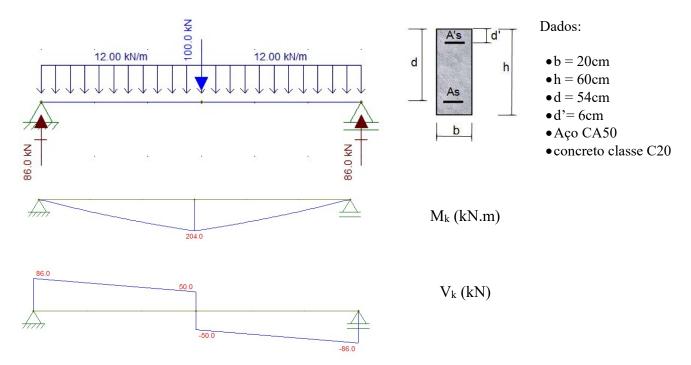


FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO

PEF2604 - Estruturas na Arquitetura II PRIMEIRA AVALIAÇÃO - P1 - 10/10/2016

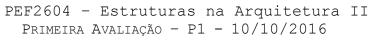


Nome: N° USP:

Professor:

<u>Questão 1 (4 pontos)</u>: A figura abaixo ilustra uma viga bi-apoiada sujeita a um carregamento distribuído p = 12 kN/m (p = g+q) e uma carga concentrada P = 100 kN. Baseado no diagrama esforços solicitantes característicos desta estrutura, pede-se:

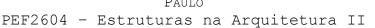
- a) Calcular a armadura longitudinal para seção de máximo momento fletor
- b) Calcular a armadura de cisalhamento para resistir ao esforço cortante máximo



Dados:

- Aço CA50: $f_{yk} = 500 MPa = 50 kN/cm^2$; $f_{yd} = f_{yk}/1,15$; $\varepsilon_{yd} = 2,07\%$; domínio 2: $x \le 0,259 d$; domínio 3: $0,259 d < x \le 0,628 d$
- Concreto Classe C20: $f_{ck} = 20MPa = 2kN/cm^2$; $f_{cd} = f_{ck}/1,4$; limite de ductilidade: $x/d \le 0,45$
- $M_d = 1,4 M_k$; $V_d = 1,4 V_k$;

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO

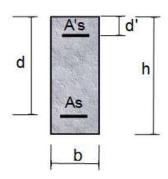


Nome: N° USP:

Professor:

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO

N° USP:


Primeira Avaliação - P1 - 10/10/2016

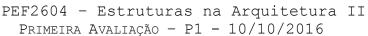
Professor:

Nome:

Questão 2 (3 pontos): Para a seção transversal de uma viga de concreto armado abaixo, pede-se:

- a) Qual o momento fletor máximo que pode ser aplicado?
- b) Alojar a armadura longitudinal As = 12cm² na seção transversal. Adotar armadura transversal com bitola de 6,3mm.

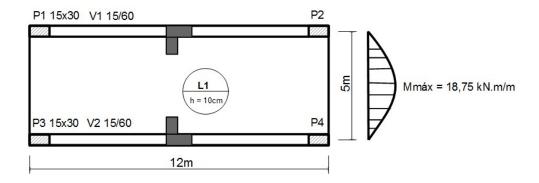
Dados:


- b = 20cm
- h = 60cm
- $As = 12cm^2 e d = 54cm$
- A's = 0
- Aço CA50
- concreto classe C30
- classe de agressividade I
- brita 1 ($d_{máx} = 19$ mm)

Dados:

- Aço CA50: f_{yk} =500MPa = 50kN/cm²; f_{yd} = f_{yk} /1,15; ε_{yd} = 2,07%; domínio 2: $x \le 0,259d$; domínio 3: 0,259d $\le x \le 0,628d$
- Concreto Classe C30: $f_{ck} = 30MPa = 3kN/cm^2$; $f_{cd} = f_{ck}/1,4$; limite de ductilidade: $x/d \le 0,45$

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO


Nome: N° USP:

Professor:

Questão 3 (4 pontos): Para a planta de forma da laje L1 abaixo e o seu respectivo diagrama de momento fletor característico.

