

Principles of Parallel Algorithm Design

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.

Chapter Overview: Algorithms and Concurrency

• Introduction to Parallel Algorithms

– Tasks and Decomposition

– Processes and Mapping

– Processes Versus Processors

• Decomposition Techniques

– Recursive Decomposition

– Recursive Decomposition

– Exploratory Decomposition

– Hybrid Decomposition

• Characteristics of Tasks and Interactions

– Task Generation, Granularity, and Context

– Characteristics of Task Interactions.

Chapter Overview: Concurrency and Mapping

• Mapping Techniques for Load Balancing

– Static and Dynamic Mapping

• Methods for Minimizing Interaction Overheads

– Maximizing Data Locality

– Minimizing Contention and Hot-Spots

– Overlapping Communication and Computations

– Replication vs. Communication

– Group Communications vs. Point-to-Point Communication

• Parallel Algorithm Design Models

– Data-Parallel, Work-Pool, Task Graph, Master-Slave, Pipeline, and

Hybrid Models

Preliminaries: Decomposition, Tasks, and
Dependency Graphs

• The first step in developing a parallel algorithm is to decompose the
problem into tasks that can be executed concurrently

• A given problem may be decomposed into tasks in many different
ways.

• Tasks may be of same, different, or even indeterminate sizes.

• A decomposition can be illustrated in the form of a directed graph
with nodes corresponding to tasks and edges indicating that the
result of one task is required for processing the next. Such a graph
is called a task dependency graph.

Example: Multiplying a Dense Matrix with a Vector

Computation of each element of output vector y is independent of other
elements. Based on this, a dense matrix-vector product can be decomposed

into n tasks. The figure highlights the portion of the matrix and vector accessed
by Task 1.

Observations: While tasks share data (namely, the vector b), they do
not have any control dependencies - i.e., no task needs to wait for the
(partial) completion of any other. All tasks are of the same size in terms
of number of operations. Is this the maximum number of tasks we could
decompose this problem into?

Example: Database Query Processing

Consider the execution of the query:

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

on the following database:

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

Example: Database Query Processing

The execution of the query can be divided into subtasks in various

ways. Each task can be thought of as generating an intermediate

table of entries that satisfy a particular clause.

Decomposing the given query into a number of tasks.
Edges in this graph denote that the output of one task

is needed to accomplish the next.

Example: Database Query Processing

Note that the same problem can be decomposed into subtasks in other

ways as well.

An alternate decomposition of the given problem into
subtasks, along with their data dependencies.

Different task decompositions may lead to significant differences with

respect to their eventual parallel performance.

Granularity of Task Decompositions

• The number of tasks into which a problem is decomposed
determines its granularity.

• Decomposition into a large number of tasks results in fine-grained
decomposition and that into a small number of tasks results in a
coarse grained decomposition.

A coarse grained counterpart to the dense matrix-vector product
example. Each task in this example corresponds to the computation of three
elements of the result vector.

Degree of Concurrency

• The number of tasks that can be executed in parallel is the degree
of concurrency of a decomposition.

• Since the number of tasks that can be executed in parallel may
change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any point
during execution. What is the maximum degree of concurrency of
the database query examples?

• The average degree of concurrency is the average number of tasks
that can be processed in parallel over the execution of the program.
Assuming that each tasks in the database example takes identical
processing time, what is the average degree of concurrency in each
decomposition?

• The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

Critical Path Length

• A directed path in the task dependency graph represents a
sequence of tasks that must be processed one after the other.

• The longest such path determines the shortest time in which the
program can be executed in parallel.

• The length of the longest path in a task dependency graph is called
the critical path length.

Critical Path Length

Consider the task dependency graphs of the two database query

decompositions:

What are the critical path lengths for the two task dependency graphs?

If each task takes 10 time units, what is the shortest parallel execution time

for each decomposition? How many processors are needed in each case to

achieve this minimum parallel execution time? What is the maximum

degree of concurrency?

Limits on Parallel Performance

• It would appear that the parallel time can be made arbitrarily small
by making the decomposition finer in granularity.

• There is an inherent bound on how fine the granularity of a
computation can be. For example, in the case of multiplying a dense
matrix with a vector, there can be no more than (n2) concurrent
tasks.

