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Heart failure is an enormous medical and societal burden.1,2  
It is a common disease: more than 2% of the U.S. population, or almost 
5 million people, are affected, and 30 to 40% of patients die from heart 

failure within 1 year after receiving the diagnosis.3 Heart failure can be disabling, 
and it can severely reduce a patient’s quality of life. It consumes approximately 2% 
of the National Health Service budget in the United Kingdom, and in the United 
States, the total annual cost of treatment for heart failure is approximately $28 bil-
lion. Moreover, the financial burden of heart failure will increase in coming de-
cades because of the aging population and the improved treatments of its causes.

Over the past 20 years, there has been considerable progress in the treatment 
of chronic heart failure with angiotensin-converting–enzyme (ACE) inhibitors,4,5 
aldosterone antagonists,6 beta-receptor blockers,7,8 and resynchronization therapy.9,10 
Even with the very best of modern therapy, however, heart failure is still associated 
with an annual mortality rate of 10%.10 The search for better treatments is one of 
the major challenges in cardiology.

Chronic heart failure is multifactorial. There are many reasons why a human 
heart can fail,11 but the available evidence suggests that the failing heart is an 
engine out of fuel — that is, altered energetics play an important role in the mech-
anisms of heart failure. For this reason, the modulation of cardiac metabolism has 
promise as a new approach to the treatment of heart failure.

This review describes cardiac energy metabolism, appraises the methods used 
for its assessment, evaluates the role of impaired energy metabolism in heart fail-
ure, and gives options for metabolic therapy.

The Energy-S ta rvation H y po thesis

The concept that the failing heart is an energy-starved engine that has run out of 
fuel is decades old. It was proposed in 1939 by Herrmann and Decherd,12 who, in 
their article entitled “The Chemical Nature of Heart Failure,” described a signifi-
cantly reduced creatine content in failing myocardium. Over the next 20 years, the 
energy-depletion hypothesis was pursued by various groups,13-15 and today, energy 
metabolism in the heart — myocardial energetics — is a topic of considerable inter-
est.16-24 A major reason for the attention to this topic is that any energy-sparing 
treatment for heart failure such as beta-receptor blockers,7,8 ACE inhibitors,4,5 or 
angiotensin II blockers25,26 improves the prognosis. The failing heart has been 
compared to a weak and tired horse, and if this horse is nourished properly, it can 
recover and work in the long term, albeit at a reduced level.27

C a r di ac Energy Me ta bol ism

Deprivation of cardiac energy has a major role in heart failure.18 The heart con-
sumes more energy than any other organ. It cycles about 6 kg of ATP every day — 
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20 to 30 times its own weight. Each day, it beats 
about 100,000 times and pumps approximately 
10 tons of blood through the body. To acquire the 
energy that is necessary to carry out its function, 
the heart converts chemical energy stored in fatty 
acids and glucose into the mechanical energy of 
the actin–myosin interaction of myofibrils. Failure 
to produce an adequate amount of energy causes 
mechanical failure of the heart.

Components of Cardiac Energy Metabolism

Cardiac energy metabolism is complex (Fig. 1). 
The metabolic machinery has three main compo-
nents. The first is substrate utilization — the use 
of fuel that comes from food. This process entails 
the cellular uptake of mainly free fatty acids and 
glucose, the breakdown of these components by 
beta-oxidation and glycolysis, and the entry of the 
resulting intermediary metabolites into the Krebs 
cycle. The second component is oxidative phos-
phorylation — the production of energy by the 
mitochondrial respiratory chain. The phosphory-
lation of ADP by this mechanism produces the 
high-energy phosphate compound ATP, which is 
the direct source of energy for all energy-consum-
ing reactions in the heart. The third component 
is ATP transfer and utilization — the transport of 
energy to and its consumption by the heart’s 
motor, the myofibrils. This process entails an 
energy-transfer mechanism termed the creatine 
kinase energy shuttle.28-30

The Creatine Kinase System

In the third component of cardiac energy metabo-
lism, ATP transfer and utilization, mitochondrial 
creatine kinase catalyzes the transfer of the high-
energy phosphate bond in ATP to creatine to form 
phosphocreatine and ADP. Phosphocreatine, a 
smaller molecule than ATP, rapidly diffuses from 
the mitochondria to the myofibrils, where myofi-
brillar creatine kinase catalyzes the reformation 
of ATP from phosphocreatine. The free creatine, 
formed by the removal of phosphate from phos-
phocreatine, diffuses back to the mitochondria.

