PMI 3808 – Aula 6

- 1. Características da família dos sulfetos metálicos
- 2. Tiocoletores
- 3. Adsorção de tiocoletores em sulfetos

1. Características dos sulfetos metálicos

- → Suas partículas são muito susceptíveis a sofrer oxidação superficial;
- → Não é mandatório deslamar o minério antes da flotação;
- → Sua flotação demanda uso de tiocoletores (xantato) e espumante;
- → Tiocoletores são insensíveis à dureza da água utilizada no processo;
- → Tiocoletores interagem com os sulfetos através de mecanismo químico e/ou eletroquímico;
- → A seletividade do processo é influenciada pelo pH e Eh da polpa.

Oxidação da superfície dos sulfetos

Oxidação anódica do sulfeto mineral libera íons metálicos:

$$MeS \rightarrow Me^{2+} + S + 2e^{-}$$

Redução catódica do oxigênio na superfície do mineral

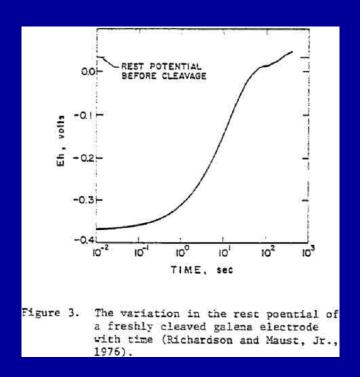
$$\frac{1}{2}O_2 + H_2O + 2e \rightarrow 2OH^-$$

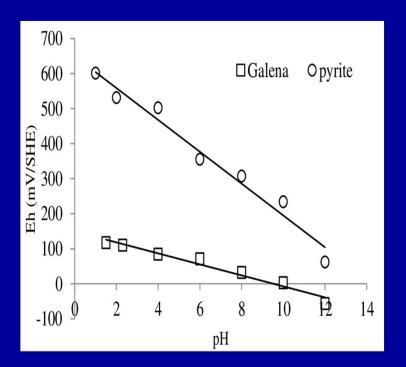
Oxidação da superfície dos sulfetos

Reação em meio ácido ...

$$M_z S = z M^{n+} + S + z n e$$

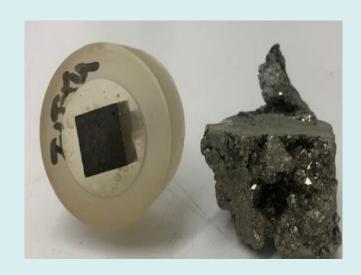
Reação em meio neutro ou básico ...


$$M_z S + znH_2 O = zM(OH)_n + S + znH^+ + zne$$


Quando a oxidação ocorre em excesso ...

$$xM_zS + (zxn + y)H_2O = zxM(OH)_n + S_xO_y^{2-} + (2y + zxn)H^+ + (2y + zxn - 2)e$$

Potencial de repouso (rest potential)


É a diferença de potencial entre a superfície do mineral e um eletrodo de referência. Nos casos abaixo a referência é o eletrodo de hidrogênio.

pH \sim 8 $\Delta t \sim 17min$

Como se mede o potencial de repouso de um sulfeto?

Tiocoletores

Xanthate

Thiophosphate

$$R-O$$
 P
 S
 Na^+

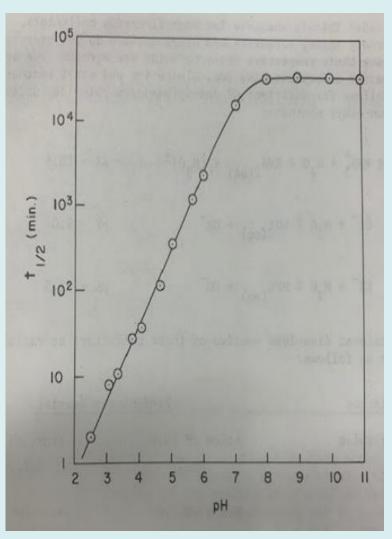
Thiocarbamate

Mercaptan

Thiourea

$$\begin{array}{c|cccc}
R & & & & & & & & \\
N - C - S^{-} & & & & & & \\
R & & & & & \\
R & & & & & \\
H & & & & & \\
\end{array}$$

