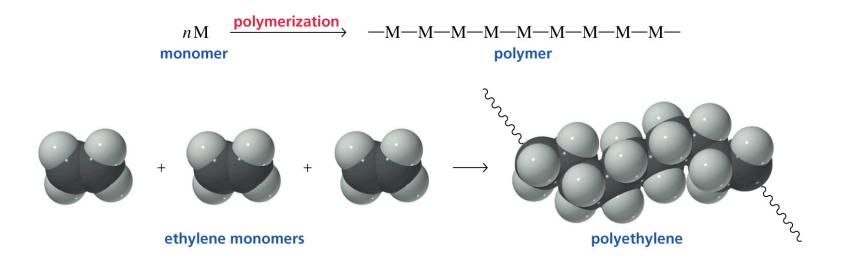
Química de Polímeros


Tópicos de QO essenciais para compreender a química de polímeros:

- 1. Estabilidade Relativa de Carbocátions, Carbânions e Radicais.
- 2. Estruturas de Ressonância.
- 3. Mecanismo de Reações Radicalares.
- 4. Mecanismo de Adição/Eliminação em Ácidos Carboxílicos e Derivados.
- 5. Mecanismo de Reações Envolvendo Carbocátions.

Bibliografia:

- 1. "Organic Chemistry", P. Y. Bruice, 2nd ed., Prentice Hall, New Jersey, 1998, cap. 25.
- 2. "Organic Chemistry", J. Clayden, N. Greeves, S. Warren, P. Wothers, Oxford, Oxford, 2001, cap. 52.

Polímero sintético: **macromolécula** feita pela união de unidades mais simples chamadas de **monômeros**, visando à obtenção de moléculas com propriedades físicas diferenciadas. Massa molar: **10.000 a 1.000.000**.

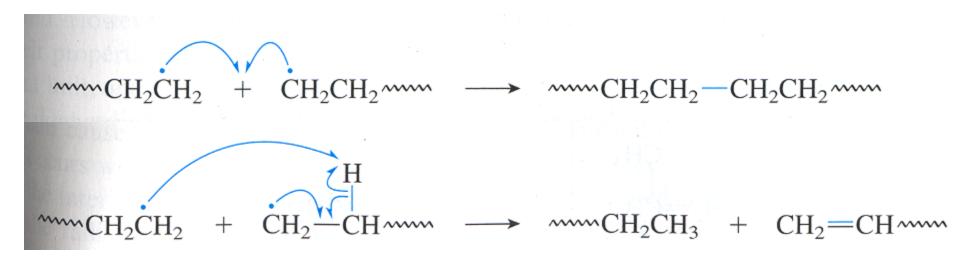
Biopolímeros: proteínas, DNA, RNA, borracha natural, algodão, celulose. **Polímeros sintéticos**: Plásticos (polietileno, poliestireno), adesivos (cola epoxi), tintas, fibras (poli-éster, nylon).

Monômeros, Dímeros, Trímeros, Oligômeros e Polímeros:

Polímeros sintéticos:

- i) **Polímeros de crescimento em cadeia**: adição de monômeros ao final da cadeia em crescimento. O final da cadeia é reativa, pois é um radical, um cátion ou um ânion. Neste método os intermediários reativos reagem apenas com o monômero, o que é diferente do que ocorre nas polimerizações por condensação.
- ii) **Polímeros de condensação (ou Polimerização de reação gradual)**: combinação de duas moléculas, ocorrendo em muitos casos a saída de uma pequena molécula, como H₂O e EtOH.