Creatine is produced by the liver and kidneys 
and transported to the heart, where it is taken up 
by a specific plasma-membrane creatine trans-
porter31 against a 50-fold concentration gradient. 
Creatine kinase catalyzes the phosphorylation of 
about two thirds of the total creatine pool in the 
heart to phosphocreatine, and the other one third 
remains as free creatine. A small amount of cre-

atine is constantly lost from the heart by passive 
diffusion across the sarcolemma.32 An important 
function of the creatine kinase system is to act as 
an energy buffer. When the energy demand out-
strips the energy supply, the phosphocreatine level 
falls, keeping ATP at a normal level, but the free 
ADP level rises.29 The increased level of free ADP 
inhibits the function of many intracellular en-
zymes, causing failure of the heart’s contraction 
mechanism. Thus, a metabolic derangement in the 
cardiac myocyte can occur when phosphocreatine 
levels fall and free ADP levels rise, even if ATP 
levels remain unchanged.

Assessment of Cardiac Energy Metabolism

The various components of energy metabolism in 
the heart can be measured with the use of stan-
dard methods in myocardial specimens obtained 
during a biopsy or at the time of transplantation 
or in cardiac tissue from animals. The analysis of 
ATP and phosphocreatine in tissue samples is 
problematic, however, because of the instability 
of these molecules.29 For this reason, the principal 
method for measuring ATP and phosphocreatine 
is phosphorus-31 magnetic resonance (31P-MR) 
spectroscopy.33-36 This method can be used with 
high-field magnets of up to 12.0 Tesla (a measure 
of magnetic field strength) in rodents and with 
standard clinical magnetic resonance imaging 
(MRI) systems (usually 1.5 Tesla) in humans. As 
shown in Figure 2A, 31P-MR spectra yield peaks 
for phosphocreatine and the three phosphorus 
atoms of ATP (γ-ATP, α-ATP, and β-ATP) that are 
proportional to the concentrations of these me-
tabolites. The MRI system can obtain cine images 
of the heart at the same time for quantification 
of cardiac function. The most powerful method 
for assessing energy metabolism in heart failure 
entails the in vivo assessment of turnover rates of 
glucose and fatty acids38-41 and rates of oxidative 
phosphorylation42 and ATP transfer.34,36 An im-
portant methodologic consideration is intracel-
lular compartmentalization.43 Whether a cardiac 
myocyte functions normally cannot be determined 
by measuring the average cellular level of ATP, 
phosphocreatine, or ADP, but instead is deter-
mined by their concentrations in the perimyofi-
brillar space and near the sarcoplasmic reticu-
lum and sarcolemmal ion pumps. No method is 
currently available to make such measurements; 
therefore, they have to be extrapolated from glob-
al measurements.
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Der a ngemen t of Energy 
Me ta bol ism in He a rt Fa ilur e

The changes in cardiac energy metabolism in 
heart failure are shown in Figure 3, which sum-
marizes the findings in animal models19,44-57 and 
clinical studies of heart failure.58-68 Changes occur 
in all three components of cardiac energy metabo-

lism: substrate utilization, oxidative phosphoryla-
tion, and high-energy phosphate metabolism.

Substrate Utilization

Substrate utilization can become limiting for car-
diac function in heart failure as a result of reduced 
substrate uptake, oxidation, or both. This may 
also occur as a result of the change in the relative 
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Figure 1. Cardiac Energy Metabolism.

Energy metabolism in the heart has three components. The first is substrate utilization (outlined in red), the cellular uptake of substrates 
and their breakdown by beta-oxidation and glycolysis; these processes result in the formation of acetyl coenzyme A (CoA), which is fed 
into the Krebs cycle and produces NADH and carbon dioxide (CO2). The second component is oxidative phosphorylation (outlined in 
blue), the production of energy. Respiratory-chain complexes I through IV transfer electrons from NADH to oxygen, thereby creating a 
proton electrochemical gradient (Δμ H+) across the inner mitochondrial membrane as well as NAD and water. This gradient drives the 
F1, F0 ATP synthase, which produces ATP by phosphorylating ADP. Uncoupling proteins (UCPs) cause mitochondria to produce heat 
rather than ATP. The third component is energy transfer and utilization (outlined in green), the transport of energy to and consumption 
by myofibrillar ATPase and other ATP-consuming reactions, such as sarcolemmal and sarcoplasmic reticulum ion pumps. ATP transfer  
is achieved by the creatine kinase energy shuttle. Creatine, which is not produced in the heart, is taken up by the creatine transporter. 
GLUT denotes glucose transporter, Pi inorganic phosphate, ANT adenine nucleotide translocase, PCr phosphocreatine, Cr free creatine, 
CKmito mitochondrial creatine kinase isoenzyme, and CKMM myofibrillar creatine kinase isoenzyme.

