place.

The same idea of orthogonality applies to functions. The sines and cosines are
orthogonal; the powers 1, x, x? are not. When f (x) is written as a combination of sines
and cosines, that is a Fourier series. Each term is a projection onto a line—the line in
function space containing multiples of cosnx or sinnx. It is completely parallel to the
vector case, and very important. And finally we have a job for Schmidt: To orthogonalize
the powers of x and produce the Legendre polynomials.

Function Spaces and Fourier Series
This is a brief and optional section, but it has a number of good intentions:

1. to introduce the most famous infinite-dimensional vector space (Hilbert space);

2. to extend the ideas of length and inner product from vectors v to functions f(x);

3. to recognize the Fourier series as a sum of one-dimensional projections (the
orthogonal “columns” are the sines and cosines);

4. to apply Gram-Schmidt orthogonalization to the polynomials 1, x, x?, ...; and

5. to find the best approximation to f(x) by a straight line.

We will try to follow this outline, which opens up a range of new applications for
linear algebra, in a systematic way. |

1. Hilbert Space. After studying R”, it is natural to think of the space R*. It contains
all vectors v = (v, V2, v3, ...) with an infinite sequence of components. This space is
actually too big when there is no control on the size of components v;. A much better
idea is to keep the familiar definition of length, using a sum of squares, and fo include
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Ch2

only those vectors that have a finite length:

184

Length squared Iv|? = v? +v; +v; +

The infinite series must converge to a finite sum. This leaves

(1,1,1,...). Vectors with finite length can be added (||lv + w

multiplied by scalars, so they form a vector space. It is the celebr

- Hilbert space is the natural way to let the number of dimensiuus vecome 1nfinite,
and at the same time to keep the geometry of ordinary Euclidean space. Ellipses become
infinite-dimensional ellipsoids, and perpendicular lines are recognized exactly as before.
The vectors v and w are orthogonal when their inner product is zero:

Orthogonality vTw = viw + vywy + vzws 4+ - =0.

This sum is guaranteed to converge, and for any two vectors it still obeys the Schwarz

inequality |v*w| < ||v|| ||w]|. The cosine, even in Hilbert space, is never larger than 1.
There is another remarkable thing about this space: It is found under a great many

different disguises. Its “vectors” can turn into functions, which is the second point.

2. Lengths and Inner Products. Suppose f(x) = sinx ontheinterval 0 < x < 2.
This f is like a vector with a whole continuum of components, the values of sin x along
the whole interval. To find the length of such a vector, the usual rule of adding the squares
of the components becomes impossible. This summation is replaced, in a natural and
inevitable way, by integration:

27 2
Length || f|| of function I F1I? = (f(x))*dx = (sinx)*dx =n. (17)
0 0

Our Hilbert space has become a function space. The vectors are functions, we have a
way to measure their length, and the space contains all those functions that have a finite
length—just as in equation (16). It does not contain the function F(x) = 1/x, because
the integral of 1/x? is infinite.

The same idea of replacing summation by 1ntegrat10n produces the inner product
of two functwns. If f(x) =sinx and g(x) = cos x, then their inner product 18

2n

2m _
(f, &) = f(x)gx)dx = / sinx cosxdx = 0. (18)
0 0
This is exactly like the vector inner product flg. It is still related to the length by
(f, f) = |l f1I*>. The Schwarz inequality is still satisfied: |(f, g)| < || £ llgll- Of course,
two functions like sin x and cos x—whose inner product is zero——--w111“be called orthog—
onal. They are even orfhonormal after d1v1s1on by their leng_tx_ o

M‘”-"“w\

3. The Fourier series of a function is an expansion into sines and cosines:

f(x) = do + a1 cosx + b1 smx + az cos 2x + bz sm 2x +

To compute a coefficient like by, multiply both sides by the corresponding function sin x
and integrate from 0 to 2. (The function f(x) is given on that interval.) In other words,
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You see the lengths of a, B, C on the diagonal of R. The orthonormal vectors g1, q2, g,
which are the whole object of orthogonalization, are in the first factor Q.

Maybe QR is not as beautiful as LU (because of the square roots). Both factoriza-
tions are vitally important to the theory of linear algebra, and absolutely central to the
calculations. If LU is Hertz, then QR is Avis.

