

Transtornos psiquiátricos e doenças neurodegenerativas- bases fisiopatológicas para elaboração de planos dietoterápicos

Prof. Assoc. Sandra Maria Lima Ribeiro e-mail: smlribeiro@usp.br

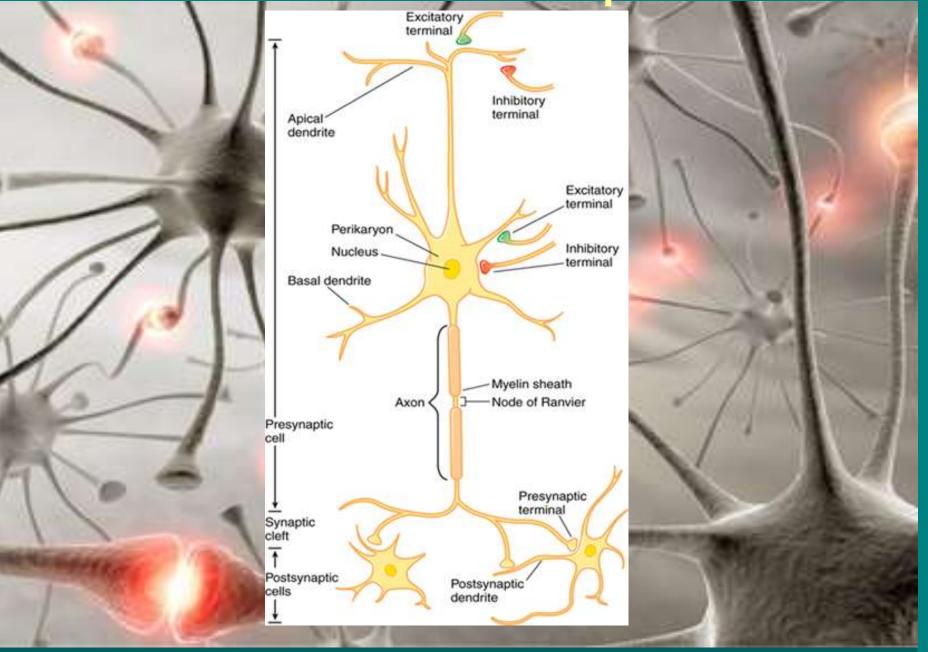
Objetivos da aula

 Recordar alguns componentes do SNC, com destaque para as regiões/componentes relacionados a cognição e humor

 Discutir alguns transtornos cerebrais, focando no papel (ainda pouco explorado) da nutrição.

1. Estrutura cerebral e neurotransmissores

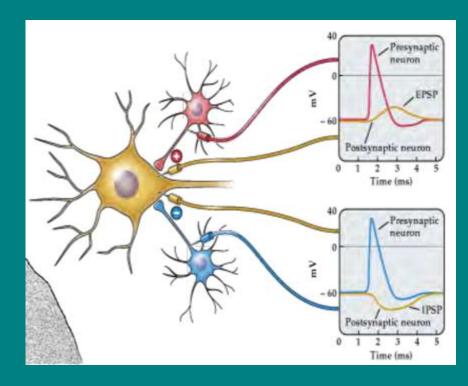
Sistema límbico- parte do cérebro envolvida na cognição e emoção



Estresse ambiental e/ou elevação de citocinas pró-inflamatórias

Hipotálamo- CRF
Hipófise- ACTH
Adrenais- cortisol

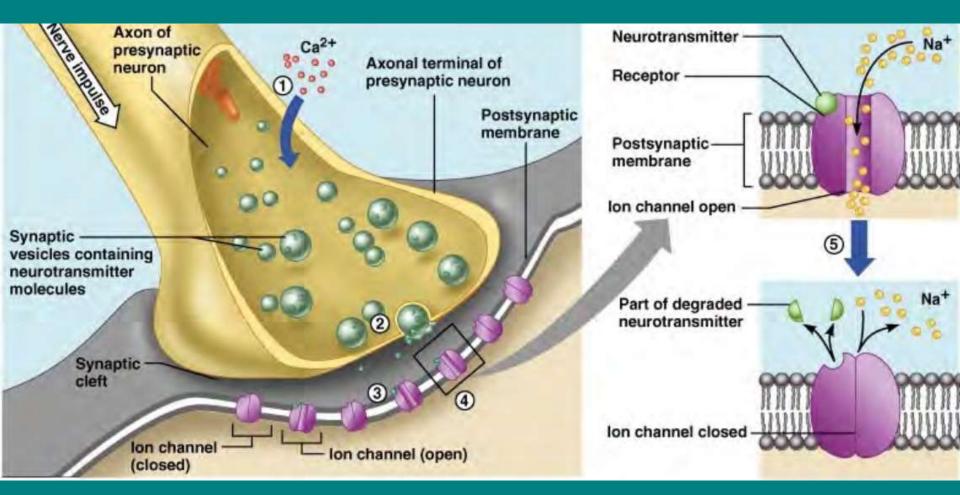
Eixo hipófise-hipotálamo ou hipotálamo-pituitária


