Quarta Lista de Exercícios - SEL 5739 Sistemas Não Lineares

Prof. Luís Fernando Costa Alberto

14 de Outubro de 2019

EXERCÍCIO 1) Seja a seguinte equação diferencial

$$\dot{x} = x + x^2.$$

Estude a estabilidade dos pontos de equilíbrio, esboce as órbitas do sistema em \mathbb{R} e calcule os conjuntos α -limite e ω -limite das órbitas deste sistema.

EXERCÍCIO 2) Verifique que

$$x(t) = 1 - \left(\frac{1 - e^t}{1 + e^t}\right)^2$$

é solução da equação diferencial de segunda ordem $\ddot{x} - x + \frac{3}{2}x^2 = 0$. Transforme esta equação num sistema planar de primeira ordem, esboce a órbita correspondente à solução x(t) e determine o α -limite e o ω -limite correspondente a esta solução.

EXERCÍCIO 3) Seja o seguinte sistema de equações diferenciais:

$$\dot{x} = -y + \left(1 - \sqrt{x^2 + y^2}\right) x$$

$$\dot{y} = x + \left(1 - \sqrt{x^2 + y^2}\right) y$$

$$\dot{z} = -z$$

Mostre que o cilindro $\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1\}$ é invariante com relação ao sistema anterior. Estude o conjunto ω -limite de todas as órbitas deste sistema.

EXERCÍCIO 4) Mostre que todo sistema gradiente, ou seja, todo sistema na forma

$$\dot{x} = qradV(x)$$

onde $x \in \mathbb{R}^n$ e $V : \mathbb{R}^n \to \mathbb{R}$ é uma função de classe \mathcal{C}^2 , não possui órbitas periódicas. Além disto, para todo x_o , $\omega(x_o)$ é um ponto de equilíbrio isolado ou o conjunto vazio. Forneça uma condição suficiente sobre V para garantir que $\omega(x_o)$ é não vazio para todo x_o .

EXERCÍCIO 5) Encontre os pontos de equilíbrio do sistema abaixo, classifique-os e mostre que este sistema não possui órbitas periódicas.

$$\begin{array}{lll} \dot{x} & = & y \\ \dot{y} & = & -b\sin x - ay, & \quad a,b > 0 \end{array}$$

EXERCÍCIO 6) Considere o sistema $\dot{x} = -arctan(x)$ Deseja-se calcular os equilíbrios deste sistema. Utilize o método de Newton Raphson para o cálculo dos equilíbrios. Use como estimativa inicial $x_o = 4$.

EXERCÍCIO 7) Considere o sistema

$$\dot{x} = 1 - 2sin(x) - 2sin(x - y)$$

 $\dot{y} = 1 - 3sin(y) - 2sin(y - x)$

Calcule os pontos de equilíbrio deste sistema. Estude o tipo de cada um deles. Mostre que este sistema pode ser escrito como um sistema gradiente e portanto todos os conjuntos limites são pontos de equilíbrio.

EXERCÍCIO 8) Considere o sistema não linear

$$\dot{x} = y
\dot{y} = ax + by - x^2y - x^3$$

Encontre condições sobre os parâmetros a e b para que este sistema não exiba órbitas periódicas.

EXERCÍCIO 9) Considere o sistema não linear

$$\dot{x} = x + y - x(x^2 + y^2)
 \dot{y} = -2x + y - y(x^2 + y^2)$$

Mostre a existência de pelo menos uma órbita periódica neste sistema.