The entries r;; = ¢l a; appear in formula (11), when ||A;|lg; is substituted for A;:

aj = (q}raj)cu + et (qJT_laj)qj'-1 + IIA']-HqJ- = ( times cohimnj of R. (13)

- -3u *Every m by n matrix with independf_mt columns canbefactoredinto A = QR.

. The columns of Q are orthonorm_a__l_;,__'ﬁ"'and_ ‘R 1s upper triangular and invertible.
- When m = n and all matrices are square, Q becomes an orthogonal matrix.

I must not forget the main point of orthogonalization. It simplifies the least-squares
problem Ax = b. The normal equations are still correct, but AT A becomes easier:

A"A=R'Q"QR=R'R. (14)
The fundamental equation AT Ax = ATh simplifies to a triangular system:
RTRx=R'Q™ or Rx=Q". (15)

Instead of solving QRx = b, which can’t be done, we solve Rx = Q'b, which is
just back-substitution because R is triangular. The real cost is the mn® operations of
Gram-Schmidt, which are needed to find QO and R in the first place.

The same idea of orthogonality applies to functions. The sines and cosines are
orthogonal; the powers 1, x, x? are not. When £ (x) is written as a combination of sines
and cosines, that is a Fourier series. Each term is a projection onto a line—the line in
function space containing multiples of cos nx or sinnx. It is completely parallel to the
vector case, and very important. And finally we have a job for Schmidt: To orthogonalize
the powers of x and produce the L.egendre polynomials.

Function Spaces and Fourier Series
This is a brief and optional section, but it has a number of good intentions:

1. tointroduce the most famous infinite-dimensional vector space (Hilbert space);

2. to extend the ideas of length and inner product from vectors v to functions f(x);

3. to recognize the Fourier series as a sum of one-dimensional projections (the
orthogonal “columns’ are the sines and cosines);

4. to apply Gram-Schmidt orthogonalization to the polynomials 1, x, x2, ...; and

5. to find the best approximation to f(x) by a straight line.

We will try to follow this outline, which opens up a range of new applications fo
linear algebra, in a systematic way. ja

1. HilbertSpace. Afterstudying R",1tis natural to think of the space R*. It contain
all vectors v = (vy, v,, Vs, ...) With an infinite sequence of components. This space i
actually too big when there is no control on the size of components v;. A much bette
idea is to keep the familiar definition of length, using a sum of squares, and to includ
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only those vectors that have a finite length.
Length squared l||> = v% + v% -+ v% + - (16)

5, 3,...) but not
(1,1,1,...). Vectors with finite length can be added (||lv + w|| < |lv|| + ||lw|) and
multiplied by scalars, so they form a vector space. It is the celebrated Hilbert space.
Hilbert space 1s the natural way to let the number of dimensions become infinite,
and at the same time to keep the geometry of ordinary Euclidean space. Ellipses become
infinite-dimensional ellipsoids, and perpendicular lines are recognized exactly as before.
The vectors v and w are orthogonal when their inner product is zero:

The infinite series must converge to a finite sum. This leaves (1 1

Orthogonality viw = vjwy + vaw, + vaws + -+ - = 0.

This sum 1s guaranteed to converge, and for any two vectors it still obeys the Schwarz

1nequahty lwTw| < ||v]| |lw]|. The cosine, even in Hilbert space, is never larger than 1.
There is another remarkable thing about this space: It is found under a great many

different disguises. Its “vectors” can turn into functions, which is the second point.

2. Lengths and Inner Products. Suppose f(x) = sinx onthe interval 0 < x < 27.
This f is like a vector with a whole continuum of components, the values of sin x along
the whole interval. To find the length of such a vector, the usual rule of adding the squares
of the components becomes impossible. This summation is replaced, in a natural and
inevitable way, by integration:

2 2r
Length || f|| of function || f||* = (f(x)?dx = (sinx)’dx =nw. (17)
0 0

Our Hilbert space has become a function space. The vectors are functions, we have a
way to measure their length, and the space contains all those functions that have a finite
length—just as in equation (16). It does not contain the function F(x) = 1/x, because
the integral of 1/x? is infinite.