Neurônio e Sinapse

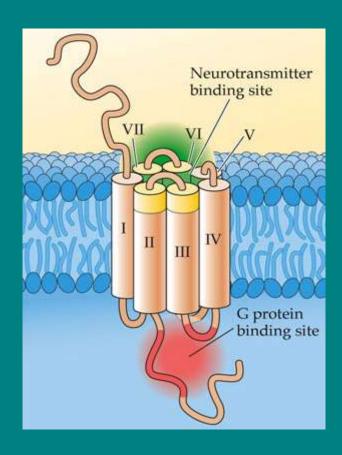
Neurotransmissores (NT)

Substâncias químicas que transmitem o impulso nervoso

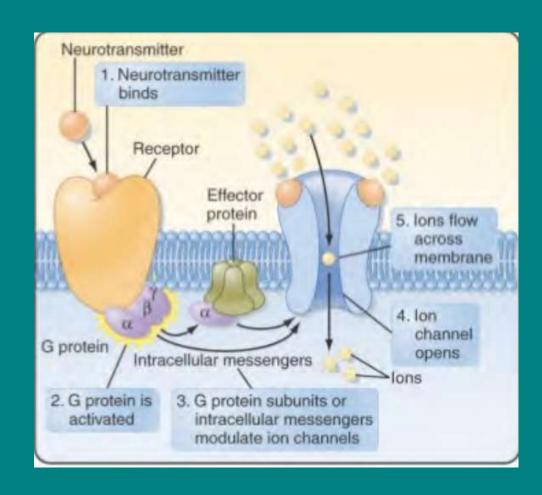
Envolvidos nos mais diferentes processos, desde a contração muscular até as respostas emocionais; excesso ou falta= doenças psiquiátricas



- Estruturas químicas diferentes, que influenciam o neurônio "receptor" (pós-sináptico)
- Alguns têm função excitatória e causam o disparo na transmissão, outros agem como inibidores e portanto evitam o disparo
- Os neurônios recebem ambos os estímulos, e o resultado é o balanço entre eles