Polímeros de Crescimentos em Cadeia

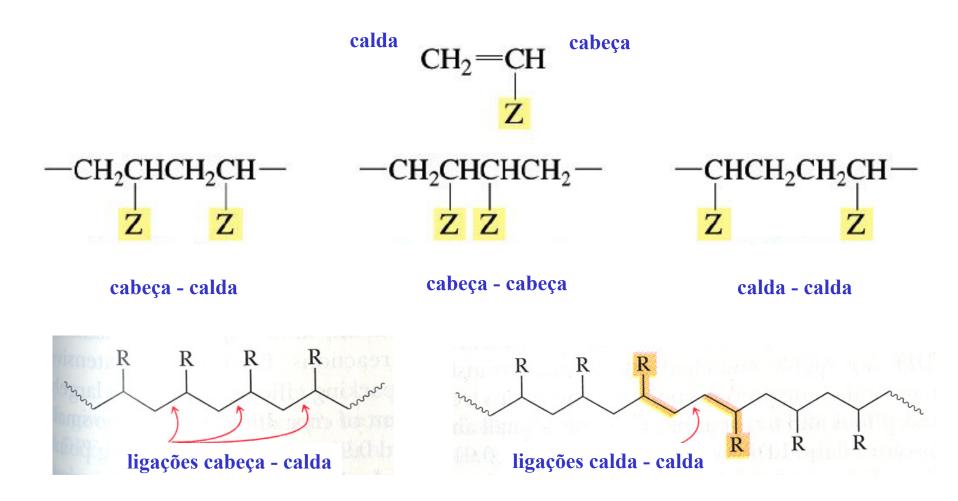

Polimerizações Radicalares

Iniciação:

Uma característica dos iniciadores radicalares é uma ligação relativamente fraca para quebra homolítica. São utilizados em cerca de 0.005% (peso).

Propagação:

Terminação:

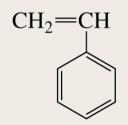

O grupo presente no final do polímero tem influência pequena nas propriedades, sendo normalmente omitido.

Controle do PM do polímero pela adição de compostos de 'transferência de cadeia'

$$-CH_{2} - CH_{2}$$

XY é qualquer molécula que pode sofrer clivagem homolítica: solvente, iniciador radicalar, impureza.

Etilenos mono-substituídos: regio-química da adição.



Polimerização cabeça – cauda é preferencial: Efeito estérico e de estabilização.

Adições cabeça/cabeça ou cauda/cauda raramente ocorrem em mais de 10% (tipicamente 1-2%).

Table 28.1 Some Important Chain-Growth Polymers and Their Uses				
Monomer	Repeating unit	Polymer name	Uses	
СН2=СН2	$-CH_2-CH_2-$	polyethylene	film, toys, bottles, plastic bags	
CH ₂ =CH Cl	$\begin{array}{c} -\text{CH}_2 - \text{CH} - \\ \text{Cl} \end{array}$	poly(vinyl chloride)	"squeeze" bottles, pipe, siding, flooring	
СН2=СН-СН3	$\begin{array}{c} -\mathrm{CH}_2 - \mathrm{CH} - \\ -\mathrm{CH}_3 \end{array}$	polypropylene	molded caps, margarine tubs, indoor/outdoor carpeting, upholstery	
CH ₂ =CH	-CH ₂ -CH-	polystyrene	packaging, toys, clear cups, egg cartons, hot drink cups	
CF ₂ =CF ₂	$-CF_2-CF_2-$	poly(tetrafluoroethylene) Teflon [®]	nonsticking surfaces, liners, cable insulation	
$CH_2 = CH$ $C \equiv N$	$\begin{array}{c} -\mathrm{CH_2-CH-} \\ \downarrow \\ \mathrm{C} \equiv \mathrm{N} \end{array}$	poly(acrylonitrile) Orlon [®] , Acrilan [®]	rugs, blankets, yarn, apparel, simulated fur	
CH ₂ =C-CH ₃ COCH ₃ O	$\begin{array}{c} \operatorname{CH_3} \\ -\operatorname{CH_2-C-} \\ \operatorname{COCH_3} \\ \operatorname{O} \end{array}$	poly(methyl methacrylate) Plexiglas [®] , Lucite [®]	lighting fixtures, signs, solar panels, skylights	
CH ₂ =CH OCCH ₃	$\begin{array}{c} -\mathrm{CH_2}\mathrm{-CH}\mathrm{-}\\ \mathrm{OCCH_3} \end{array}$	poly(vinyl acetate)	latex paints, adhesives	
Ö	Ö		8	