Pede-se:

- a) Dimensionamento da armadura positiva (principal e secundária). Adotar ϕ_x =10mm (A_{s1} =0,80cm²) para armadura principal e ϕ_y =5mm (A_{s1} =0,20cm²) para armadura secundária.
- b) Detalhamento das armaduras. Adotar ϕ =5mm para armadura de borda.

Dados:

- Aço CA50: f_{yk} = 500MPa = 50kN/cm²; f_{yd} = f_{yk} /1,15; ε_{yd} = 2,07‰; domínio 2: $x \le 0,259d$; domínio 3: 0,259d $\le x \le 0,628d$
- Concreto Classe C40: $f_{ck} = 40 \text{MPa} = 4 \text{kN/cm}^2$; $f_{cd} = f_{ck}/1,4$; limite de ductilidade: $x/d \le 0,45$
- Classe de agressividade I
- Armadura principal: $M_{xd} = 1.4 M_{xk}$; $d_x = h-c-\phi_x/2$;
- Armadura secundária: $M_{yd} = 1.4 M_{yk}$; $M_{yk} = 0.20 M_{xk}$; $d_y = h-c-\phi_x \phi_y/2$;

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO Paulo

PEF2604 - Estruturas na Arquitetura II Primeira Avaliação - P1 - 10/10/2016

Nome: N° USP:

Professor:

			TA	BELA PA	DRONI	ZADA F	PELA N	BR 748	0 DE 19	996				
RIT	BITOLA	VALOR NOMINAL			NÚMERO DE FIOS OU BARRAS									
BITOLA		ф	PESO	PERÍM	NOMENO DE 1103 00 DANTAS									
FIOS	BARRAS	(pol)	PESO (kgf/m) 0,063 0,1 0,16 0,25 0,4 0,63 1	(cm)	1	2	3	4	5	6	7	8	9	10
3,2	-	1/8	0,063	1	0,08	0,16	0,24	0,32	0,40	0,48	0,56	0,64	0,72	0,80
4		5/32	0,1	1,25	0,13	0,25	0,39	0,52	0,65	0,78	0,91	1,04	1,17	1,30
5	5	3/16	0,16	1,6	0,20	0,40	0,60	0,80	1,00	1,20	1,40	1,60	1,80	2,00
6,3	6,3	1/4	0,25	2	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
8	8	5/16	0,4	2,5	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00
10	10	3/8	0,63	3,15	0,80	1,60	2,40	3,20	4,00	4,80	5,60	6,40	7,20	8,00
12,5	12,5	1/2	1	4	1,25	2,50	3,75	5,00	6,25	7,50	8,75	10,00	11,25	12,50
1.77.5	16	5/8	1,6	5	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	18,00	20,00
-	20	3/4	2,5	6,3	3,15	6,30	9,45	12,60	15,75	18,90	22,05	25,20	28,35	31,50
15	22,5	7/8	3,05	6,97	3,88	7,76	11,64	15,52	19,40	23,28	27,16	31,04	34,92	38,80
-	25	1	4	8	5,00	10,00	15,00	20,00	25,00	30,00	35,00	40,00	45,00	50,00
-	32	1 1/4	6,3	10	8,00	16,00	24,00	32,00	40,00	48,00	56,00	64,00	72,00	80,00
-	40	1 1/2	10	12,5	12,50	25,00	37,50	50,00	62,50	75,00	87,50	100,00	112,50	125,00

Tabela 7.2 - Correspondência entre a classe de agressividade ambiental e o cobrimento nominal para $\Delta c = 10 \text{ mm}$

		Classe de agressividade ambiental (Tabela 6.1)						
Tipo de estrutura	Componente ou	1	11	III	IV c			
ripo de estrutura	elemento	Cobrimento nominal mm						
	Laje ^b	20	25	35	45			
	Viga/pilar	25	30	40	50			
Concreto armado	Elementos estruturais em contato com o solo ^d	3	30	40	50			
Concreto	Laje	25	30	40	50			
protendido ^a	Viga/pilar	30	35	45	55			

a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.

b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.

^c Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.