PHA3523 – TECNOLOGIAS DE REMEDIAÇÃO DE ÁREAS CONTAMINADAS

Aula 6, 8 e 12

Processos físico-químicos

Quais são as informações relevantes para a identificação de opções tecnológicas para remediação de áreas contaminadas?

- Características do solo:
 - Permeabilidade;
 - Transmissividade;
 - Tipo de material presente:
 - Matéria orgânica;
 - Areia;
 - Silte;
 - Argila.
 - Capacidade de troca iônica;
 - Atividade microbiológica.

- Características do aquífero:
 - Tipo de aquífero;
 - Características hidráulicas;
 - Potencial de óxido redução;
 - Características de qualidade;
- Características dos contaminantes:
 - Propriedades físico-químicas;
 - Biodegradabilidade.

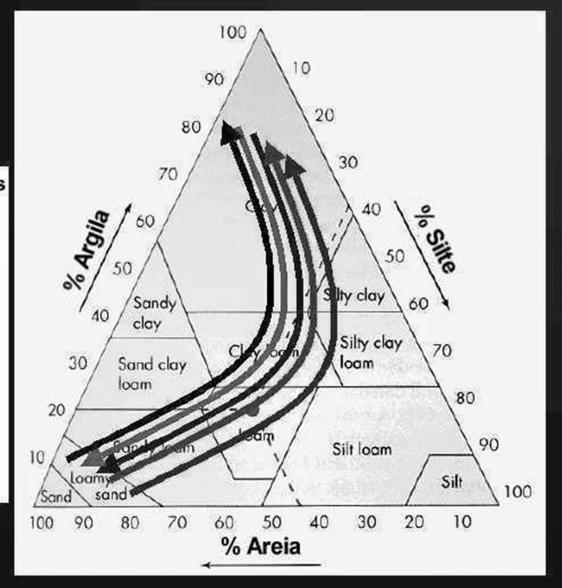
teristicas d solo

- **Permeabilidade**: facilidade de penetração da água ou contaminante no solo e consequentemente no aquífero;
- **Transmissividade**: capacidade de transporte da água e contaminantes através do solo;
- Tipo de material presente:
 - *Matéria orgânica*: pode complexar metais e outros contaminantes, alterando a sua mobilidade;
 - Areia, silte e argila: afetam as características de transporte da água e dos contaminantes;
 - Capacidade de troca iônica: afeta a mobilidade dos contaminantes;
 - Atividade microbiológica: pode influenciar a degradação/mobilidade dos contaminantes.

Solo em Função dos Constituintes sens Tipos de

Texturas do Solo

Propriedades controladas pela textura:


Taxa de Infiltração

Retenção de Água

Retenção de Nutrientes

Trabalhabilidade

Estabilidade

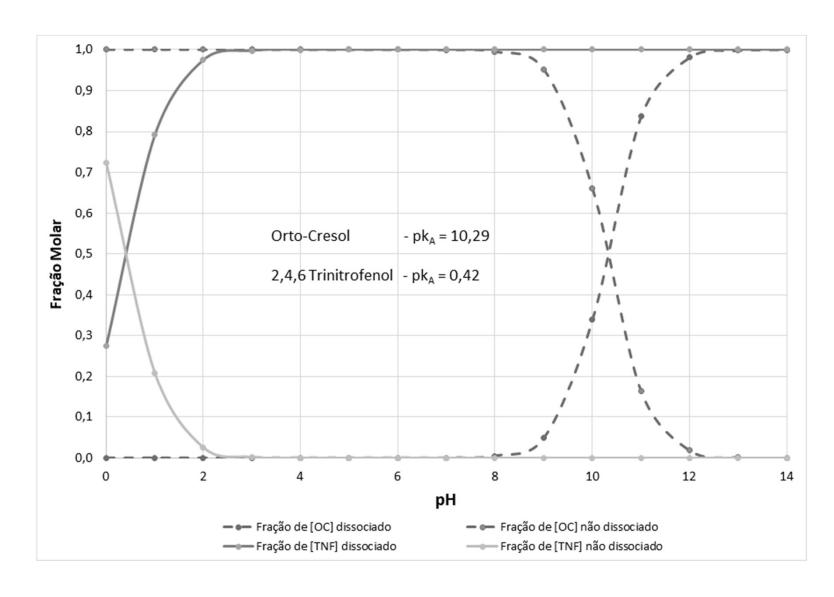
RELEVÂNCIA DAS INFORMAÇÕES PARA A SELEÇÃO DE TECNOLOGIAS (AQUÍFERO)

- Tipo de aquífero: afeta a mobilidade da água e dos contaminantes:
 - Aquífero livre ou freático:
 - Maior vulnerabilidade aos processos de contaminação.
 - Aquífero confinado ou artesiano:
 - Menor vulnerabilidade, porém a sua contaminação é um sério problema.