Table 28.2 Examples of Alkenes That Undergo Radical Polymerization

styrene

$$\begin{array}{c} \text{CH}_2 \text{=-CH} \\ \text{--Cl} \\ \text{vinyl chloride} \end{array}$$

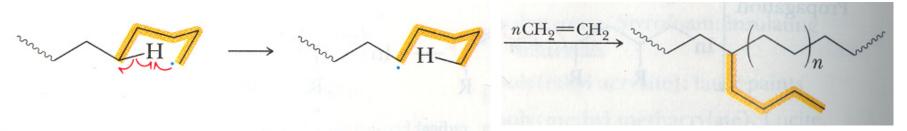
CH₂=CH | OCCH₃ | O

vinyl acetate

$$CH_2 = CH$$
 $C = N$
acrylonitrile

$$CH_2 = CCH_3$$

$$COCH_3$$


$$0$$

methyl methacrylate

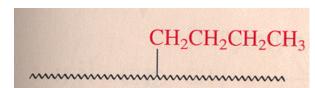
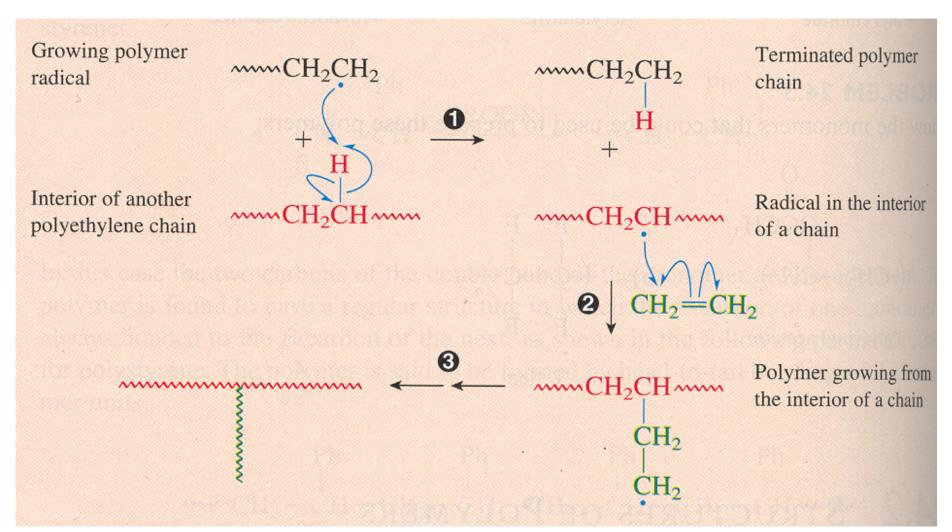

1,3-butadiene

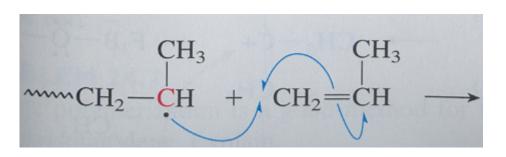
Table 28.3 Some Radical Initiators

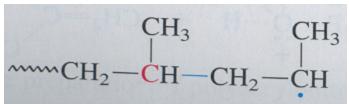
Ramificações em Polímeros obtidos por Processo Radicalar

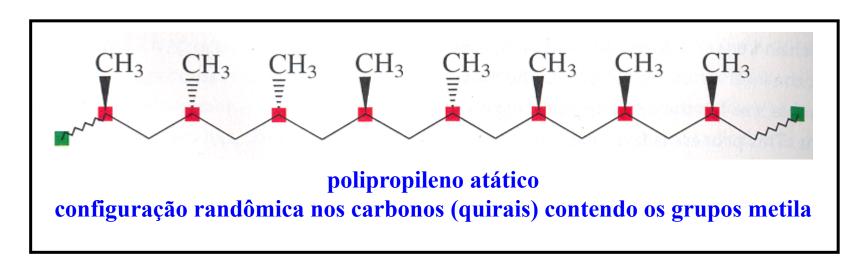
Ramificações introduzidas por reações de abstração de hidrogênio intramolecular ("intra-cadeia")


Ramificações determinam as propriedades físicas dos polímeros.