• Concurrent tasks may also have to exchange data with other tasks.
This results in communication overhead. The tradeoff between the
granularity of a decomposition and associated overheads often
determines performance bounds.

Task Interaction Graphs

• Subtasks generally exchange data with others in a decomposition.
For example, even in the trivial decomposition of the dense matrix-
vector product, if the vector is not replicated across all tasks, they
will have to communicate elements of the vector.

• The graph of tasks (nodes) and their interactions/data exchange
(edges) is referred to as a task interaction graph.

• Note that task interaction graphs represent data dependencies,
whereas task dependency graphs represent control dependencies.

Task Interaction Graphs: An Example

Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can be made:

• As before, the computation of each element of the result vector can be
viewed as an independent task.

• Unlike a dense matrix-vector product though, only non-zero elements of
matrix A participate in the computation.

• If, for memory optimality, we also partition b across tasks, then one can see
that the task interaction graph of the computation is identical to the graph of
the matrix A (the graph for which A represents the adjacency structure).

Task Interaction Graphs, Granularity, and
Communication

In general, if the granularity of a decomposition is finer, the
associated overhead (as a ratio of useful work assocaited with a
task) increases.

Example: Consider the sparse matrix-vector product example from
previous foil. Assume that each node takes unit time to process and
each interaction (edge) causes an overhead of a unit time.

Viewing node 0 as an independent task involves a useful
computation of one time unit and overhead (communication) of
three time units.

Now, if we consider nodes 0, 4, and 5 as one task, then the
task has useful computation totaling to three time units and
communication corresponding to four time units (four edges).
Clearly, this is a more favorable ratio than the former case.

Processes and Mapping

• In general, the number of tasks in a decomposition exceeds the
number of processing elements available.

• For this reason, a parallel algorithm must also provide a mapping of
tasks to processes.

Note: We refer to the mapping as being from tasks to processes, as
opposed to processors. This is because typical programming APIs, as we
shall see, do not allow easy binding of tasks to physical processors. Rather,
we aggregate tasks into processes and rely on the system to map these
processes to physical processors. We use processes, not in the UNIX sense
of a process, rather, simply as a collection of tasks and associated data.

Processes and Mapping

• Appropriate mapping of tasks to processes is critical to the parallel
performance of an algorithm.

• Mappings are determined by both the task dependency and task
interaction graphs.

• Task dependency graphs can be used to ensure that work is equally
spread across all processes at any point (minimum idling and
optimal load balance).

• Task interaction graphs can be used to make sure that processes
need minimum interaction with other processes (minimum
communication).

Processes and Mapping

An appropriate mapping must minimize parallel execution time by:

• Mapping independent tasks to different processes.

• Assigning tasks on critical path to processes as soon as they
become available.

• Minimizing interaction between processes by mapping tasks with
dense interactions to the same process.

Note: These criteria often conflict with each other. For example, a
decomposition into one task (or no decomposition at all) minimizes
interaction but does not result in a speedup at all! Can you think of
other such conflicting cases?

Processes and Mapping: Example

Mapping tasks in the database query decomposition to
processes. These mappings were arrived at by viewing the
dependency graph in terms of levels (no two nodes in a level have
dependencies). Tasks within a single level are then assigned to
different processes.

Decomposition Techniques

So how does one decompose a task into various subtasks?

While there is no single recipe that works for all problems, we
present a set of commonly used techniques that apply to broad
classes of problems. These include:

• recursive decomposition

• data decomposition

• exploratory decomposition

• speculative decomposition

Recursive Decomposition

• Generally suited to problems that are solved using the divide-and-
conquer strategy.

• A given problem is first decomposed into a set of sub-problems.

• These sub-problems are recursively decomposed further until a
desired granularity is reached.

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which we

can apply recursive decomposition is Quicksort.

In this example, once the list has been partitioned around the pivot, each
sub-list can be processed concurrently (i.e., each sub-list represents an
independent sub-task). This can be repeated recursively.

Recursive Decomposition: Example

The problem of finding the minimum number in a given list (or indeed
any other associative operation such as sum, AND, etc.) can be
fashioned as a divide-and-conquer algorithm. The following algorithm
illustrates this.