Tipos de aquíferos segundo a sua localização (BORGHETTI et al, 2004 apud ABAS, 2006)

Fonte: (BORGHETTI et al, 2004 apud ABAS, 2006)

- **Potencial de óxido redução**: capacidade de solubilizar ou precipitar metais, ou oxidar/reduzir compostos orgânicos;
- Características de qualidade: presença de constituintes que podem reagir com os contaminantes alterando as suas propriedades.
- **Propriedades físico-químicas**: capacidade de interação com o solo, água e contaminantes e sua distribuição entre as fases sólida, líquida e gasosa;
- **Biodegradabilidade**: capacidade de sofrer degradação por processos biológicos naturais.

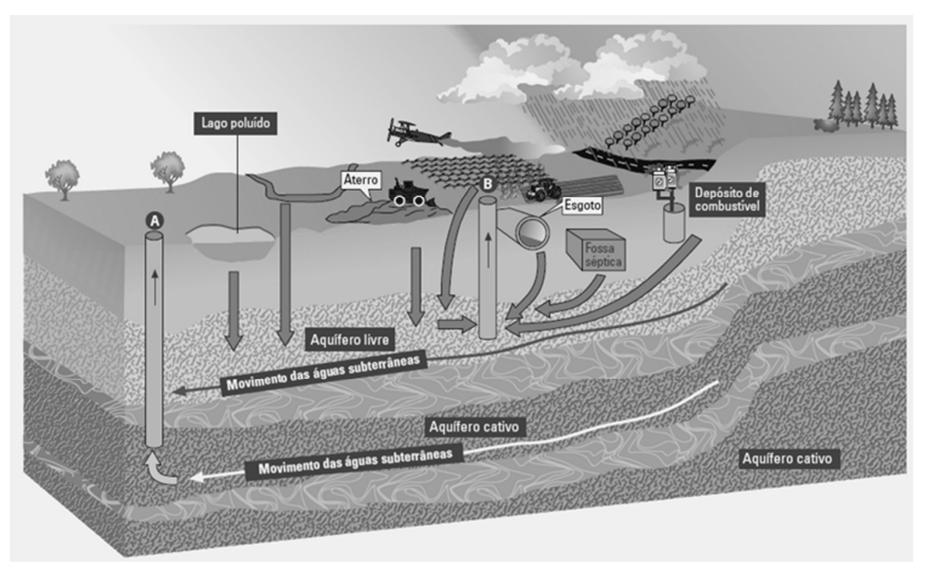

 Constante de dissociação ácida (k_A): está relacionada ao grau de dissociação dos compostos orgânicos;

$$[RH] \leftrightarrow [H^+] + [R^-] \qquad \qquad k_A = \frac{[H^+][R^-]}{[RH]}$$

• Tomando-se o logaritmo da expressão de k_A e multiplicando-se ambos os lados da expressão por (-1):

$$log k_A = log[H^+] + log \frac{[R^-]}{[RH]} \implies -\log[k_A] = -\log[H^+] - log \frac{[R^-]}{[RH]}$$

$$-\log[x] = px : pk_A - pH = -\log\frac{[R^-]}{[RH]} \implies pk_A - pH = \log\frac{[RH]}{[R^-]}$$


Dissociação do Orto-cresol e 2,4,6 Trinitrofenol em função do pH

Orto-cresol										
Propriedade	Valor	Unidade								
Massa molar	108	g/mol								
Massa específica	1,046	g/cm ³								
Solubilidade em água	20	g/L (20°C)								
Log do Coeficiente de partição (o/w)	1,95									
Pressão de vapor	24	Pa (20 °C)								
pk _A	10,29									

Meio contaminado:

- Solo;
- Água subterrânea;
- Solo e água subterrânea.
- Tipo de contaminação:
 - Concentrada;
 - Dispersa.
- Extensão da contaminação;

- Características dos contaminantes;
- Características do meio no qual os contaminantes estão presentes;
- Possibilidade de remoção física do material responsável pela contaminação;
- Necessidade de intervenção no local.