Cadeias não ramificadas são melhor empacotadas que as ramificadas.


Polietileno *linear* (HDPE - high density polyethylene) é um polímero *duro*.


Polietileno *ramificado* (LDPE - low density polyethylene), que é um material flexível, amorfo e transparente.


Ramificações por reações de transferência de cadeia Abstração de hidrogênio intermolecular ("inter-cadeia")

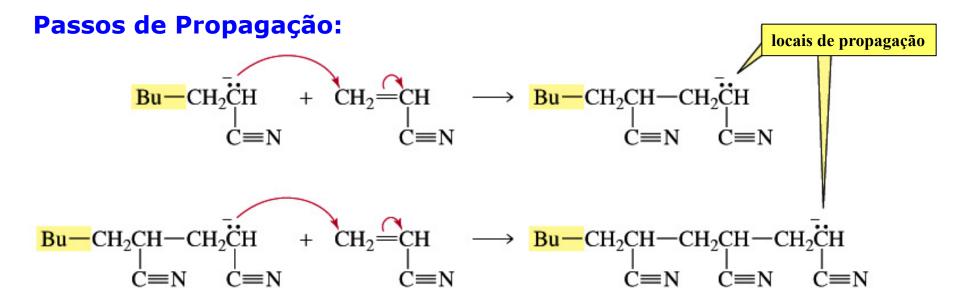
Estereoquímica da Polimerização Radicalar

As reações de polimerização radicalar ocorrem, geralmente, de maneira não estereo-seletiva

Polimerização Aniônica

Iniciação:

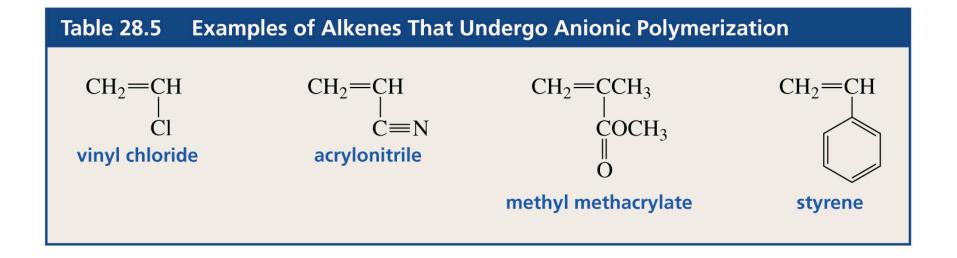
Propagação:


Iniciador é um nucleófilo, como NaNH₂ e BuLi.

Terminação: Protonação do carbânion

Co-polimerização em bloco:

Adição de monômero diferente após esgotamento do primeiro


Polimerização Aniônica

As cadeias ficam não terminadas – polímeros vivos Possibilidade de polímeros de bloco Terminação da polimerização com adição de próton

Olefinas para Polimerização Aniônica

Estabilização da carga negativa formada

Polimerização Aniônica

Exemplo "Superbonder"

methyl α -cyanoacrylate

Super Glue

Polimerização Aniônica com Abertura de Anel

$$R\ddot{\ddot{o}}$$
: + CH_3 \longrightarrow $RO-CH_2CHO-CH_3$ propylene oxide

RO-CH₂CH
$$\ddot{O}$$
: + CH₃ \rightarrow RO-CH₂CHOCH₂CHO-CH₃ \rightarrow CH₃ \rightarrow CH₃