Mercaptobenzothiazole


R represents the hydrocarbon chain

Decomposição de tiocoletores

Tioletores	Faixa de pH em que ocorre estabilidade
Xantato	8-13
Dixantógeno	1-11
Ditiofosfato	4-12
Ditiocarbamato	5-12
Tionocarbamato	4-9
Mercaptobenzotiazol	4-9

Decomposição do xantato

Reação em meio ácido (rápida)

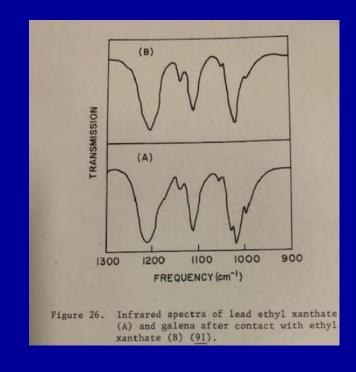
$$CH_3$$
- CH_2 -O- $CSSH \longrightarrow CS_2 + CH_3$ - CH_2 -OH

Reação em meio básico (lenta)

$$CH_3-CH_2-O-CSS^{-}\longrightarrow CS_2+CH_3-CH_2-O-COS^{-}$$

Mecanismos de adsorção de xantato em sulfetos são de natureza eletroquímica

Precipitação do xantato do metal (MX) na superfície do sulfeto (reação metatética)


Precipitação de dixantógeno (X₂) na superfície do sulfeto.

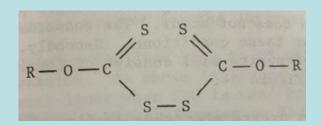
Precipitação do xantato metálico na superfície do sulfeto (reação metatética)

$$M^{2+}_{(sup)} + 2X^{-}_{(aq)} \rightarrow MX_{2(sup)}$$

MX = Xantato do metal M(OH)₂ = Hidróxido do metal

	pKPS = -logKPS		
Metal	MX (etil)	MX (amil)	M(OH) ₂
Pb ²⁺	16,7	17,6	15,1
Cu ²⁺	24,2	27,0	18,2
Ni ²⁺	12,5	14,5	14,8
Zn²+	8,2	n.d.	15,7

Mecanismo Eletroquímico \rightarrow Precipitação de dixantógeno (X_2) na superfície do sulfeto.


$$X_{2(i)} + 2e^{-} \leftrightarrow 2X_{(aq)}$$
 $E^{0} = -0.06 \text{ v}$

[Etil xantato] = $6.25 \times 10^{-4} \, \text{M}$ em pH=7, T=25°C

$$E_{rev} = E^o - \frac{RT}{nF} \ln \frac{[X^-]^2}{[X_{2(l)}]} = -0.06 - \frac{1.98 \times 298}{2 \times 23060} \ln \frac{[6.25 \ 10^{-4}]^2}{1} = -0.06 + 0.19 = +0.13v$$

$$F = 23.060 \text{ cal/volt}$$

$$R = 1,98 \frac{cal}{mol.K}$$

Se $E_{repouso} > 130 \text{ mV}$

Formação de dixantógeno (X₂)

Se $E_{repouso}$ < 130 mV

Formação de xantato do metal (MX₂)

Potencial de repouso de minerais

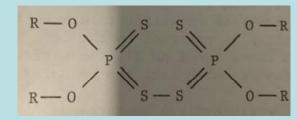
(em pH=7 na presença de 6,25 x 10⁻⁴ M de etil xantato)

Minerais	Fórmula	E _{repouso} (mv) (E _h)	Produto na superfície do sulfeto
Pirita	FeS.S ou FeS ₂	+220	X_2
Arsenopirita	FeAsS	+220	X_2
Pirrotita	Fe _(1-x) S	+221	X_2
Calcoprita	CuFeS ₂	+140	X_2
Bornita	Cu ₅ FeS ₄	+60	MX
Covelita	CuS	+50	$MX + X_2$
Galena	PbS	+60	MX

Mecanismo Eletroquímico → Precipitação de ditiofosfatógeno (DTP₂) na superfície do sulfeto.