Possíveis rotas e tipos de contaminação do solo e águas subterrâneas

(fonte: http://ebio.ind.br/2017/05/11/vale-a-pena-mudar-minha-fossa-para-uma-estacao-de-tratamento-se-ela-nunca-deu-problema/)

Table 3-2: Treatment Technologies Screening Matrix Relative Overall Cost & Performance Rating Codes Nonhalogenated SVOC's Nonhalogenated VOC's Above Average **Development Status** Halogenated SVOC's System Reliability & Maintainability Halogenated VOC's Average **Treatment Train** O Below Average Radionuclides N/A - "Not Applicable" Inorganics Explosives Availability I/D - "Insufficient Data" Capital ♦ - Level of Effectiveness highly dependent upon specific con-0&M Fuels taminant and its application Soil, Sediment, Bedrock, and Sludge 3.2 In Situ Physical/Chemical Treatment 0 0 4.4 Chemical Oxidation 0 0 0 0 0 • • 0 0 0 0 4.5 Electrokinetic Separation 0 0 • • • • 0 0 0 0 0 0 0 0 1 4.6 Fracturing 0 0 • 0 0 0 0 4.7 Soil Flushing 0 0 • 0 0 • • • 0 • 0 0 4.8 Soil Vapor Extraction

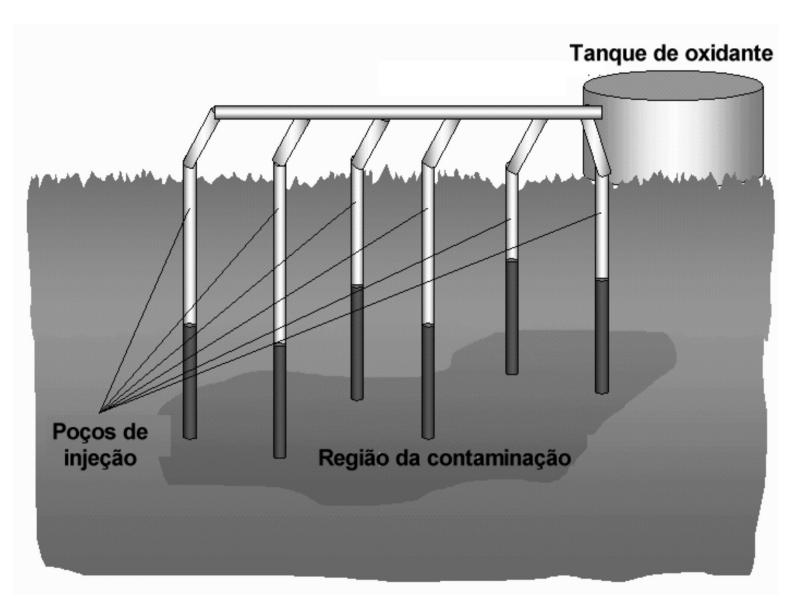
0

0

0

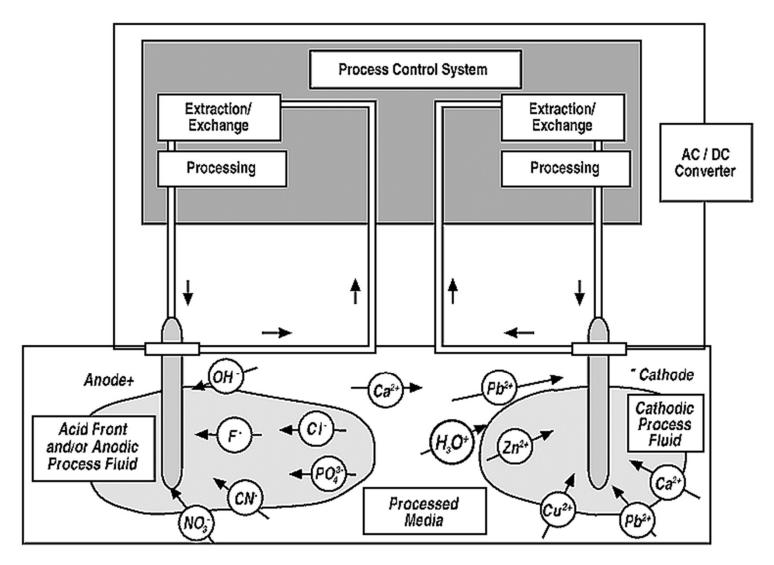
0

0

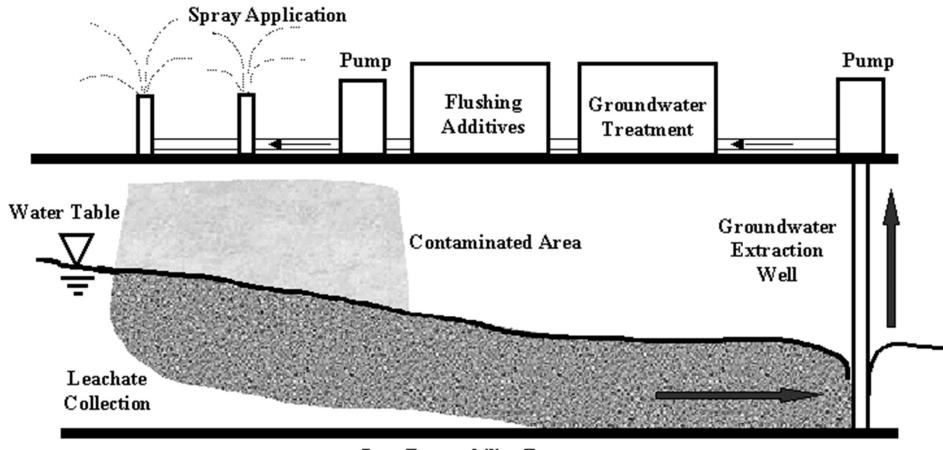

0

Fonte: https://frtr.gov/matrix2/section3/table3 2.pdf

4.9 Solidification/Stabilization

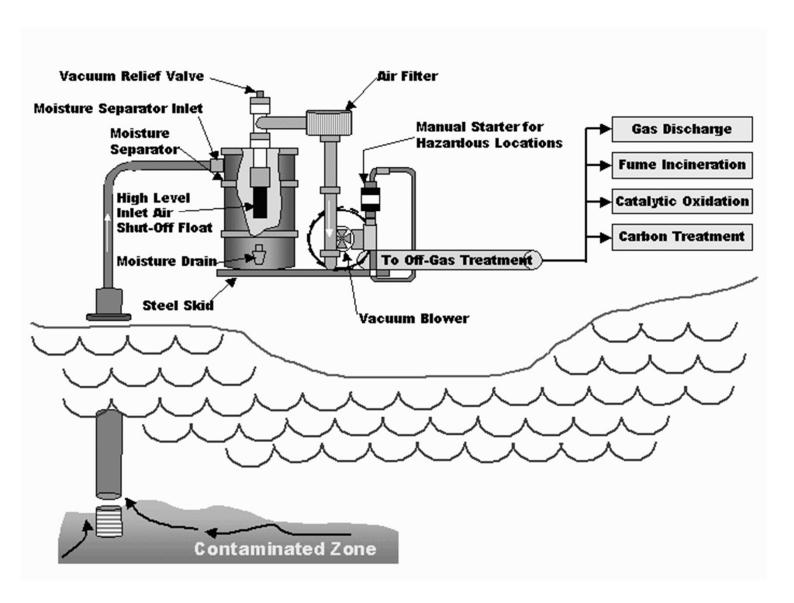

• Consiste no uso de oxidantes químicos específicos:

- Peróxido de hidrogênio;
- Permanganato de potássio;
- Ozônio.
- Efetivo para a oxidação de contaminantes orgânicos;
- Considerações sobre o processo:
 - Requer a utilização e manipulação de grandes quantidades de produtos químicos;
 - A demanda do oxidante pode ser elevada em função da falta de seletividade e complexidade da matriz na qual é aplicado.