Copyright © 2007 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org by SHALINI MANCHANDA MD on May 22, 2007 . 



Mechanisms of Disease

n engl j med 356;11  www.nejm.org  march 15, 2007 1143

contributions of fatty acids (60 to 90%) and glu-
cose (10 to 40%) to ATP synthesis. Studies of sub-
strate utilization in heart failure have yielded con-
flicting results, but most indicate that fatty acid 
utilization, which is unchanged or slightly in-
creased in early heart failure,19,44 is substantially 
decreased in advanced heart failure.45 Changes 
in glucose utilization are also inconsistent, but 
many studies show that it is increased early in 
heart failure.46,47 In advanced heart failure, insu-
lin resistance develops in the myocardium, and 
most studies have shown a decline in glucose 
utilization.58-60 However, the interpretation of 
these results is complicated by the substantial in-
creases in the concentrations of plasma free fatty 
acids, glucose, and insulin that are common in 
heart failure. These increases make it difficult to 

separate the changes in the metabolic pathway 
capacities that are inherent in the heart muscle 
from the indirect changes in the myocardium that 
are due to the altered metabolic milieu.19

Oxidative Phosphorylation

Impaired oxidative phosphorylation can reduce 
cardiac function by providing an insufficient sup
ply of ATP to cardiac myocytes. In heart failure, 
cardiac mitochondria have structural abnormali-
ties and are probably increased in number.49 The 
activity of electron transport–chain complexes 
and ATP synthase capacity are reduced50,61,69; the 
regulation of oxidative phosphorylation by the 
phosphate acceptors ADP, AMP, and creatine is 
impaired41; and the levels of uncoupling proteins 
(which cause mitochondria to produce heat rather 
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Figure 2. The Phosphocreatine:ATP Ratio in Heart Failure.

Panel A shows cardiac 31P-MR spectra in (from bottom to top) a healthy subject, a patient with dilated cardiomyop-
athy (DCM) and a normal phosphocreatine (PCr):ATP ratio (>1.6; 1.6 was the median of the ratio), a patient with 
DCM and a reduced PCr:ATP ratio (<1.6), and a patient with DCM and a severely reduced PCr:ATP ratio (<1.0). The 
patient with the severely reduced ratio died 7 days after undergoing magnetic resonance examination. 2,3-DPG de-
notes 2,3-diphosphoglycerate, PDE phosphodiesters, and γ, α, and β phosphorus atoms of ATP. Panel B shows a 
Kaplan–Meier life-table analysis of mortality in two groups of patients with DCM: one with a higher PCr:ATP ratio 
and one with a lower ratio. Patients with an initially low ratio had an increased mortality over the study period (aver-
age follow-up, 2.5 years). Data are from Neubauer et al.37 Panel C shows short-axis cine MRI scans of a normal 
heart and the severely dilated heart of a patient with DCM.
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than ATP) may be increased.70 These changes re-
sult in a substantial reduction of oxygen consump-
tion and energy production in the failing myo-
cardium.

High-Energy Phosphate Metabolism

Impaired ATP transfer and utilization may limit 
contractile function by means of a decrease in the 
average ATP concentration, a reduction in the 
ATP transfer capacity through creatine kinase so 
that insufficient high-energy phosphate bonds are 
transported from the mitochondria to the myo-
fibrils, or an increase in the concentration of 
free ADP.