$$(DTP)_{2}$$
 ($\sqrt{y} + 2e^- \leftrightarrow 2DTP^-$ (aq)

$$E^{\circ} = +0.25 \text{ V}$$

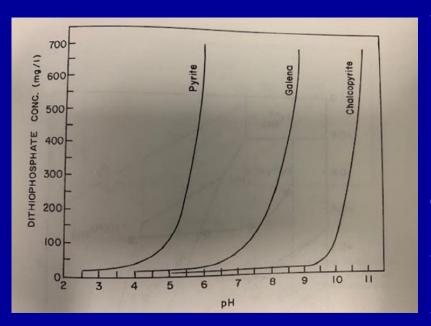

[Dietil ditiofosfato] = 5×10^{-4} M em pH=4 a 25°C

$$E_{rev} = E^o - \frac{RT}{nF} \ln \frac{[DTP^-]^2}{[DTP_2(l)]} = 0.25 - \frac{1.98 \times 298}{2 \times 23060} \ln \frac{\left[5.0 \times 10^{-4}\right]^2}{1} = 0.25 + 0.19 = +0.44v$$

Se $E_{repouso} > 440 \text{ mV}$

Formação de ditiofosfatógeno (DTP)₂

FeS₂, FeAsS, Fe_(1-x)S


Se $E_{repouso}$ < 440 mV

Formação de ditiofosfato do metal

PbS, CuFeS₂

Depressão com OH- na presença de DTP

(concentração de DTP necessária para obter Θ>30°)

	pKPS = -logKPS		
Metal	MDTP (dietil)	MDTP (diamil)	M(OH) ₂
Pb ²⁺	11,1	17,3	15,1
Cu ²⁺	15,9	n.d.	18,2

Estudo Dirigido – P6 Adsorção de tiocoletores em sulfetos

O potencial de repouso dos minerais pirita, covelita, calcopirita, galena e bornita foi medido em pH=8, a 25°C, na presença de 9,3 x 10⁻⁴M do coletor dietil ditiocarbamato (DTC⁻) de sódio, cuja fórmula molecular é exibida na Figura 1. Os resultados são apresentados na Tabela 1.

$$H_3C$$
 N $S = Na^{\oplus}$ $S = Na^{\oplus}$

Figura 1 – Fórmula molecular do dietil ditiocarbamato de sódio

Tabela 1 – Resultados de medidas de potencial de repouso de alguns sulfetos em pH=8, na presença de 9,3 x 10⁻⁴M do coletor dietil ditiocarbamato (DTC⁻) de sódio

Minerais	Potencial de repouso x Eh
Pirita (FeS ₂)	+0,475 v
Covelita (CuS)	+0,115 v
Calcopirita (CuFeS ₂)	+0,095 v
Galena (PbS)	-0,035 v
Bornita (Cu ₅ FeS ₄)	-0,045 v

Sabe-se que o coletor DTC⁻ pode sofrer oxidação para dissulfeto de tiouram (DTC)₂, de acordo com a Equação (1)

$$(DTC)_{2(i)} + 2e^{-i} \leftrightarrow 2DTC_{(aq)}^{-i} \qquad E^{0} = -0,003v$$
 (1)

$$+ 2e^{-} \qquad \qquad H_3C \longrightarrow N \longrightarrow S^{\ominus} Na^{\oplus}$$

LÍQUIDO AQUOSO

1. Com base na reação química representada pela Expressão (1), calcule o potencial reversível (E_{rev}) de tal reação (potencial de Nernst), utilizando a Expressão (2).

$$E_{rev} = E^{o} - \frac{RT}{nF}$$
 InK $E_{rev} = -0.003$

$$E_{rev} = E^o - \frac{RT}{nF} \ln \frac{[DTC^-]^2}{[DTC_2(l)]} = 0.03 - \frac{1.98 \times 298}{2 \times 23060} \ln \frac{\left[9.3 \times 10^{-4}\right]^2}{1} = -0.003 + 0.179 = +0.004$$

$$E_{rev} = +0,176 \text{ v}$$

2. Complete a Tabela 2, abaixo, indicando qual produto é mais provável de se formar na superfície dos sulfetos em questão: dissulfeto de tiouram ou ditiocarbamato do metal (Cu, Fe, Pb).

Minerais	Produto mais provável de se formar na superfície dos sulfetos
Pirita (FeS ₂)	Dissulfeto de tiouram
Covelita (CuS)	Ditiocarbamato de cobre
Calcopirita (CuFeS ₂)	Ditiocarbamato de cobre e ferro
Galena (PbS)	Ditiocarbamato de chumbo
Bornita (Cu ₅ FeS ₄)	Ditiocarbamato de cobre e ferro

Obrigado!

Prof. Laurindo de Salles Leal Filho

lauleal@usp.br

(11) 99981 1037