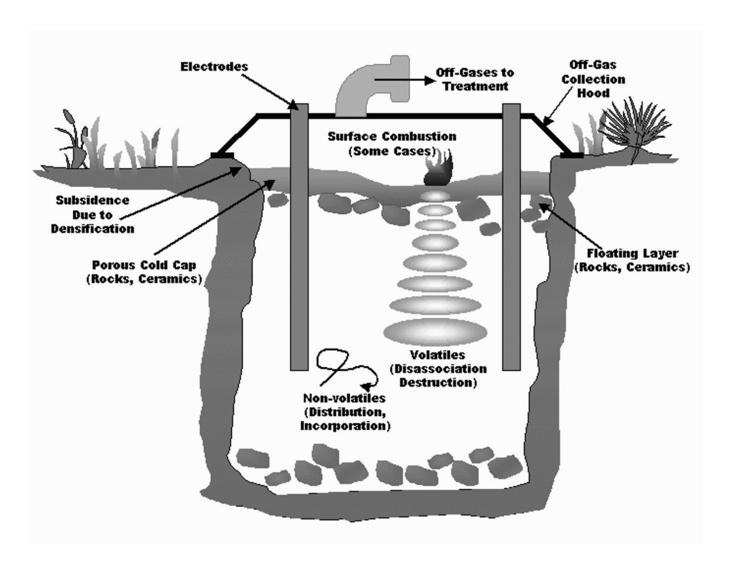

Representação do processo de oxidação química

- Utilização de corrente elétrica e um fluído iônico para transporte e remoção de compostos iônicos presentes no solo saturado;
- Específico para remoção de metais pesados, ânions e compostos orgânicos polares;
- Considerações sobre o processo:
 - Eficiência reduzida para solos com umidade inferior a 10%, as melhores eficiências são obtidas para solos com unidade entre 14% e 18%;
 - Problemas de variabilidade da condutividade elétrica do solo;
 - Maior efetividade para solos com predominância de argila, em função da carga superficial;
 - Por se tratar de um processo eletroquímico, podem ocorrer reações de óxido redução indesejadas;
 - Os custos são influenciados pela extensão da contaminação, condutividade elétrica do solo e espaçamento entre os eletrodos.

Representação esquemática do processo de separação eletrocinética


- Utilização de uma mistura de solventes (água e um solvente miscível como etanol), para a extração de solventes orgânicos;
- Também pode ser utilizado para a remoção de contaminantes inorgânicos, quando se utiliza um agente complexante e água;
- Considerações sobre o processo:
 - A permeabilidade do solo pode limitar a utilização do processo;
 - Se forem utilizados surfactantes, estes podem ser adsorvidos pelo solo com consequente perda de eficiência do processo;
 - A reação do fluído de extração com o solo pode reduzir a mobilidade dos contaminantes;
 - Existe o potencial de aumentar a mobilidade dos contaminantes, caso a recuperação do fluído de lavagem não seja efetiva;
 - Necessidade de tratamento da corrente de lavagem após a sua remoção do solo.