Myocardial ATP levels remain normal (at ap-
proximately 10 mmol per liter) until the advanced 
stages of heart failure, when they decrease by no 
more than 30 to 40%.65,66,71 The average ATP 
levels remain far above those required for ATP-
consuming reactions such as myosin–ATPase, and 
do not limit contractile function in heart failure. 
However, both phosphocreatine and total creatine 
levels decrease at earlier stages and to a greater 
extent (by 30 to 70%).66,67 Down-regulation of the 
creatine transporter function contributes to the 
reduced total creatine, and thus phosphocreatine, 
levels in heart failure.72,73

There are profound changes in the creatine 
kinase system in heart failure.67,74-78 Mitochon-
drial creatine kinase activity may be reduced to 
as little as 20% of normal activity, and myofibril-
lar creatine kinase activity can decrease by up to 
50% as compared with normal values. The losses 
of high-energy phosphates and creatine kinase 
activity cause a severe decline in ATP trans-
fer53,54,79,80 — that is, a decrease in energy flux 
within the cell —  and thus a reduction in energy 
delivery to the myofibrils by up to 71%.81 This 
metabolic abnormality may contribute to contrac-
tile dysfunction and particularly to the loss of 
inotropic reserve that is characteristic of the myo-
cardium in heart failure.

When the failing heart is stimulated with 
catecholamines, thereby causing high-workload 
conditions, the free ADP concentration increases 
to a value that is approximately twice that in 
normal myocardium.82 The increase of free ADP 
in the relevant microcompartments (the perimyo-
fibrillar microcompartment and the microcom-
partments near the sarcoplasmic reticulum and 
sarcolemmal ion pumps) during high-workload 
conditions limits the contractile reserve of the fail
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Figure 3. Changes in Cardiac Energy Metabolism in Heart Failure.

In patients with heart failure, changes in substrate utilization (Panel A) in-
clude initial up-regulation and subsequent reduction of glucose utilization 
and a decrease in fatty acid utilization, in part mediated by down-regulation 
of peroxisome proliferator–activated receptor α (PPARα). Oxidative phos-
phorylation changes (Panel B) are characterized by decreased energy pro-
duction, with reductions in oxygen consumption and respiratory-chain and 
ATP synthase activity, in part mediated by down-regulation of PPARα coacti-
vator 1α (PCG-1α). Changes in high-energy phosphate metabolism (Panel C) 
include a severely impaired creatine kinase energy-transfer mechanism, in-
creased free ADP levels, and, in advanced heart failure, reduced ATP content. 
Free ADP is calculated from the creatine kinase equilibrium assumption:  
ADP = ([ATP] × [creatine]) ÷ ([phosphocreatine] × [H+] × Keq), where H+ is the 
intracellular hydrogen ion concentration and Keq is the equilibrium constant 
of the creatine kinase reaction. CKmito denotes mitochondrial creatine kinase 
isoenzyme, and CKMM myofibrillar creatine kinase isoenzyme.
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ing heart, and this reduction in inotropic reserve 
is manifested clinically as dyspnea on exertion.

Most of the evidence concerning the derange-
ment of myocardial energetics in heart failure in 
humans is based on studies with 31P-MR spec-
troscopy. This method can be used to determine 
the ratio of phosphocreatine to ATP, which is a 
powerful index of the energetic state of the heart. 
The creatine kinase reaction equilibrium favors 
ATP synthesis over phosphocreatine synthesis by 
a factor of approximately 100. Therefore, when-
ever the demand for ATP outstrips ATP synthe-
sis, phosphocreatine levels decline first, and ATP 
decreases only when phosphocreatine is substan-
tially depleted. In chronic heart failure, however, 
a second mechanism comes into play: the total 
creatine level falls, and this reduction further 
decreases the phosphocreatine:ATP ratio62,63,68 
(Fig. 2). Myocardial phosphocreatine:ATP ratios 
are reduced in heart failure, and they correlate 
with New York Heart Association classes63 and 
with indexes of systolic83 and diastolic84 function. 
One study of 39 patients with dilated cardiomyop
athy indicated that the phosphocreatine:ATP ratio 
may be a stronger predictor of both total mortal-
ity and mortality attributable to cardiovascular 
disease than functional or clinical indexes37 
(Fig. 2B), but this finding requires confirmation 
in larger clinical trials.

Hypertrophic cardiomyopathy is an exemplar 
of myocardial energy depletion.85 In patients with 
hypertrophic cardiomyopathy, the cardiac phos-
phocreatine:ATP ratio is reduced through a range 
of specific mutations that affect the sarcomere, 
whether or not left ventricular hypertrophy is 
present.86 Because the abnormalities in energetics 
are an early and integral part of the primary heart 
muscle disease, one can infer that the compro-
mise of myocardial energetics has a causal role 
in hypertrophic cardiomyopathy.