Polimerização Catiônica

O iniciador é um eletrófilo, ácido de Lewis como BF₃ ou AlCl₃

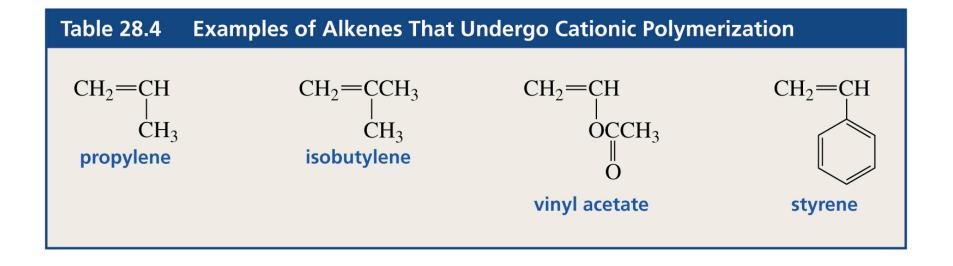
Passo de Iniciação da Cadeia:

O alceno monomérico reage com um eletrófilo

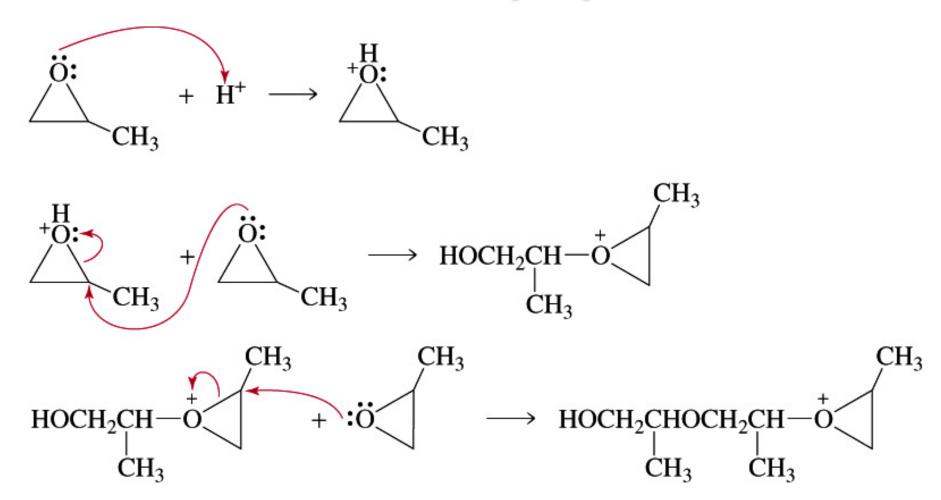
Passos de Propagação:

$$\begin{array}{c} F_{3}\bar{B}-CH_{2}\overset{C}{C}H_{3} & CH_{3} & CH_{3} \\ CH_{3} & CH_{2} & CH_{2} & CH_{2} & CH_{2} \\ CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ \end{array}$$

Passos de Terminação da Cadeia:

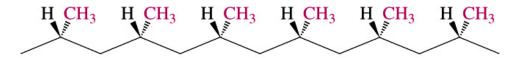

Terminação pela perda de um próton ou pela adição de um nucleófilo.

Rearranjos do carbocátion formado durante a polimerização

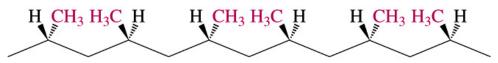

$$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ \text{CH}_2 = \text{CHCHCH}_3 & \longrightarrow & -\text{CH}_2\text{CH}_2\text{C} - \text{CH}_2\text{CH} - \text{CH}_2\text{CH} - \text{CH}_2\text{CH}_2\text{C} - \\ \text{CH}_3 & \text{CHCH}_3 & \text{CHCH}_3 & \text{CHCH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array}$$

Local de propagação não-rearranjado Local de propagação rearranjado

Monomeros para polimerização catiônica contém substituintes doadores de elétron



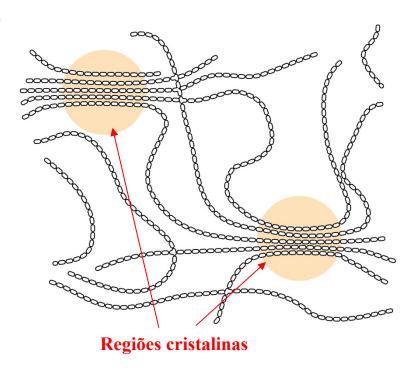
Polmerização catiônica com abertura de anel oxaciclopropano



Estereoquímica da Polimerização Catiônica

Configuração Isotática: substituintes do mesmo lado

Configuração Sintática: substituintes alternados regularmente


Cristalinidade e Propriedades de Polímeros

Polímeros no estado sólido tendem a ser compostos com partes cristalinas e partes amorfas.