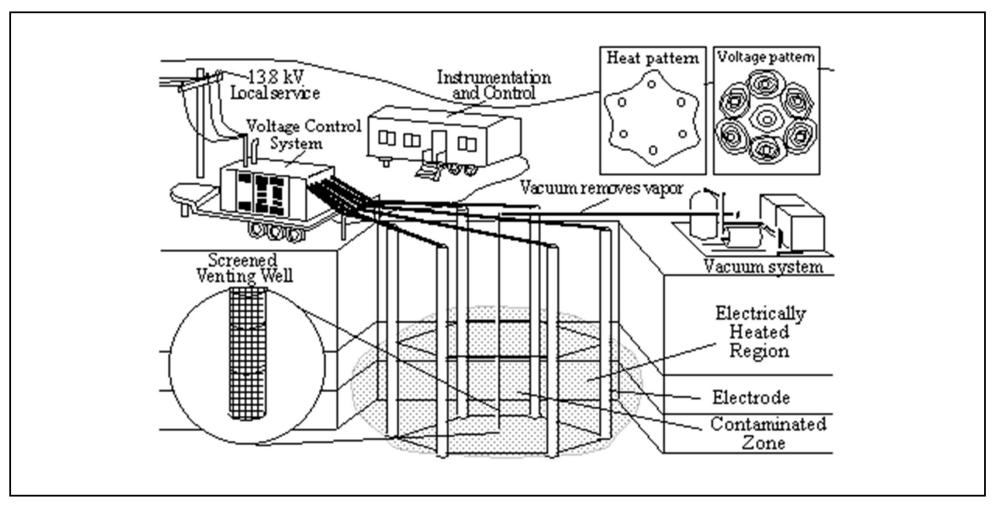
Low Permeability Zone


Representação do processo de lavagem do solo/lixiviação

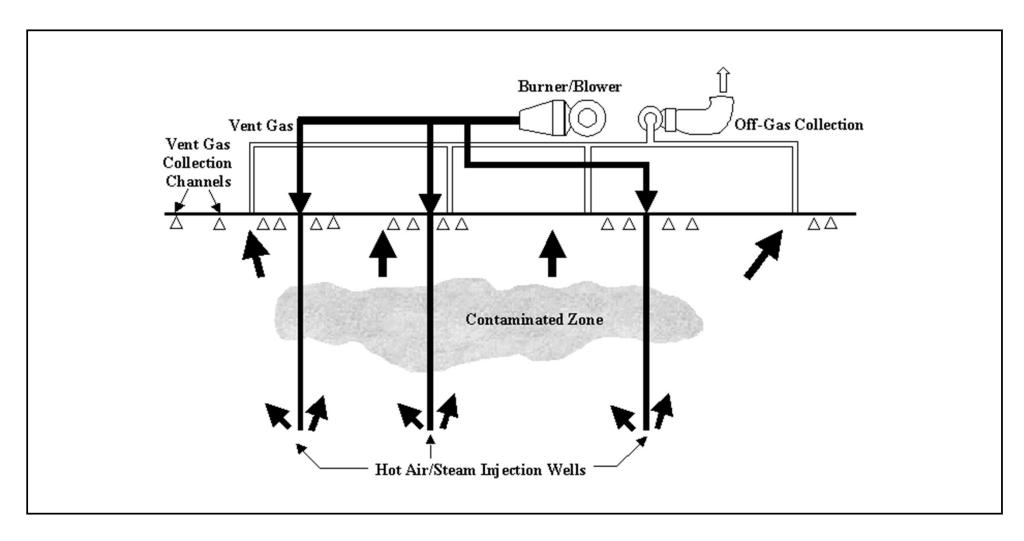
- Aplicado para solos contaminados com compostos orgânicos voláteis e semivoláteis;
- Quanto maior a pressão de vapor do contaminante maior é o potencial de aplicação deste processo;
- A utilização de ar por melhorar as características de biodegradabilidade do solo;
- Considerações sobre o processo:
 - Solos com baixa porosidade elevado grau de saturação irão requerer maior consumo de energia para a extração;
 - Pode ser necessária uma malha com um elevado número de poços de extração em função da variação das características morfológicas do solo;
 - Necessidade de tratamento do fluído de extração;
 - Não é eficiente para extração de contaminantes da zona saturada do solo, o que pode ser resolvido com o rebaixamento do nível do lençol freático.

Representação esquemática do processo de extração com ar

- Processo utilizado para reduzir a mobilidade dos contaminantes por meio de processo físico-químicos;
- Necessidade da realização de testes de lixiviação após a aplicação do processo de solidificação/estabilização;
- Utilização de barreiras ativas para adsorver/fixar os contaminantes;
- Também é possível utilizar uma corrente elétrica para a vitrificação do solo;
- Considerações sobre o processo:
 - Aplicação limitada em função da profundidade em que os contaminantes se encontram;
 - O uso futuro do solo pode afetar o processo de imobilização, o que limita a utilização da área após o processo de remediação.



Exemplo do processo de vitrificação no local


- Consiste no aquecimento do solo na região de ocorrência da contaminação para vaporização e extração do contaminante;
- O aquecimento pode ser feito por resistência elétrica, rádio frequência ou injeção de ar quente ou vapor;
- É necessária a extração dos vapores gerados por meio de aplicação de vácuo;
- Processo aplicação para solos menos permeáveis;
- A remoção da umidade faz com que o solo seja fraturado.

Aplicação:

- Solos com elevado teor de umidade;
- Remoção de compostos orgânicos semivoláteis e voláteis;
- Alguns defensivos agrícolas e combustíveis, dependendo da temperatura que se consegue obter.
- Considerações sobre o processo:
 - Necessidade de estrutura para a extração e tratamento dos contaminantes;
 - Não é efetivo para a remoção de contaminantes da zona saturada do solo;
 - Solos com teor elevado de matéria orgânica apresentam grande capacidade de adsorção o que reduz a taxa de extração.

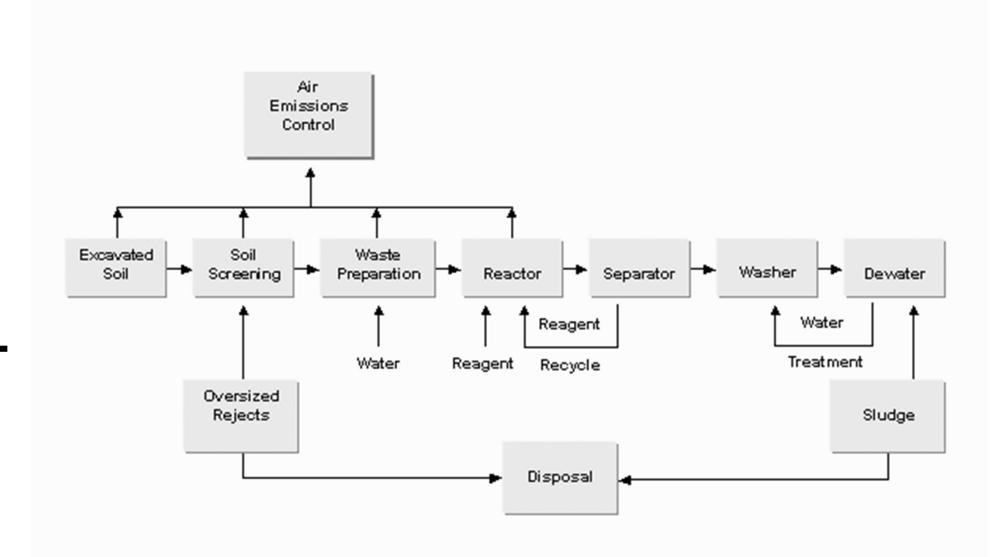
Exemplo do processo de aquecimento por resistência elétrica e extração à vácuo