We first start with a simple serial loop for computing the minimum entry
in a given list:

1. procedure SERIAL_MIN (A, n)
2. begin
3. min = A[0];
4. for i := 1 to n − 1 do
5. if (A[i] < min) min := A[i];
6. endfor;
7. return min;
8. end SERIAL_MIN

Recursive Decomposition: Example

We can rewrite the loop as follows:

1. procedure RECURSIVE_MIN (A, n)
2. begin
3. if (n = 1) then
4. min := A [0] ;
5. else
6. lmin := RECURSIVE_MIN (A, n/2);
7. rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);
8. if (lmin < rmin) then
9. min := lmin;
10. else
11. min := rmin;
12. endelse;
13. endelse;
14. return min;
15. end RECURSIVE_MIN

Recursive Decomposition: Example

The code in the previous foil can be decomposed naturally using a
recursive decomposition strategy. We illustrate this with the
following example of finding the minimum number in the set {4, 9, 1,
7, 8, 11, 2, 12}. The task dependency graph associated with this
computation is as follows:

Data Decomposition

• Identify the data on which computations are performed.

• Partition this data across various tasks.

• This partitioning induces a decomposition of the problem.

• Data can be partitioned in various ways - this critically impacts
performance of a parallel algorithm.

Data Decomposition: Output Data Decomposition

• Often, each element of the output can be computed independently
of others (but simply as a function of the input).

• A partition of the output across tasks decomposes the problem
naturally.

Output Data Decomposition: Example

Consider the problem of multiplying two n x n matrices A and B to
yield matrix C. The output matrix C can be partitioned into four tasks
as follows:

Task 1:

Task 2:

Task 3:

Task 4:

Output Data Decomposition: Example

A partitioning of output data does not result in a unique decomposition into
tasks. For example, for the same problem as in previous foil, with identical
output data distribution, we can derive the following two (other)
decompositions:

Decomposition I Decomposition II

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,1 B1,2

Task 4: C1,2 = C1,2 + A1,2 B2,2

Task 5: C2,1 = A2,1 B1,1

Task 6: C2,1 = C2,1 + A2,2 B2,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Task 1: C1,1 = A1,1 B1,1

Task 2: C1,1 = C1,1 + A1,2 B2,1

Task 3: C1,2 = A1,2 B2,2

Task 4: C1,2 = C1,2 + A1,1 B1,2

Task 5: C2,1 = A2,2 B2,1

Task 6: C2,1 = C2,1 + A2,1 B1,1

Task 7: C2,2 = A2,1 B1,2

Task 8: C2,2 = C2,2 + A2,2 B2,2

Output Data Decomposition: Example

Consider the problem of counting the instances of given item sets in a
database of transactions. In this case, the output (item set frequencies) can
be partitioned across tasks.

Output Data Decomposition: Example

From the previous example, the following observations can be
made:

• If the database of transactions is replicated across the processes,
each task can be independently accomplished with no
communication.

• If the database is partitioned across processes as well (for reasons
of memory utilization), each task first computes partial counts.
These counts are then aggregated at the appropriate task.

Input Data Partitioning

• Generally applicable if each output can be naturally computed as a
function of the input.

• In many cases, this is the only natural decomposition because the
output is not clearly known a-priori (e.g., the problem of finding the
minimum in a list, sorting a given list, etc.).

• A task is associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subsequent processing combines these partial results.

Input Data Partitioning: Example

In the database counting example, the input (i.e., the transaction
set) can be partitioned. This induces a task decomposition in which
each task generates partial counts for all item sets These are
combined subsequently for aggregate counts.

Partitioning Input and Output Data

Often input and output data decomposition can be combined for a higher
degree of concurrency. For the item set counting example, the transaction
set (input) and item set counts (output) can both be decomposed as follows:

Intermediate Data Partitioning

• Computation can often be viewed as a sequence of transformation
from the input to the output data.

• In these cases, it is often beneficial to use one of the intermediate
stages as a basis for decomposition.

Intermediate Data Partitioning: Example

Let us revisit the example of dense matrix multiplication. We first
show how we can visualize this computation in terms of
intermediate matrices D.