Receptores de NT- Ionotróficos

Ação rápida

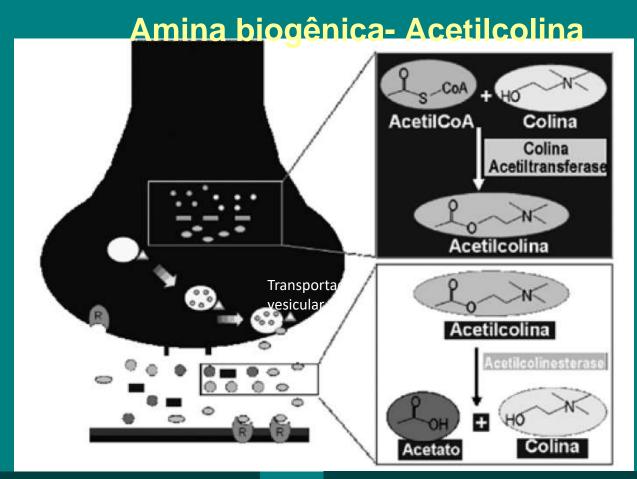

Canal ou poro- fluxo da neurotransmissão

Receptores de NT- Metabotróficos

Subunidade proteica com vários domínios transmembrana; não possuem canal ou poro

Ação mais lenta, porém mais duradoura

Algumas categorias de neurotransmissores

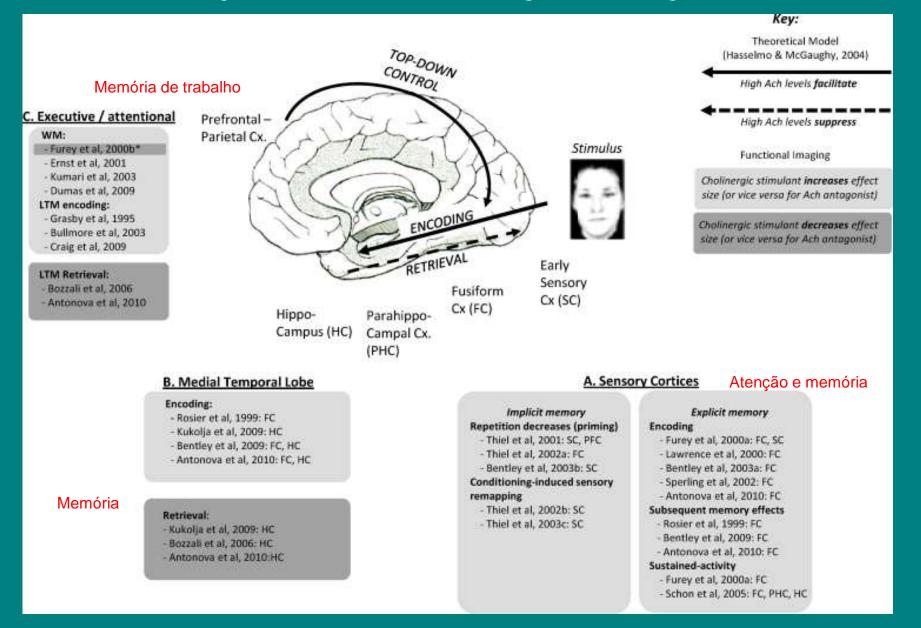

- Aminoácidos
 - Glutamato (Glu)
 - GABA
- Aminas biogênicas
 - Aminas quartenárias
 - Acetilcolina (Ach)
 - Monoaminas
 - Catecolaminas
 - Dopamina (DA)

TIROSINA

- Norepinefrina (NE) e epinephrina
- Indolaminas
 - Serotonina (5-HT)

TRIPTOFANO

- Neuropeptídeos
 - Peptideos Opióides
 - Encefalinas
 - Endorfinas
 - Dinorfinas
- Outros (como lipídeos, nucleosídeos)

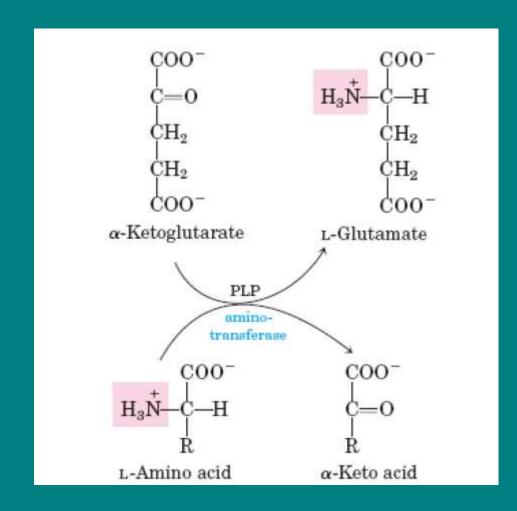

Receptores Nicotínicos (ionotropicos)

Subunidades diferentes, em tecidos diferentes e ações diferentes: regulação de dopamina, glutamato e GABA Ação nas funções musculares, neuronais e comportamentais

Receptores Muscarinicos (metabotropicos)

5 subtipos (M1-M5) e diferentes ações: Ação vital e periférica(cardíaca,vascular, respiratória Ação central: Funções cognitivas, emocionais, no estresse e no sono

Panorama geral de estudos com imagens colinérgico-funcionais

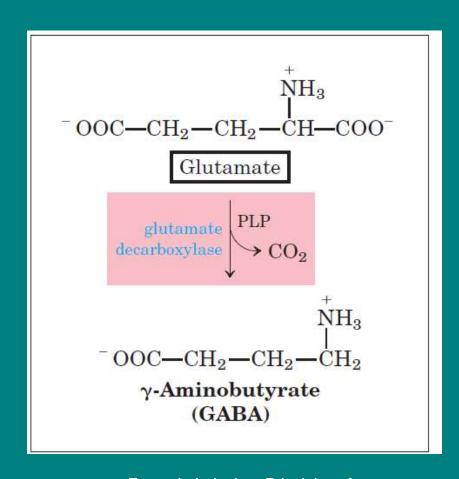


Bentley P, Driver J, Dolan RJ. Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol. 2011;94(4):360-88.

Aminoácido- Glutamato

- Principal neurotransmissor excitatório
- Síntese- vias de síntese/desaminação de aminoácidos

- 4 tipos de receptores
 - NMDAIonotropicos
 - AMPA
 - Kainato

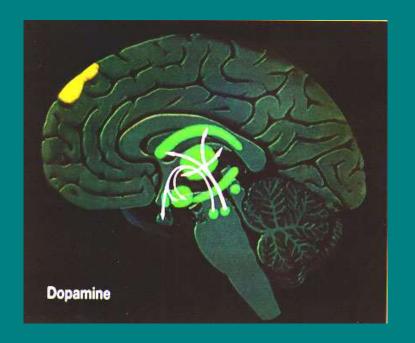

mGluR - Metabotropico

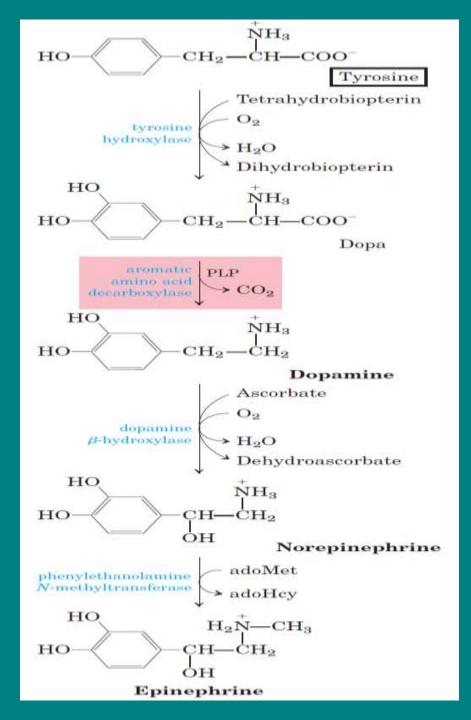
Fonte: Lehningher. Principles of Biochemistray, 4° ed., 2005