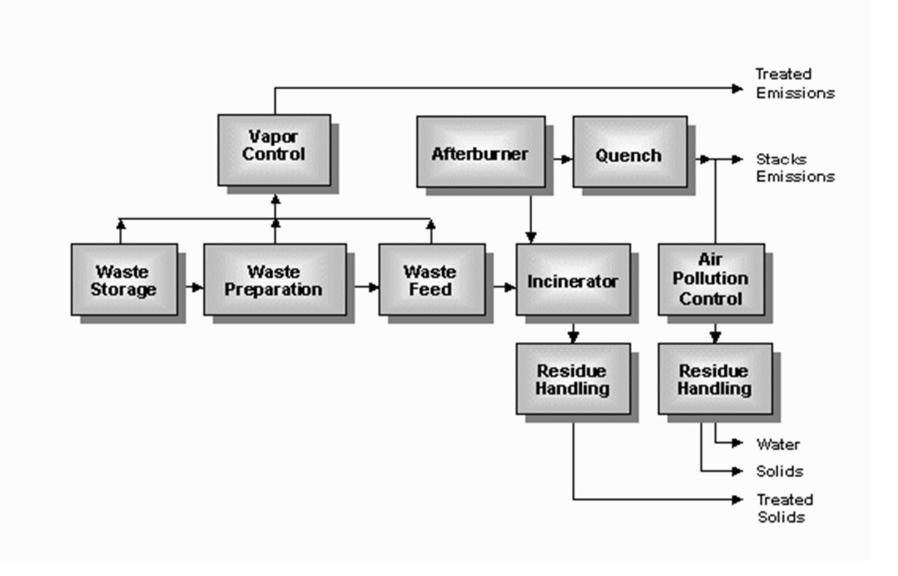
Exemplo do processo de extração com ar quente/vapor

Table 3-2: Treatment Technologies Screening Matrix

Rating Codes			Relative Overall Cost & Performance						ဖ		s C					
● Above Average	Development Status	Treatment Train	O&M	Capital	System Reliability & Maintain ability	Relative Costs	Time	Availability	Nonhalogenated VOC's	Halogenated VOC's	Non halogen ated SVOC's	Halogenated SVOC's	Fuels	Inorganics	Radionucildes	Explosives
Soil, Sediment, Bedrock, and Sludge																
3.5 Ex Situ Physical/Chemical Treatment (assuming excavation))															
4.15 Chemical Extraction	•	0	0	0	•	•	•	•	•	•	•	•	•	•	•	0
4.16 Chemical Reduction /Oxidation	•	•	•	0	•	•	•	•	•	•	•	•	•	•	0	•
4.17 Dehalogenation	•	•	0	0	0	0	•	•	0	•	0	•	0	0	0	•
4.18 Separation	•	•	0	•	•	•	•	•	•	•	•	•	0	0	0	0
4.19 Soil Washing	•	0	0	0	•	•	•	•	•	•	•	•	•	0	0	0
4.20 Solidification/Stabilization	•	•	•	0	•	•	•	•	0	0	0	•	0	•	•	0
3.6 Ex Situ Thermal Treatment (assuming excavation)																
4.21 Hot Gas Decontamination	0	•	0	0	•	•	•	•	0	0	0	0	0	0	0	0
4.22 Incineration	•	•	0	0	•	0	•	•	•	•	•	•	•	0	0	•
4.23 Open Burn/Open Detonation	•	•	0	0	•	•	•	•	0	0	0	0	0	0	0	•
4.24 Pyrolysis	•	•	0	0	0	0	•	•	•	•	•	•	•	0	0	0
4.25 Thermal Desorption	•	•	0	0	•	•	•	•	•	•	•	•	•	0	0	•