Intermediate Data Partitioning: Example
A decomposition of intermediate data structure leads to the following
decomposition into 8 + 4 tasks:

Stage I

Stage II

Task 01: D1,1,1= A1,1 B1,1 Task 02: D2,1,1= A1,2 B2,1

Task 03: D1,1,2= A1,1 B1,2 Task 04: D2,1,2= A1,2 B2,2

Task 05: D1,2,1= A2,1 B1,1 Task 06: D2,2,1= A2,2 B2,1

Task 07: D1,2,2= A2,1 B1,2 Task 08: D2,2,2= A2,2 B2,2

Task 09: C1,1 = D1,1,1 + D2,1,1 Task 10: C1,2 = D1,1,2 + D2,1,2

Task 11: C2,1 = D1,2,1 + D2,2,1 Task 12: C2,,2 = D1,2,2 + D2,2,2

Intermediate Data Partitioning: Example

The task dependency graph for the decomposition (shown in
previous foil) into 12 tasks is as follows:

The Owner Computes Rule

• The Owner Computes Rule generally states that the process
assigned a particular data item is responsible for all computation
associated with it.

• In the case of input data decomposition, the owner computes rule
implies that all computations that use the input data are performed
by the process.

• In the case of output data decomposition, the owner computes rule
implies that the output is computed by the process to which the
output data is assigned.

Exploratory Decomposition

• In many cases, the decomposition of the problem goes hand-in-
hand with its execution.

• These problems typically involve the exploration (search) of a state
space of solutions.

• Problems in this class include a variety of discrete optimization
problems (0/1 integer programming, QAP, etc.), theorem proving,
game playing, etc.

Exploratory Decomposition: Example

A simple application of exploratory decomposition is in the solution
to a 15 puzzle (a tile puzzle). We show a sequence of three moves
that transform a given initial state (a) to desired final state (d).

Of-course, the problem of computing the solution, in general, is
much more difficult than in this simple example.

Exploratory Decomposition: Example

The state space can be explored by generating various successor
states of the current state and to view them as independent tasks.

Exploratory Decomposition: Anomalous Computations

• In many instances of exploratory decomposition, the decomposition
technique may change the amount of work done by the parallel
formulation.

• This change results in super- or sub-linear speedups.

Speculative Decomposition

• In some applications, dependencies between tasks are not known
a-priori.

• For such applications, it is impossible to identify independent tasks.

• There are generally two approaches to dealing with such
applications: conservative approaches, which identify independent
tasks only when they are guaranteed to not have dependencies,
and, optimistic approaches, which schedule tasks even when they
may potentially be erroneous.

• Conservative approaches may yield little concurrency and optimistic
approaches may require roll-back mechanism in the case of an
error.

Speculative Decomposition: Example

A classic example of speculative decomposition is in discrete event
simulation.

• The central data structure in a discrete event simulation is a time-
ordered event list.

• Events are extracted precisely in time order, processed, and if
required, resulting events are inserted back into the event list.

• Consider your day today as a discrete event system - you get up,
get ready, drive to work, work, eat lunch, work some more, drive
back, eat dinner, and sleep.

• Each of these events may be processed independently, however, in
driving to work, you might meet with an unfortunate accident and not
get to work at all.

• Therefore, an optimistic scheduling of other events will have to be
rolled back.

Speculative Decomposition: Example

Another example is the simulation of a network of nodes (for
instance, an assembly line or a computer network through which
packets pass). The task is to simulate the behavior of this network
for various inputs and node delay parameters (note that networks
may become unstable for certain values of service rates, queue
sizes, etc.).

Hybrid Decompositions

Often, a mix of decomposition techniques is necessary for
decomposing a problem. Consider the following examples:

• In quicksort, recursive decomposition alone limits concurrency (Why?). A
mix of data and recursive decompositions is more desirable.

• In discrete event simulation, there might be concurrency in task processing.
A mix of speculative decomposition and data decomposition may work well.

• Even for simple problems like finding a minimum of a list of numbers, a mix

of data and recursive decomposition works well.

Characteristics of Tasks

Once a problem has been decomposed into independent tasks, the
characteristics of these tasks critically impact choice and
performance of parallel algorithms. Relevant task characteristics
include:

• Task generation.