Aminoácido- GABA (Ácido Gama Aminobutirico)

- Principal NT inibitório
- Biosíntese: a partir do glutamato

- 2 tipos de receptores
 - GABA_A GABA_C (ionotropicos)
 - GABA_B (metabotropico)




Fonte: Lehningher. Principles of Biochemistray, 4° ed., 2005

Monoamina catecolamina- Dopamina

- Excitatório e inibidor
- Dopamina- recaptação por transportador (DAT)
- 5 tipos de receptores (D1–D5, todos metabotrópicos)

- Substância negra- movimento motor
- Mesolímbica- reforço e vícios
- Mesocortical (cortex pré-frontal) memória de trabalho

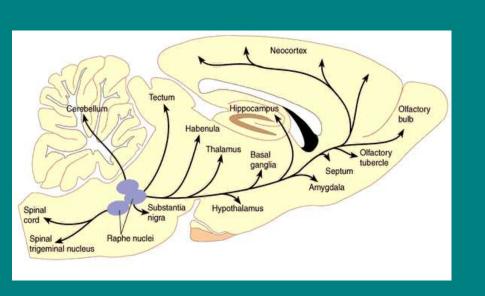
Tirosina: aminoácido precursor da dopamina, noradrenalina e adrenalina

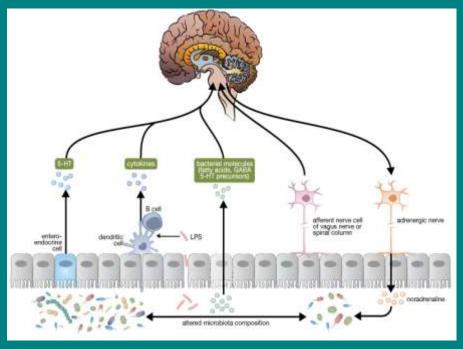
Fonte: Lehningher. Principles of Biochemistray, 4° ed., 2005

NH_3 CH2-Tryptophan Tetrahydrobiopterin tryptophan hydroxylase > H₂O Dihydrobiopterin NH_3 CH_2 CH—COO HO 5-Hydroxytryptophan aromatic PLP JH2 CH2-HO Serotonin

Monoamina indolamina- Serotonina

- Pelo menos 14 receptores, todos metabotrópicos e póssinapticos, exceto:
 - 5-HT_{1A,B,D} (autoreceptores) no SNC
 - 5-HT₃ (inibidor, ionotrópico) intestino

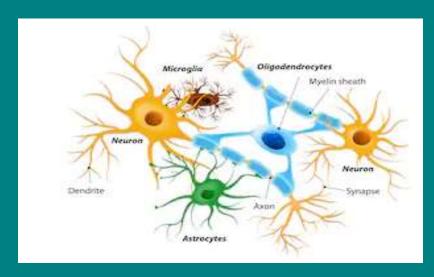

Principais vias da 5-HT

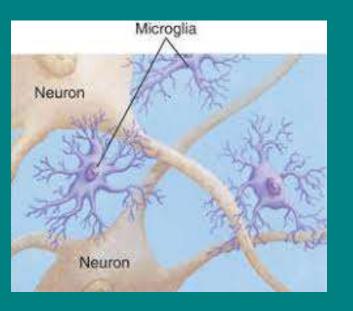

- Localização dos mais importantes neurônios serotoninérgicos
- Núcleo Dorsal de Raphe

 cortex,
 zona estriada
- Núcleo Medial Raphe → cortex, hipocampo

A maior parte da serotonina corporal é encontrada no intestino.