Cristalinidade:

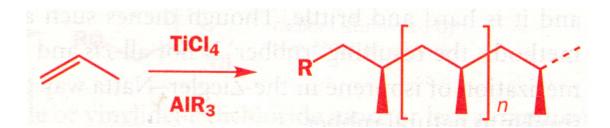
Polímeros com estruturas compactas e regulares, com fortes forças intermoleculares possuem alto grau de cristalinidade.

Polímeros isotáticos e sintáticos tendem a altos graus de cristalinidade; polímeros atáticos são completamente amorfos.

Properties of Polyethylene as a Function of Crystallinity Table 28.7 85 Crystallinity (%) 55 62 70 77 Density (g/cm^3) 0.920.930.94 0.95 0.96 Melting point (°C) 116 130 133 109 125

Polimerizações pelo método de Ziegler-Natta

- Maior controle da polimerização;
- •formação de polímeros lineares;
- •controle de estereoquímica da reação.

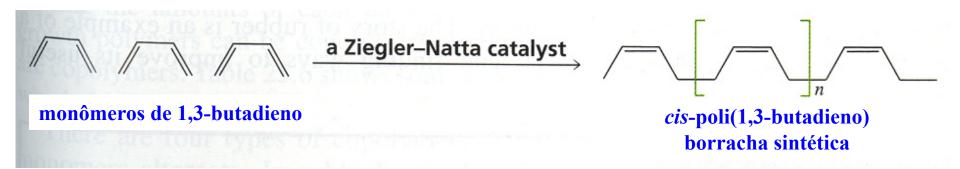

Utilizado para (i) síntese de polipropileno de alta densidade;

(ii) Síntese de borracha sintética com controle na configuração das ligações duplas.

$$CH_2 = CH_2 \xrightarrow{\text{TiCl}_4/\text{Al}(CH_2CH_3)_2\text{Cl}} \underbrace{\text{MgCl}_2} \xrightarrow{\text{MgCl}_2} \underbrace{\text{HDPE (3 a 10 vezes mais forte que LDPE)}}_{n}$$
Ethylene

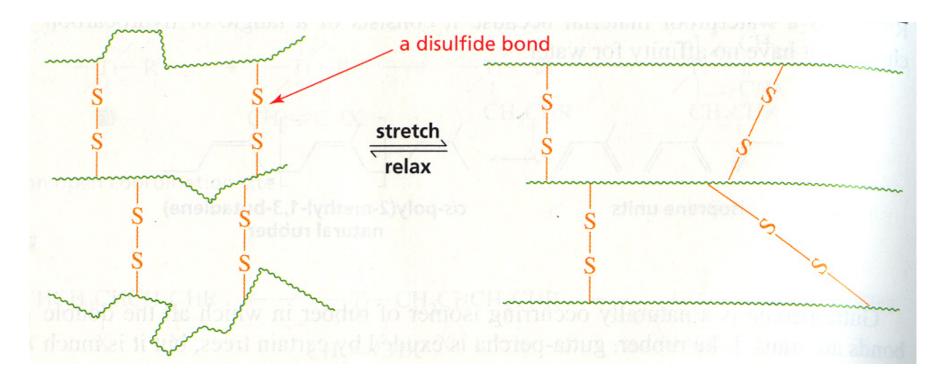
Karl Ziegler (Alemanha) e Giulio Natta (Itália): Nobel de 1963.

Controle Estereoquímico:


Mecanismo da Polimerização com catalisadores Ziegler-Natta

Polímeros com cadeias longas e não ramificadas são preparados com catalisadores Ziegler-Natta

Polimerização de Dienos


Borracha natural: cerca de 5000 unidades de isopreno.