Molecul a r R egul at or s  
of Energy Me ta bol ism

The energy demands of the heart vary widely dur-
ing cardiac development and with physiologic or 
abnormal stress. Energy production must be close
ly coupled with energy demand, but the heart has 
little capacity for substrate storage. However, there 
are mechanisms that induce the expression of 
genes that encode the molecular regulators of 
energy metabolism.87

Nuclear-Receptor Transcription Factors

Several nuclear-receptor transcription factors are 
activated by lipid metabolites in a manner analo-
gous to the activation of nuclear receptors by ste-
roid hormones. These transcription factors rapidly 
couple gene expression with a changing substrate 
milieu, and they typically require coactivator pro-
teins for their action. Among these transcription 
factors, the most widely studied are the nuclear 
receptors of the peroxisome proliferator–activated 
receptor (PPAR) family, which comprises three 
isoforms: PPARα, PPARβ, and PPARγ. All three 
affect cardiac lipid metabolism, but the primary 
regulator appears to be PPARα, which controls the 
expression of enzymes directly involved in fatty 
acid oxidation. In cardiac hypertrophy in both 
animal models88 and humans,89,90 the expression 
of PPARα is decreased in proportion to the de-
pression of fatty acid utilization. For this reason, 
the down-regulation of PPARα is thought to be 
the main mechanism underlying the switch in sub
strate utilization from fatty acids to glucose. This 
switch is typical of the hypertrophied heart.

A nuclear-receptor coactivator, PPARγ coacti-
vator-1 (also known as PCG-1α), is a master regu-
lator of metabolic function in mitochondria. It 
activates multiple genes that are responsible for 
fatty acid uptake and oxidation and for oxidative 
phosphorylation.87 These genes include PPARα and 
PPARβ and nuclear respiratory factors 1 and 2. 
Experimental studies suggest that the inhibition 
of PCG-1α,91,92 probably as a direct consequence 
of high plasma catecholamine levels,93 leads to 
down-regulation of mitochondrial gene expres-
sion.20 In this way, it contributes to the impair-
ment of oxidative phosphorylation in the failing 
heart. The development of heart failure is acceler-
ated by PCG-1α deficiency,93 suggesting that this 
coactivator may have a cardioprotective function.

Despite these advances, more work is needed 
to fully understand which changes in metabolic 
signaling are adaptive, maladaptive, or both (de-
pending on the stage of heart failure). Further-
more, the molecular regulators of changes in 
creatine transport and creatine kinase expression 
in heart failure are unknown.

gene-K no ckou t Model s a nd 
L oss- of -F unc tion Mu tations

The causal role of altered energetics in heart fail-
ure has been controversial for decades, and this 
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controversy remains unsettled. A promising way 
to obtain definitive answers is through studies of 
genetically manipulated mice with selective knock
out (loss of function) of genetic components of 
the metabolic machinery or of single-gene inborn 
errors of metabolism in humans. Table 1 lists the 
genetic abnormalities that have been studied in 
mouse models94-103 and humans,104-108 along with 
the corresponding metabolic and functional car-
diac phenotypes. The deletion of a variety of genes 
that encode specific metabolic components re-
lated to substrate utilization, oxidative phosphory-
lation, and high-energy phosphates causes a loss 
of contractile reserve, overt heart failure, cardiac 
hypertrophy, tachyarrhythmias, or bradyarrhyth-
mias. These genetic studies show that a fully inte-
grated metabolic machine is important for nor-
mal cardiac function and that selective ablation 
of components of energy metabolism can cause 
early or advanced heart failure.

The strength of these genetic studies, however, 
is also their weakness, because chronic heart 
failure is multifactorial and entails many mecha-
nisms other than those controlled by the single 
gene under study. Furthermore, we do not under-
stand how a gene encoding a highly conserved 
protein with a central role in cardiac energetics 
can be deleted and yet not result in overt heart 
failure (Table 1). Whether and to what extent ad-
aptations occur in response to the deletion of an 
essential metabolic component are unknown.

Impl ic ations for the Tr e atmen t 
of He a rt Fa ilur e

ACE inhibitors, diuretics, and beta-blockers may 
have indirect metabolic effects on the heart,39,63,109 
but they do not directly affect energy metabo-
lism. Could energy metabolism be a specific tar-
get for therapy in patients with heart failure?