The same idea of replacing summation by mtegra‘uon produces the inner product
of two functions: If f(x) = sinx and g(x) = cos x, then their inner product is

27

2
(f, g = fx)g(x)dx = / sinx cosx dx = 0. (18)
0 0

This is exactly like the vector inner product fTg. It is still related to the length by
(f, f) = | f1I*. The Schwarz inequality is still satisfied: |(f, g)| < || f|l llgll. Of course,
two functions like sin x and cos x—whose inner product is zero-—w111 be called orthog—

3. The Fourier series of a function is an expansion into sines and cosines:

To compute a coefficient like b;, multiply both sides by the corresponding function sinx
and integrate from O to 27 . (The function f (x) is given on that interval.) In other words,



ter3 Orthogonality

take the inner product of both sides with sin x:

Yrr 27 2 27
f(x)sinxdx = agp / sinx dx +a; / cosx sinx dx +by,[ (sin x)2 dx + -
0 0 0 (Jo .

On the right-hand side, every integral is zero except one—the oné in Wthh sin x
multiplies itself. The sines and cosines are mutually orthogonal as in equation (13).
Therefore by is the left-hand side divided by that one nonzero integral:

fg”f(x) sinxdx  (f,sinx)

f?)” (sin x)2 dx (sinx, sinx)

.......

b, =

e i

The whole pomt is to see the analogy w1th pI‘O]CCthﬂS The component of the Vector
b along the line spanned by a is bTa 0 /¢ a a. A Fourier-series.is. pm‘;ectmg
smx Its component p in this direction is ‘exactly by sin x. -

“"The coefficient b, is the least squares solution of the inconsistent equation b; sin x =
f(x). This brings b; sinx as close as possible to f(x). All the terms in the series are
projections onto a sine or cosine. Since the sines and cosines are orthogonal, the Fourier
series gives the coordinates of the “vector” f(x) with respect to a set of (infinitely
many) perpendicular axes.

4. Gram-Schmidt for Functions. There are plenty of useful functions other than
sines and cosines, and they are not always orthogonal. The simplest are the powers of x,
and unfortunately there is no interval on which even 1 and x? are perpendicular. (Their
inner product is always positive, because it is the integral of x2.) Therefore the closest
parabolato f (x) is not the sum of its projections onto 1, x, and x2. There will be a matrix
like (ATA)~!, and this coupling is given by the ill-conditioned Hilbert matrix. On the
interval 0 < x < 1,

(L, GQ,x) LxHT /1 [x [x*] i
ATA= | (x, ) (x,x) @x)|=|[x [x* [
(31 (xR x| [ [x? [x3 [xt

This matrix has a large inverse, because the axes 1, x, x? are far from perpendicular. Th
situation becomes impossible if we add a few more axes. It is virtually hopeless to solv
ATAx = A'b for the closest polynomial of degree ten.

More precisely, it is hopeless to solve this by Gaussian elimination; every roundo:
error would be amplified by more than 10*3. On the other hand, we cannot just gi
up; approximation by polynomials has to be possible. The right idea is to switch
orthogonal axes (by Gram-Schmidt). We look for combinations of 1, x, and x? that a
orthogonal.

It is convenient to work with a symmetrically placed interval like —1 < x <
because this makes all the odd powers of x orthogonal to all the even powers:

= B O

Il
e e I
B Y 2 Ll e

h
L

1 1
(1,x):/ xdx =0, (x,x2)=/ xdx =0.

1 1

Therefore the Gram-Schmidt process can begin by accepting v = 1 and v, = x as |
first two perpendicular axes. Since (x, x?) = 0, it only has to correct the angle betwe
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1 and x*. By formula (10), the third orthogonal polynomial is

| 1, x2 2 ' x2dx 1
Orthogonalize vy = x% — —(-—2€——21 — (x, x )x = x* — f“il = x% — =,
LD (%) T 1dx 3

The polynomials constructed in this way are called the Legendre polynomials and they
are orthogonal to each other over the interval —1 < x < 1.

1 1 1 x° X !
Check ,x2—=) = 2_Z = |———2Z] =0.
= (’“ 3> /(’“ 3>dx [3 BL

The closest polynomial of degree ten is now computable, without disaster, by projecting
onto each of the first 10 (or 11) Legendre polynomials.