O CNS tem menos que 10% da serotonina do corpo

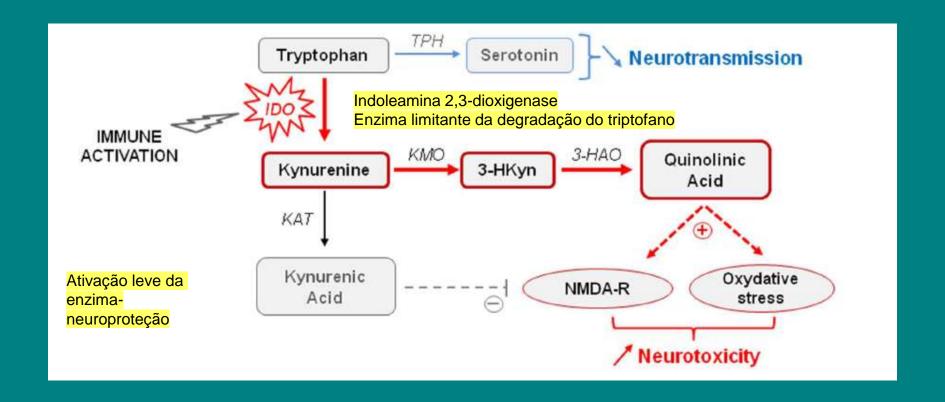


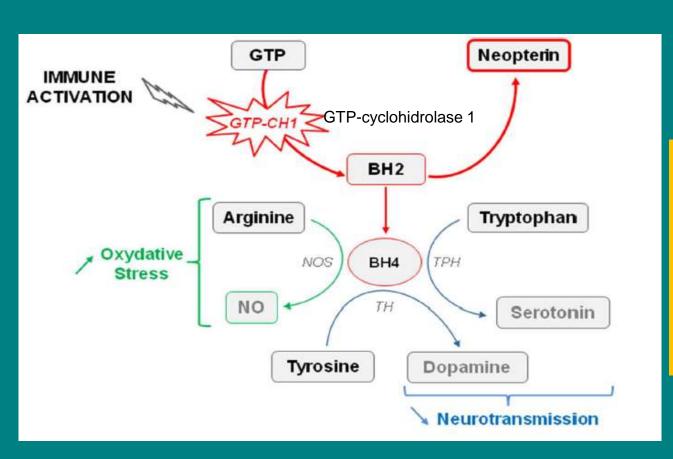

2. Papel da microglia

Importância da Microglia e da neuroinflamação

Sinaptogênese

Nêurogênese

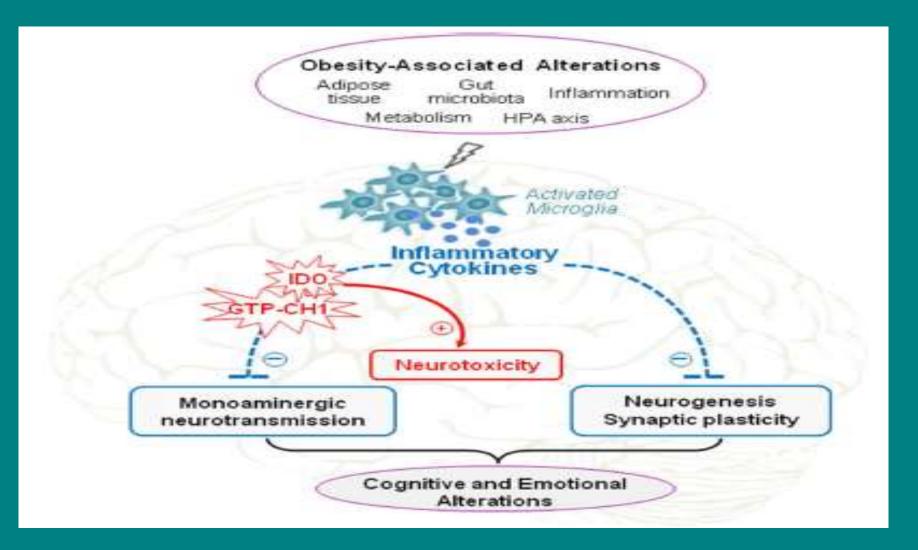

Remoção de resíduos


Microglia e inflamação

- Estado inflamatório leve e constante= alerta
- Desequilíbrios- aumento do estado inflamatório
- Redução ou desbalanço das funções da microglia
- Relação com a inflamação sistêmica
 - O que causa a inflamação sistêmica?

Neuroinflamação e síntese de neurotransmissores- serotonina

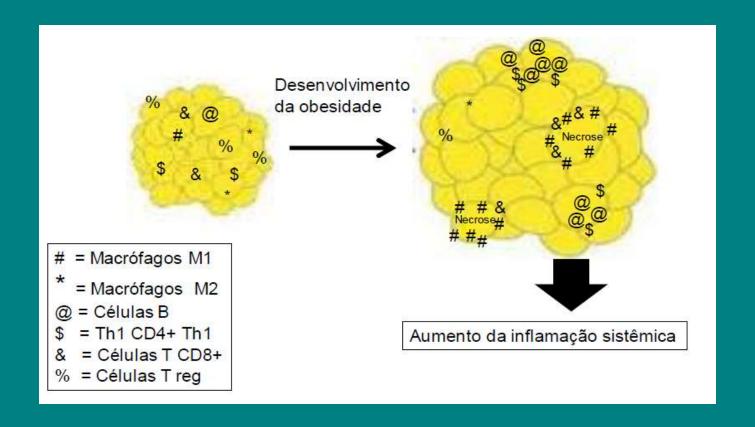
Neuroinflamação e síntese de neurotransmissores-dopamina e serotonina, além do óxido nítrico