Extração Processo de Ex Química

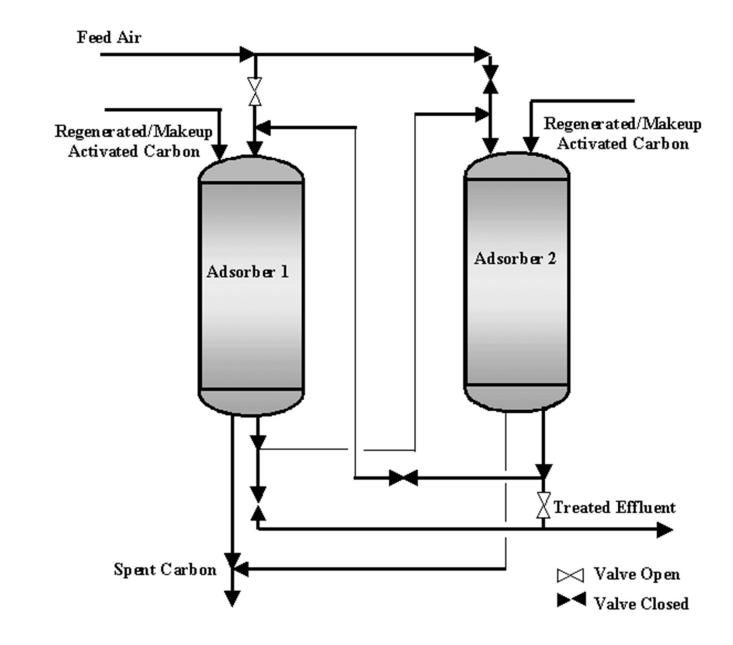



• Pode ser feita por meio da utilização:

- Solução ácida → remoção de metais;
- Solventes remoção de compostos orgânicos ou metais complexados.

Aplicação:

- A extração por solventes pode ser utilizada para tratamento de sedimentos, lodos e solos contaminados;
- Os contaminantes de interesse são os compostos orgânicos, como PCBs,
 COVs, solventes halogenados e derivados de petróleo;
- A extração ácida é utilizada para os mesmos tipos de materias, porém contaminados com metais.


- São utilizadas as mesmas técnicas que àquelas utilizadas para remediação de solos, lamas ou sedimentos;
- A sua aplicação pode ser menos complexa, dependendo do tipo de contaminante e extensão da contaminação;
- Deve-se ter atenção com relação aos tratamentos relacionados à extração da água contaminada dos aquíferos contaminados, o que pode exigir o seu descarte em mananciais superficiais.

- Muitas tecnologias aplicadas para o tratamento de compostos orgânicos voláteis e semivoláteis podem resultar em emissões atmosféricas;
- Isto pode requerer a utilização de sistemas para o controle destas emissões.

Table 3-2: Treatment Technologies Screening Matrix

Rating Codes			Relative Overall Cost & Performance						ဟ		s,oo					
● Above Average	Development Status	Treatment Train	O&M	Capital	System Reliability & Maintain ability	Relative Costs	Time	Availability	Nonhalogenated VOC's	Halogenated VOC's	Nonhalogenated SVOC	Halogenated SVOC's	Fuels	Inorganics	Radionuciides	Explosives
3.14 Air Emissions/Off-Gas Treatment								a vil								
4.54 Biofiltration	•	N/A	•	•	♦	•	•	0	•	♦	♦	♦	•	0	I/D	♦
4.55 High Energy Destruction	0	N/A	I/D	I/D	0	•	I/D	•	•	•	•	•	•	•	I/D	0
4.56 Membrane Separation	0	N/A	I/D	I/D	0	•	I/D	•	•	•	•	•	•	0	I/D	•
4.57 Oxidation	•	N/A	•	•	•	•	I/D	•	•	•	•	•	•	0	I/D	0
4.58 Scrubbers	•	N/A	•	0	•	•	I/D	•	0	0	0	0	0	•	I/D	I/D
4.59 Vapor Phase Carbon Adsorption	•	N/A	•	•	•	•	I/D	•	•	•	•	•	•	•	I/D	•

em carvão ativado da fase vapor Adsorção

- A maior parte das tecnologias utilizadas apenas transferem o contaminante de um meio para outro;
- Necessidade de técnicas complementares para assegurar a destruição do contaminante e a disposição final do meio no qual o mesmo estava presente;
- Após o processo de remediação é necessário monitorar o solo ou água contaminada para assegurar a sua efetiva remediação;
- Um dos principais desafios para o projeto dos processos de remediação é o seu dimensionamento.