5. Best Straight Line. Suppose we want to approximate y = x> by a straight line
C + Dx between x = 0 and x = 1. There are at least three ways of ﬁndmg that line,
and 1if you compare them the whole chapter might become clear! ?’
1. Solve '_1 x] [g] x by least squares. The equation ATAX = ATb 18
_ (1: 1) (1,X) (17x ) or 2 [le _

(1) (%) (x, x%) 3 3| LD :
2. Minimize E2 = [} (x5 = C — Dx)?dx = £ —2C = 2D+ C2 4+ CD + 1D

The derivatives with respect to C and D, after d1v1d1ng by 2, bring back the normal
equatlons of method 1 (and the solution is C = 3 — 1—4~, D= 7)

1~!—C-l—1D 0 nd 1+1C+1D 0

— = —-D = a — =+ = —-D = 0.

6 2 7 2 3

3. Apply Gram-Schmidt to replace x by x — (1, x)/(1, 1). That is x — 3, which is
orthogonal to 1. Now the one-dimensional projections add to the best line:

*, (x°, x = 3) N 5( _1)
(1,1)1+(x~.l’x__%)(x"‘2')-‘6'+‘7- x=z

2

g{ l‘,:f 3 7o

~dj— Ohf=

C +Dx =

Probiem Set 3.4
(1) (a) Write the four equations for fitting y = C + Dt to the data

y=—4 at t=-2, y=-3 at t=-1
y=-1 a t=1  y=0 a =2

Show that the columns are orthogonal.

(b) Find the optimal straight line, draw its graph, and write EZ.

(¢) Interpret the zero error in terms of the original system of four equations in two
unknowns: The right-hand side (—4, —3, —1, 0) is in the space.

2. Project b = (0, 3, 0) onto each of the orthonormal vectors a; = (g, %, -é—) and

a; = (—3, %, %), and then find its projection p onto the plane of a; and a,.

U=



ter 3

Orthogonality

{@ Find also the projection of b = (0, 3, 0) onto a3z = (%— _._%, %) and add the three

4.

;fS.

T

projections. Why is P = ajai + aza; + asa; equal to 17

If O, and Q, are orthogonal matrices, so that Q7 Q = I, show that Q; O, is also
orthogonal. If Q; is rotation through 8, and @ is rotation through ¢, whatis Q; Q,?
Can you find the trigonometric identities for sin(6 + ¢) and cos(@ + ¢) in the matrix
multiplication Q; Q,?

If u is a unit vector, show that Q = I — 2uu" is a symmetric orthogonal matrix.

(It is a reflection, also known as a Householder transformation.) Compute O when

T __[1 1 _1 .__l]
“""[22 2 2"

67/ Find a third column so that the matrix

10.

5@

13.

14.

1/4/3 1/4/14
0= |1//3 2/J/14
| 1/4/3  —=3//14

is orthogonal. It must be a unit vector that is orthogonal to the other columns;

how much freedom does this leave? Verify that the rows automatically become
orthonormal at the same time.

Show, by forming b'b directly, that Pythagoras’s law holds for any combination
b = x1q1 + - - - + X,q, of orthonormal vectors: ||p||> = x? + - -+ + x2. In matrix
terms, b = Qx, so this again proves that lengths are preserved: | Ox||? = ||x||°.

. Project the vector b = (1, 2) onto two vectors that are not orthogonal, a; = (1, 0)

and a, = (1, 1). Show that, unlike the orthogonal case, the sum of the two one-
dimensional projections does not equal b.

If the vectors g1, ¢», g3 are orthonormal, what combination of ¢g; and ¢, is closest

If g; and g, are the outputs from Gram-échmidt, what were the possible input
vectors a and b?

. Show that an orthogonal matrix that is upper triangular must be diagonal.

. 'What multiple of a; = [}] should be subtracted from a, = [}] to make the result

orthogonal to a;? Factor I:i g] into Q R with orthonormal vectors in Q.

Apply the Gram-Schmidt process to
. . I
a= |0}, b= 1|1], c= |1
1 1] 1

and write the result in the form A = QR.

From the nonorthogonal a, b, ¢, find orthonormal vectors di, 92, 43:
1] 1] 0]
a= |11, b= |0}, c= |1].
_O.J L_l.J ...1_
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o
i\SJ. Find an orthonormal set 91, 42, g3 for which g, g2 span the column space of

[ 1 1]
A= 2 —11.
=2 4]

Which fundamental subsprace contains g3? What is the least-squares solution of
Ax =bifb=[1 2 7]

@ Express the Gram-Schmidt orthogonalization of ap, a as A = QR:
- i

1
a; = 2 , ay = 3.
2] 1]

Given n vectors a; with m components, what are the shapes of 4, Q, and R?