• Task sizes.

• Size of data associated with tasks.

Task Generation

• Static task generation: Concurrent tasks can be identified a-priori.
Typical matrix operations, graph algorithms, image processing
applications, and other regularly structured problems fall in this
class. These can typically be decomposed using data or recursive
decomposition techniques.

• Dynamic task generation: Tasks are generated as we perform
computation. A classic example of this is in game playing - each 15
puzzle board is generated from the previous one. These
applications are typically decomposed using exploratory or
speculative decompositions.

Task Sizes

• Task sizes may be uniform (i.e., all tasks are the same size) or non-
uniform.

• Non-uniform task sizes may be such that they can be determined
(or estimated) a-priori or not.

• Examples in this class include discrete optimization problems, in
which it is difficult to estimate the effective size of a state space.

Size of Data Associated with Tasks

• The size of data associated with a task may be small or large when
viewed in the context of the size of the task.

• A small context of a task implies that an algorithm can easily
communicate this task to other processes dynamically (e.g., the 15
puzzle).

• A large context ties the task to a process, or alternately, an
algorithm may attempt to reconstruct the context at another
processes as opposed to communicating the context of the task
(e.g., 0/1 integer programming).

Characteristics of Task Interactions

• Tasks may communicate with each other in various ways. The
associated dichotomy is:

• Static interactions: The tasks and their interactions are known a
priori. These are relatively simpler to code into programs.

• Dynamic interactions: The timing or interacting tasks cannot be
determined a priori. These interactions are harder to code,
especially, as we shall see, using message passing APIs.

Characteristics of Task Interactions

• Regular interactions: There is a definite pattern (in the graph sense)
to the interactions. These patterns can be exploited for efficient
implementation.

• Irregular interactions: Interactions lack well-defined topologies.

Characteristics of Task Interactions: Example

A simple example of a regular static interaction pattern is in image
dithering. The underlying communication pattern is a structured (2-D
mesh) one as shown here:

Characteristics of Task Interactions: Example

The multiplication of a sparse matrix with a vector is a good
example of a static irregular interaction pattern. Here is an example
of a sparse matrix and its associated interaction pattern.

Characteristics of Task Interactions

• Interactions may be read-only or read-write.

• In read-only interactions, tasks just read data items associated with
other tasks.

• In read-write interactions tasks read, as well as modify data items
associated with other tasks.

• In general, read-write interactions are harder to code, since they
require additional synchronization primitives.

Characteristics of Task Interactions

• Interactions may be one-way or two-way.

• A one-way interaction can be initiated and accomplished by one of
the two interacting tasks.

• A two-way interaction requires participation from both tasks involved
in an interaction.

• One way interactions are somewhat harder to code in message
passing APIs.

Mapping Techniques

• Once a problem has been decomposed into concurrent tasks, these
must be mapped to processes (that can be executed on a parallel
platform).

• Mappings must minimize overheads.

• Primary overheads are communication and idling.

• Minimizing these overheads often represents contradicting
objectives.

• Assigning all work to one processor trivially minimizes
communication at the expense of significant idling.

Mapping Techniques for Minimum Idling

Mapping must simultaneously minimize idling and load balance.
Merely balancing load does not minimize idling.

Mapping Techniques for Minimum Idling

Mapping techniques can be static or dynamic.

• Static Mapping: Tasks are mapped to processes a-priori. For this to
work, we must have a good estimate of the size of each task. Even
in these cases, the problem may be NP complete.

• Dynamic Mapping: Tasks are mapped to processes at runtime. This
may be because the tasks are generated at runtime, or that their
sizes are not known.

Other factors that determine the choice of techniques include the

 size of data associated with a task and the nature of underlying

 domain.

Schemes for Static Mapping

• Mappings based on data partitioning.

• Mappings based on task graph partitioning.

• Hybrid mappings.

Mappings Based on Data Partitioning

We can combine data partitioning with the ``owner-computes'' rule to
partition the computation into subtasks. The simplest data
decomposition schemes for dense matrices are 1-D block distribution
schemes.

Block Array Distribution Schemes

Block distribution schemes can be generalized to higher
dimensions as well.