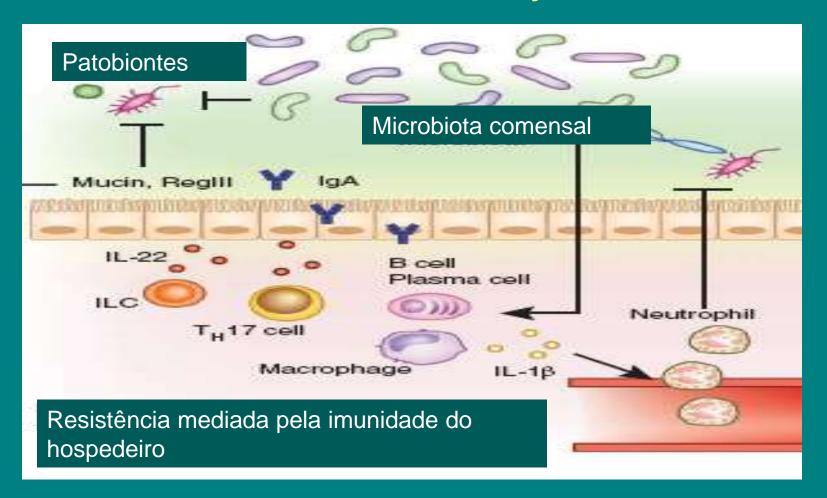


Formação de Tetrahidrobiopterina (BH4)

Etapa importante para:

- Conversão de arginina em NO
- Conversão de triptofano em serotonina
- Conversão de tirosina em depamina

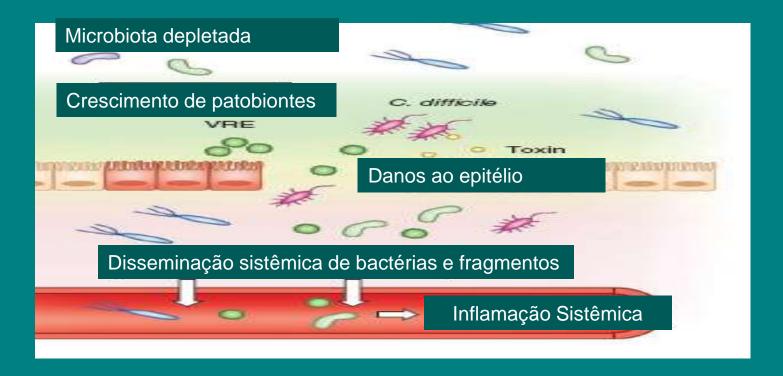

O desbalanço na neuroinflamação altera a síntese de neurotransmissores

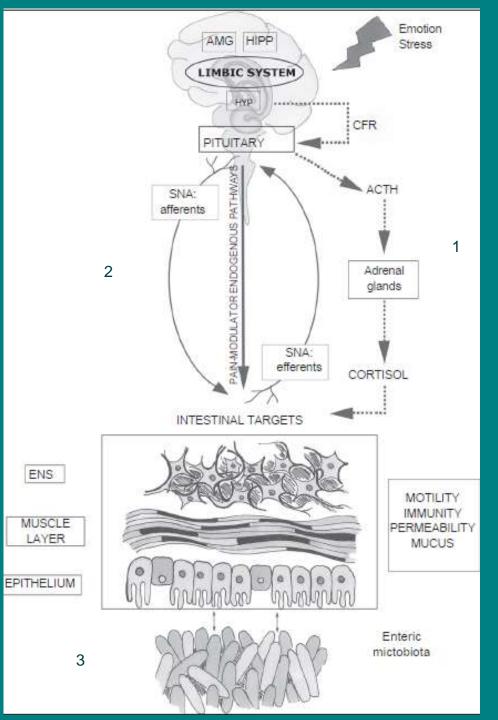

Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Frontiers in Neuroscience 2015; 9- Artigo 229

3. Relação entre neuroinflamação e inflamação sistêmica

Neuroinflamação e relação com a inflamação sistêmica Potencial inflamatório do tecido adiposo

Neuroinflamação e relação com a inflamação sistêmica Intestino, microbiota e função de barreira