Borrachas sintéticas: melhor qualidade.

Outro tipo de borracha sintética: SBR (**S**tyrene-**B**utadiene **R**ubber) obtida pelo polimerização radicalar de 75% de butadieno e 25% de estireno. $_{30}$

Vulcanização: aquecimento da borracha com enxofre

Elastômeros possuem elasticidade similar à da borracha: estica e depois volta à forma original. Material amorfo.

Se a temperatura é menor do que Tg (Glass transition temperature), o material deixa de ser um elastômero. Exemplo: 1985, acidente com a Challenger, Orings com Tg cerca de 0 $^{\circ}$ C.

Copolimeros:

formados a partir de dois monômeros diferentes

Table 28.6 Some Examples of Copolymers and Their Uses				
Monomer	Copolymer name	Uses		
CH ₂ =CH + CH ₂ =CCl Cl Cl vinyl chloride vinylidene chloride	Saran	film for wrapping food		
CH_2 = CH + CH_2 = CH $C\equiv N$ acrylonitrile styrene	SAN	dishwasher-safe objects, vaccum cleaner parts		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ABS	bumpers, crash helmets, telephones, luggage		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	butyl rubber	inner tubes, balls, inflatable sporting goods		

Quatro Tipos de Copolimeros

В

copolímero alternante copolímero em bloco copolímero randômico copolímero enxertado

Polímeros de Condensação

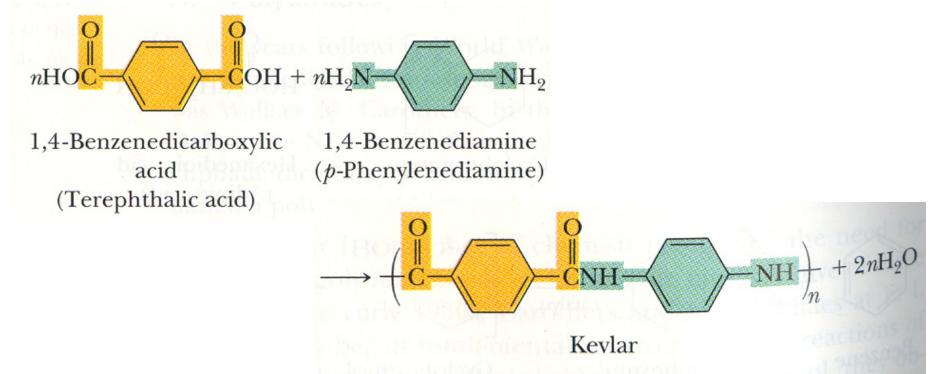

Formados por uma reação intermolecular de moléculas bifuncionais:

- i) Um monômero bifuncional (tipo A-B, onde A só reage com B). Exemplo: Nylon 6.
- ii) Dois monômeros bifuncionais (tipo A-A + B-B). Exemplo: Nylon 66.

Poliamidas

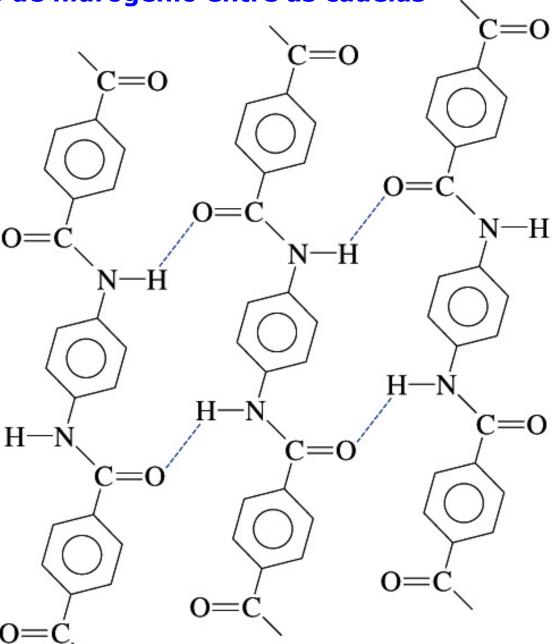
A - Nylon 66:

1934: Primeira fibra puramente sintética. 1940: Meias de nylon chegam ao mercado 34 com 4 milhões de meias vendidas em quatro dias!