Modulation of Substrate Utilization

A promising strategy for metabolic intervention in 
heart failure is to modulate substrate utilization. 
In a study of eight patients with heart failure, 
intracoronary infusion of pyruvate improved car-
diac function in the short term,110 and in a dog 
model of heart failure, an increase in glucose uti-
lization by glucagon-like peptide 1 improved left 
ventricular function.111 In addition, in a mouse 
model of heart failure, transgenic overexpression 
of glucose transporter 1 prevented the develop-
ment of left ventricular dysfunction.112

Direct manipulation of substrate utilization is 
feasible with the use of partial inhibitors of fatty 
acid oxidation or carnitine palmitoyl transferase 1 
inhibitors. These compounds have complex types 
of action,19,21,23 but they all partially inhibit fatty 
acid utilization and promote glucose utilization. 
Whether the suppression of fatty acid oxidation is 
beneficial or detrimental in heart failure is high
ly controversial, and the cause or stage of heart 
failure may dictate the outcome of this kind of 
treatment. Regardless of the theoretical argu-
ments, a number of recent proof-of-principle clini
cal studies have suggested that partial inhibition 
of fatty acid oxidation is promising. For example, 
treatment with trimetazidine, an inhibitor of fatty 
acid oxidation, improved left ventricular function 
over a period of 6 months in elderly patients113; 
an 18-month study confirmed this finding in pa
tients with heart failure due to a previous myo-
cardial infarction.114 Small, single-center, and 
thus far unconfirmed studies have shown that in 
patients with heart failure of ischemic or non
ischemic origin, 2 months of treatment with the 
fatty acid oxidation inhibitor perhexiline115 or 
3 months of treatment with the carnitine palmi-
toyl transferase 1 inhibitor etoxomir116 improved 
the left ventricular ejection fraction. The results 
of these small studies have to be interpreted cau-
tiously. Some were not conducted under random-
ized, blinded, or placebo-controlled conditions, 
and others included patients with angina, which 
may in part explain the beneficial effect of in-
hibiting fatty acid oxidation. Nevertheless, they 
provide support for the results of studies of the 
effects of such inhibitors in animal models of 
heart failure.117,118

The effects of PPAR activators on cardiac sub-
strate utilization are complex. They include direct 
up-regulation of fatty acid oxidation and its in-
direct down-regulation through reduced plasma 
lipid levels. The findings that heart failure devel-
ops in mice that overexpress PPARα119 and that 
PPAR activators may have beneficial,120 adverse,121 
or no122 effects in animal models of heart failure 
indicate that the actions of these compounds in 
the failing heart need to be better understood 
before larger clinical trials can be considered.

Modulation of Oxidative Phosphorylation

A second strategy to metabolic therapy in heart 
failure is direct stimulation of oxidative phosphor-
ylation. Currently, however, there are no effective 
stimulators of oxidative phosphorylation. Even so, 
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increasing PCG-1α activity as a means of up-regu-
lating oxidative phosphorylation enzymes may be 
a promising approach.93  An alternative is to re-
duce free fatty acid levels, which should repress 
mitochondrial uncoupling proteins, thereby in-
creasing ATP synthesis.

Manipulation of High-Energy Phosphate 
Metabolites

A third strategy for metabolic intervention is the 
direct manipulation of high-energy phosphate 
stores, their availability, or the efficiency of their 
utilization. Creatine and phosphocreatine levels 

Table 1. Mouse Gene-Knockout Models and Human Inborn Errors of Metabolism and Their Cardiac Phenotypes.* 

Genetic Abnormality Metabolic Abnormality Cardiac Phenotype 

Mouse gene-knockout models

Long-chain and very-long-chain acyl–CoA 
dehydrogenase 

Inhibition of very-long-chain and long-
chain fatty acid beta-oxidation

Very-long-chain acyl–CoA dehydrogenase: ven-
tricular tachycardia, severe bradycardia94

Long-chain acyl–CoA dehydrogenase: cardio-
myopathy, sudden death95

PPARα Substrate utilization switch from fatty 
acids to glucose and lactate

Reduced contractile reserve and depletion of 
cardiac energy stores during inotropic chal-
lenge96

Glucose transporter 4 Increased basal but abolished insulin-
stimulated glucose transport