Alteração da microbiota e inflamação sistêmica

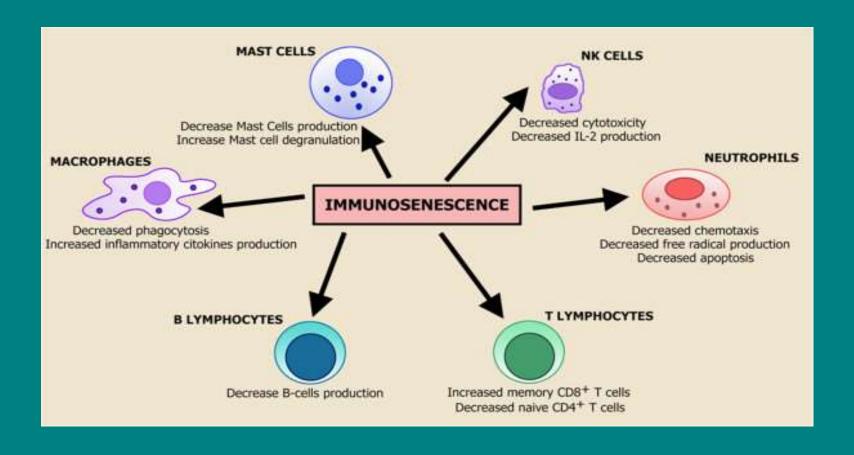

Dieta

Sedentarismo

Envelhecimento

Outros (doenças, medicamentos, etc)

Eixo intestino cérebro


Fatores ambientais (emoção e outros estresses)- ativação do HPA

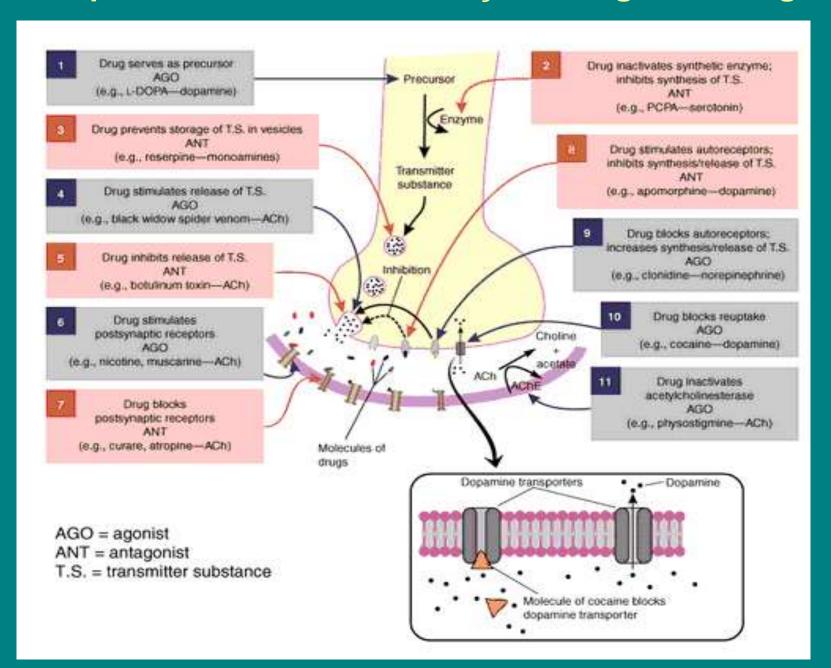
- -1)Ativação do HPA- estimula a liberação de fator de liberação de corticotrofina (CRF) pelo hipotálamo (HYP)
- -CRF- estimula a liberação de hormônio adrenocorticotrófico (ACTH) pela glândula pituitária
- -ACTH- estimula a liberação de cortisol pelas glândulas adrenais
- 2) Comunicação entre intestino (sistema nervoso entérico, camada muscular, e mucosa) e CNS por vias autonômicas aferentes e eferentes- Modulação da motilidade, imunidade, permeabilidade e secreção de muco
- 3) Papel bidirecional da microbiotapapel na neuroinflamação

Carabotti et al, 2015

Neuroinflamação e relação com inflamação sistêmica Imunosenescência- maior risco de certos transtornos cerebrais em idosos

4. Medicamentos com ação em NT

Substâncias (por exemplo, drogas) que afetam os neurotransmissores


Antagonistas

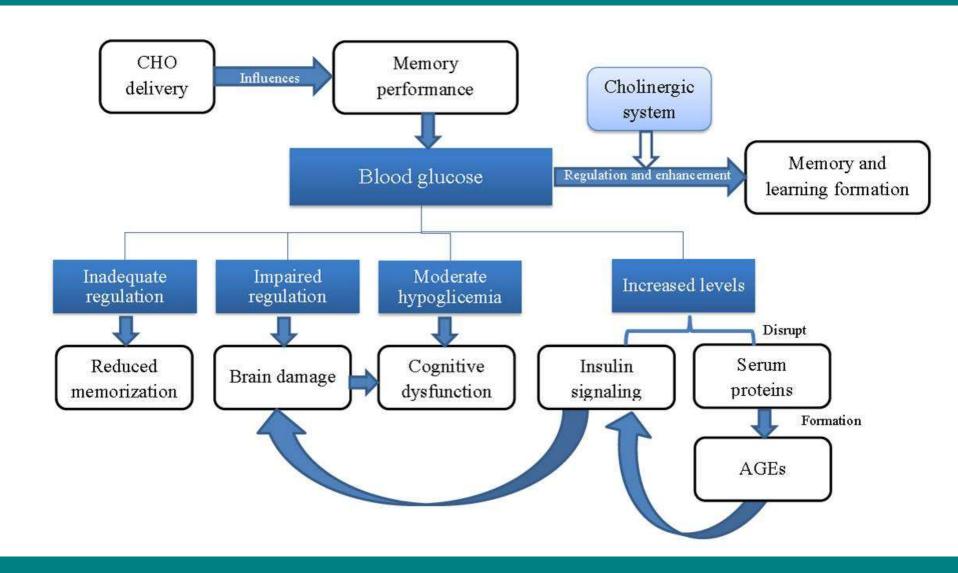
 Substâncias químicas que bloqueiam ou reduzem a ação de outro NT (ação oposta ao NT)