17. With the same matrix A as in Problem 16, and with  — [1 1 1]% use 4 = QR
to solve the least-squares problem Ax = p.

18. If A = QR, find a simple formula for the projection matrix P onto the column space
of A.

19. Show that these modified Gram-Schmidt steps produce the same C as in equa-
tion (10);

"=c—(9{c)g;  and C=C"~(q,C"q,.

This is much more stable, to subtract the projections one at a time.

20. In Hilbert space, find the length of the vector v = (1 /A2, 1/4/4, 1 /+/8,...) and
the length of the function S (x) = €* (over the interval 0 < x < 1). What is the
inner product over this interval of e* and e *?

- What is the closest fun_g_t_i_on_la cosx + b sin x to the function f (x) = sin2x on the

~ interval from —7 to 7? What is the closest straight line ¢ + dx?

,,,,,,,,

22. By setting the derivative to Zero, find the value of by jthat minimizes

€
e

164 éinx — cosx”'2 = (b1 sinx — cos x)? dx.

Compare with the Fourier coefficient b;.

A
X N
P "cm"

23. Find the Fourier coefficients o, ai, by of the step function'y (x), which equals' 1 on

the interval 0 < x < 7 and 0 on the remaining interval 7 < x < 27

. D (¥, cos x) (y, sinx)
ay = ——= a; = by = — —.
(1, (cos x, cos x) (sin x, sin x)

Find the fourth Legendre pol nomial. It is a cubic x3 + ax2+bx 1 c that is
2 p y T v ot sy

orthogonal to 1, x, and x2 — -31— over the interval —1 <'x"<']

NCEEER
.

Q8. What is the closest straight line to the parabola y = x? over —1 < x < 19

26. In the Gram-Schmidt formula (10), verify that C is orthogonal to g; and ¢,.
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27. Find an orthonormal basis for the subspace spanned by a; =
0,1, ~1,0),a3 = (0,0, 1, —1).

28. Apply Gram-Schmidt to (1, —1, 0), (0, 1, —1), and (1, 0, —1), to find an orthonor-
mal basis on the plane x; + x; + x3 = 0. What 1s the dimension of this subspace,
and how many nonzero vectors come out of Gram-Schmidt?

@ (Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c:

a = (1,
A, B, C and a, b, c are bases for the vectors perpendiculartod = (1, 1, 1, 1).

(19 _]-: O: 0)9 a); =

—1,0,0) b=(0,1,-1,0) c=(0,0,1,-1).

30. If A = QR then ATA = R'R = triangular times triangular.
Gram-Schmidt on A corresponds to elimination on AT A. Compare
IR Ty
A= with  ATA=|-1 2 =1},
0 -1 1 0 —1 )
0 0 -1 - :
For ATA, the pivots are 2, 2, § and the multipliers are —1 and —2.

31.

32.

(a) Usmg those multipliers in A, show that column 1 of A and B = column 2
(column 1) and C = column 3 —
(b) Check that ||column 1)) = 2, HBH2

True or false (give an example in either case):

(@ 07!

39

is an orthogonal matrix when Q is an orthogonal matrix.

(column 2) are orthogonal

2, and ||C||> = %, using the pivots.

(b) If Q (3 by 2) has orthonormal columns then || Qx| always equals ||x||.

(a) Find a basis for the subspace S in R* spanned by all solutions of

X1 +x0+x3—x4 =0.

(b) Find a basis for the orthogonal complement S+.
(c) Find b;yinSand b, in St sothath; +b, =b = (1,1, 1, 1).

f (x); they are proj ected onto the sines and cosines; that produces the Fourier coefficients
a; and by. From this infinite sequence of sines and cosines, multiplied by a; and by,
we can reconstruct f(x). That is the classical case, which Fourier dreamt about, but in
actual calculations it is the discrete Fourier transform that we compute. Fourier still
lives, but in finite dimensions.

This is pure linear algebra, based on orthogonality. The input is a sequence of

numbers Vo, . . ., Y»—1, instead of a function f (x). The output ¢y, ..., c,_; has the same
length n. The relation between y and c is linear, so it must be given by a matrix. This
is the Fourier matrix F, and the whole technology of digital signal processing depends
on it. The Fourier matrix has remarkable properties.