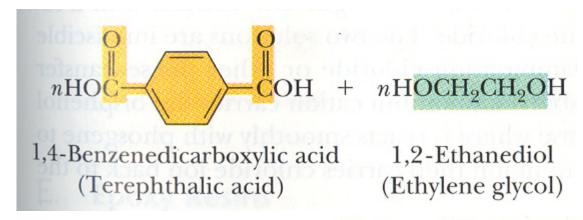

Fibras: longas, finas e susceptíveis de fornecerem filamentos com resistência mecânica análoga ao algodão, seda e lã. São moléculas lineares com forças intermoleculares fortes que permitem o alinhamento longitudinal.

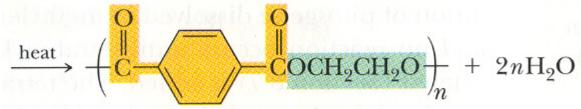
B - Nylon 6:

$$n \xrightarrow{\text{NH}} \frac{1. \text{ partial hydrolysis}}{2. \text{ heat}} + \left(\text{NH(CH}_2)_5 \text{C} \right)_n$$
Caprolactam


Nylon 6

C - Kevlar:


A incorporação de anéis aromáticos aumenta a cristalinidade.


Kevlar: pontes de hidrogênio entre as cadeias

Poliésteres

Poli(etileno tereftalato) (PET):

Poly(ethylene terephthalate) (Dacron, Mylar)

PET: Grau de cristalinidade pode ser de 0-55%.

O material amorfo é utilizado em garrafas para bebidas.

Alto grau de cristalinidade: fibras têxteis.

Policarbonatos

Polímeros fortes e transparentes. Uma aplicação é em óculos de segurança.

Exemplo:

$$^{+}$$
Na $^{-}$ O $^{-}$ O $^{-}$ Na $^{+}$ + Cl $^{-}$ Cl $^{-}$ O $^{-}$ Na $^{+}$ + Cl $^{-}$ Cl $^{-}$

Solução

aquosa

Disodium salt of bisphenol A

Phosgene

Solução em CH₂Cl₂

Mecanismo?

$$\begin{array}{c|c} CH_3 & O \\ \hline CH_3 & O \\ \hline CH_3 & \\ \hline Lexan \\ (a polycarbonate) & \end{array}$$

Resinas Epóxi: Adesivos muito fortes

$$\begin{array}{c} \text{CH}_{3} \\ \text{Disphenol A} \\ \text{Disphenol A} \\ \text{Pichlorohydrin} \\ \text{OCH}_{2} \\ \text{OCH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CHCH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CHCH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CHCH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CHCH}_{2} \\ \text{OH} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{4} \\ \text{OH} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{OCH}_{2} \\ \text{CH}_{4} \\ \text{OH} \\ \text$$

Poliuretanos - Policarbamatos

toluene-2,6-diisocyanate

$$-C-NH \underbrace{\begin{array}{c} CH_3 \\ NH-C \\ \end{array}}_{NH-C} \underbrace{\begin{array}{c} O\\ OCH_2CH_2O-C-NH \\ \end{array}}_{OCH_2CH_2O-C-NH} \underbrace{\begin{array}{c} CH_3 \\ NH-C \\ \end{array}}_{n} \underbrace{\begin{array}{c} O\\ OCH_2CH_2O-C-NH \\ \end{array}}_{n}$$

a polyurethane

Polímeros Térmicos

Polímeros altamente 'interligados' (cross-linked) mostra alta estabilidade térmica e rigidez.

Polímeros Biodegradável

$$-\text{CH}_2\dot{\text{CH}}_1 + \text{CH}_2 = C \\ O \\ CH_2 \\ CH_$$

Polímeros que podem ser quebrados em segmentos menores por reações enzimáticas.