Block Array Distribution Schemes: Examples

• For multiplying two dense matrices A and B, we can partition the
output matrix C using a block decomposition.

• For load balance, we give each task the same number of elements
of C. (Note that each element of C corresponds to a single dot
product.)

• The choice of precise decomposition (1-D or 2-D) is determined by
the associated communication overhead.

• In general, higher dimension decomposition allows the use of larger
number of processes.

Data Sharing in Dense Matrix Multiplication

Cyclic and Block Cyclic Distributions

• If the amount of computation associated with data items varies, a
block decomposition may lead to significant load imbalances.

• A simple example of this is in LU decomposition (or Gaussian
Elimination) of dense matrices.

LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks - notice the

 significant load imbalance.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

Block Cyclic Distributions

• Variation of the block distribution scheme that can be used to
alleviate the load-imbalance and idling problems.

• Partition an array into many more blocks than the number of
available processes.

• Blocks are assigned to processes in a round-robin manner so that
each process gets several non-adjacent blocks.

Block-Cyclic Distribution for Gaussian Elimination

The active part of the matrix in Gaussian Elimination changes.
By assigning blocks in a block-cyclic fashion, each processor
receives blocks from different parts of the matrix.

Block-Cyclic Distribution: Examples

One- and two-dimensional block-cyclic distributions among 4
processes.

Block-Cyclic Distribution

• A cyclic distribution is a special case in which block size is one.

• A block distribution is a special case in which block size is n/p , where
n is the dimension of the matrix and p is the number of processes.

Graph Partitioning Based Data Decomposition

• In case of sparse matrices, block decompositions are more
complex.

• Consider the problem of multiplying a sparse matrix with a vector.

• The graph of the matrix is a useful indicator of the work (number of
nodes) and communication (the degree of each node).

• In this case, we would like to partition the graph so as to assign
equal number of nodes to each process, while minimizing edge
count of the graph partition.

Partitioning the Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut.

Mappings Based on Task Partitioning

• Partitioning a given task-dependency graph across processes.

• Determining an optimal mapping for a general task-dependency
graph is an NP-complete problem.

• Excellent heuristics exist for structured graphs.

Task Partitioning: Mapping a Binary Tree Dependency
Graph

Example illustrates the dependency graph of one view of quick-sort

 and how it can be assigned to processes in a hypercube.

Task Partitioning: Mapping a Sparse Graph

Sparse graph for computing a sparse matrix-vector product and its mapping.

Hierarchical Mappings

• Sometimes a single mapping technique is inadequate.

• For example, the task mapping of the binary tree (quicksort) cannot
use a large number of processors.

• For this reason, task mapping can be used at the top level and data
partitioning within each level.

An example of task partitioning at top level with data
partitioning at the lower level.

Schemes for Dynamic Mapping

• Dynamic mapping is sometimes also referred to as dynamic load
balancing, since load balancing is the primary motivation for
dynamic mapping.

• Dynamic mapping schemes can be centralized or distributed.

Centralized Dynamic Mapping

• Processes are designated as masters or slaves.

• When a process runs out of work, it requests the master for more
work.

• When the number of processes increases, the master may become
the bottleneck.

• To alleviate this, a process may pick up a number of tasks (a chunk)
at one time. This is called Chunk scheduling.

• Selecting large chunk sizes may lead to significant load imbalances
as well.

• A number of schemes have been used to gradually decrease chunk
size as the computation progresses.

Distributed Dynamic Mapping

• Each process can send or receive work from other processes.

• This alleviates the bottleneck in centralized schemes.

• There are four critical questions: how are sensing and receiving
processes paired together, who initiates work transfer, how much
work is transferred, and when is a transfer triggered?

• Answers to these questions are generally application specific. We
will look at some of these techniques later in this class.

Minimizing Interaction Overheads

• Maximize data locality: Where possible, reuse intermediate data.
Restructure computation so that data can be reused in smaller time
windows.

• Minimize volume of data exchange: There is a cost associated with
each word that is communicated. For this reason, we must minimize
the volume of data communicated.

• Minimize frequency of interactions: There is a startup cost
associated with each interaction. Therefore, try to merge multiple
interactions to one, where possible.