Cardiac hypertrophy97

PCG-1α Reduced oxidative phosphorylation and 
fatty acid oxidation

Loss of contractile reserve98

Heart-specific Tfam, a nuclear-encoded 
mitochondrial DNA replication 
transcription factor

Reduced activity of respiratory-chain 
complexes, reduced fatty acid oxida-
tion, increased glucose utilization

Cardiac hypertrophy, dilatation, heart failure, 
conduction defects99

Adenine nucleotide translocase 1 Impaired ADP-stimulated mitochondrial 
respiration

Cardiac hypertrophy100

Mitochondrial and myofibrillar CK iso
enzymes 

Loss of  mitochondrial CK, loss of mito-
chondrial and myofibrillar CK

Hypertrophy and dilatation, impaired contrac-
tile reserve, shortened diffusion distances 
between mitochondria and myofibrils101,102

Guanidino acetate methyl transferase Deficient creatine biosynthesis, accumu-
lation of precursor guanidino acetate, 
CK reaction velocity 1%

Loss of inotropic reserve, increased susceptibil-
ity to ischemia and reperfusion injury103

Human inborn errors of metabolism

Systemic carnitine deficiency Defective carnitine biosynthesis, trans-
membrane transport, intestinal up-
take or tubular reabsorption

Dilated cardiomyopathy, cardiac arrest, cardio-
megaly — oral carnitine therapy reverses 
phenotype104

Malonyl carboxylase deficiency Elevation of malonyl–CoA, a potent inhibi-
tor of carnitine palmitoyl transferase 1

Cardiomyopathy, decreased contractility, heart 
failure105

Carnitine palmitoyl transferase 2  
deficiency

Impaired mitochondrial acyl–CoA trans-
port

Cardiac hypertrophy, fatal cardiomegaly, 
dysrhythmias106

Short-chain, medium-chain, long-chain, 
and very-long-chain acyl–CoA 
dehydrogenase

Dysfunction of enzymes of fatty acid beta-
oxidation

Short-chain acyl–CoA dehydrogenase: mild left 
ventricular dysfunction, biatrial hypertrophy107

Medium-chain acyl–CoA dehydrogenase: 
cardiac involvement rare107 

Long-chain and very-long-chain acyl–CoA 
dehydrogenase: severe dilated or hypertro-
phic cardiomyopathy107

Kearns–Sayre syndrome, MELAS, Barth syn-
drome: mutations of mitochondrial 
DNA; Leigh’s syndrome: mutation  
of mitochondrial or nuclear DNA

Various deficiencies of respiratory-chain 
complexes

Dilated cardiomyopathy, hypertrophic cardio-
myopathy, conduction defects, ventricular 
ectopy107,108

*	Many of these deficiency models and syndromes also have extracardiac manifestations not listed here. CoA denotes coenzyme A, CK cre-
atine kinase, and MELAS mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes.
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can be augmented by increasing the creatine 
transporter function.123 Although massive in-
creases in the creatine transporter function are 
detrimental (because a substantially supranormal 
creatine level increases the free ADP level), future 
studies will show whether reversing the decrease 
in creatine and phosphocreatine levels by moder-
ate stimulation of creatine transporter activity is 
beneficial in heart failure. Finally, it may be fea-
sible to improve the myofibrillar efficiency of 
ATP utilization with new calcium-sensitizing124 
or myosin activator compounds.

Conclusions

Metabolic therapy is a promising new avenue for 
the treatment of heart failure, and suitable targets 
for therapy are substrate utilization, oxidative 
phosphorylation, and the availability of high-
energy phosphates. A multipronged effort is need-
ed to fully investigate this concept. Experimental 
studies will, for example, further clarify the mech-
anisms leading to energetic derangement and will 

suggest new molecular targets for therapeutic in-
tervention. New metabolic modulator compounds 
need to be developed by academia and industry. 
Proof-of-principle clinical studies may use the myo
cardial phosphocreatine:ATP ratio to monitor the 
early energetic response of the heart to metabolic 
therapy, and this method may provide a surro-
gate marker of long-term prognostic effects. Final
ly, large-scale clinical trials will have to prove or 
disprove the clinical efficacy of metabolic modu-
lators. There is substantial hope that such a com-
bined effort will lead to new therapies targeted at 
cardiac energetics. These therapies may improve 
the symptoms and prognosis of patients with the 
life-threatening illness of chronic heart failure.
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