• Minimize contention and hot-spots: Use decentralized techniques,
replicate data where necessary.

Minimizing Interaction Overheads (continued)

• Overlapping computations with interactions: Use non-blocking
communications, multi-threading, and prefetching to hide latencies.

• Replicating data or computations.

• Using group communications instead of point-to-point primitives.

• Overlap interactions with other interactions.

Parallel Algorithm Models

An algorithm model is a way of structuring a parallel algorithm
by selecting a decomposition and mapping technique and applying
the appropriate strategy to minimize interactions.

• Data Parallel Model: Tasks are statically (or semi-statically) mapped
to processes and each task performs similar operations on different
data.

• Task Graph Model: Starting from a task dependency graph, the
interrelationships among the tasks are utilized to promote locality or
to reduce interaction costs.

Parallel Algorithm Models (continued)

• Master-Slave Model: One or more processes generate work and
allocate it to worker processes. This allocation may be static or
dynamic.

• Pipeline / Producer-Consumer Model: A stream of data is passed
through a succession of processes, each of which perform some
task on it.

• Hybrid Models: A hybrid model may be composed either of multiple
models applied hierarchically or multiple models applied
sequentially to different phases of a parallel algorithm.

	Principles of Parallel Algorithm Design
	Chapter Overview: Algorithms and Concurrency
	Chapter Overview: Concurrency and Mapping
	Preliminaries: Decomposition, Tasks, and Dependency Graphs
	Example: Multiplying a Dense Matrix with a Vector
	Example: Database Query Processing
	Example: Database Query Processing
	Slide 8
	Granularity of Task Decompositions
	Degree of Concurrency
	Critical Path Length
	Slide 12
	Limits on Parallel Performance
	Task Interaction Graphs
	Task Interaction Graphs: An Example
	Task Interaction Graphs, Granularity, and Communication
	Processes and Mapping
	Slide 18
	Slide 19
	Processes and Mapping: Example
	Decomposition Techniques
	Recursive Decomposition
	Recursive Decomposition: Example
	Slide 24
	Recursive Decomposition: Example
	Slide 26
	Data Decomposition
	Data Decomposition: Output Data Decomposition
	Output Data Decomposition: Example
	Slide 30
	Slide 31
	Slide 32
	Input Data Partitioning
	Input Data Partitioning: Example
	Partitioning Input and Output Data
	Intermediate Data Partitioning
	Intermediate Data Partitioning: Example
	Slide 38
	Slide 39
	The Owner Computes Rule
	Exploratory Decomposition
	Exploratory Decomposition: Example
	Slide 43
	Exploratory Decomposition: Anomalous Computations
	Speculative Decomposition
	Speculative Decomposition: Example
	Slide 47
	Hybrid Decompositions
	Characteristics of Tasks
	Task Generation
	Task Sizes
	Size of Data Associated with Tasks
	Characteristics of Task Interactions
	Slide 54
	Characteristics of Task Interactions: Example
	Slide 56
	Slide 57
	Slide 58
	Mapping Techniques
	Mapping Techniques for Minimum Idling
	Mapping Techniques for Minimum Idling
	Schemes for Static Mapping
	Mappings Based on Data Partitioning
	Block Array Distribution Schemes
	Block Array Distribution Schemes: Examples
	Data Sharing in Dense Matrix Multiplication
	Cyclic and Block Cyclic Distributions
	LU Factorization of a Dense Matrix
	Block Cyclic Distributions
	Block-Cyclic Distribution for Gaussian Elimination
	Block-Cyclic Distribution: Examples
	Block-Cyclic Distribution
	Graph Partitioning Dased Data Decomposition
	Partitioning the Graph of Lake Superior
	Mappings Based on Task Paritioning
	Task Paritioning: Mapping a Binary Tree Dependency Graph
	Task Paritioning: Mapping a Sparse Graph
	Hierarchical Mappings
	Slide 79
	Schemes for Dynamic Mapping
	Centralized Dynamic Mapping
	Distributed Dynamic Mapping
	Minimizing Interaction Overheads
	Minimizing Interaction Overheads (continued)
	Parallel Algorithm Models
	Parallel Algorithm Models (continued)