Agonistas

 Mimetizam ou aumentam os efeitos dos NT nos receptores da célula receptora, aumentando ou diminuindo a atividade celular, dependendo do efeito original do NT em questão (inibidor ou excitatório)

Exemplos de mecanismos de ação de algumas drogas

5. Estratégias não farmacológicas na modulação de NT


Estilo de vida e NT

- Exercício- exemplos de ação
 - Atenua a depleção de dopamina
 - Aumenta níveis de serotonina
 - Estímulo à produção de beta-endorfinas
- Dieta- estudos epidemiológicos de associações; necessidade de mais estudos clínicos (antiinflamatórios, antioxidantes, por exemplo)

6. Nutrientes e cérebro- aspectos a serem considerados em todos os transtornos cerebrais

O metabolismo cerebral é fortemente dependente do correto fornecimento de macro e micronutrientes

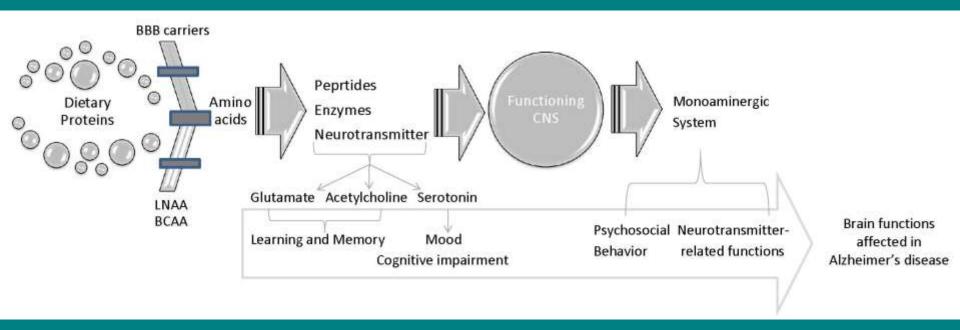
Carboidratos e Cérebro

Carboidratos e índice glicêmico x depressão

- Women's health initiative (n= 87618 e 69954 no follow-up), mulheres pós menopausa
- Avaliação : QFA e Escala de depressão

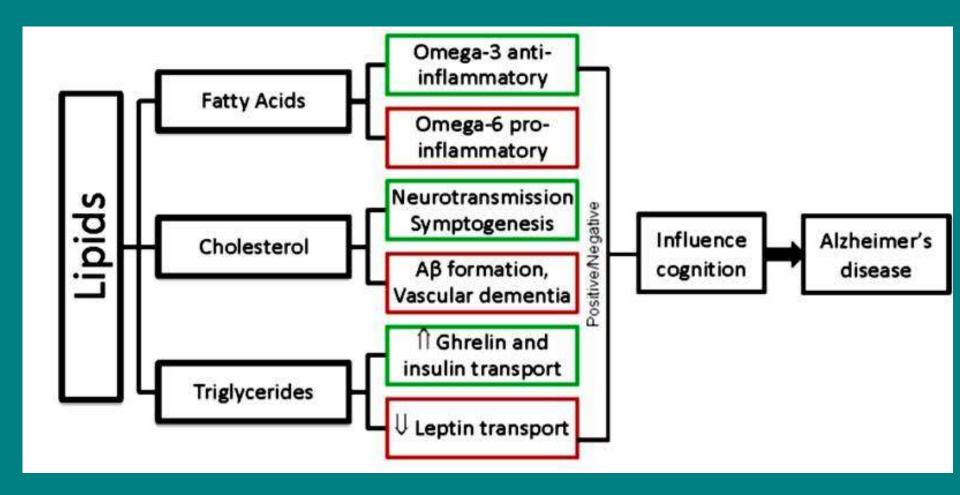
 Uma das questões investigadas: relação entre o índice glicêmico e carga glicêmica da dieta a presença de sintomas depressivos

Gangwisch JE, Hale L, Garcia L et al, High glycemic index diet as a risk factor for depression: analyses from the Women's Health Initiative. Am J Clin Nutr 2015; 102: 454-63


Baseline characteristics by dietary GI quintile and incidence of depression 3 y later¹

Baseline characteristics	Dietary GI quintile							Incident depression 3 y later		
	п	First (low)	Second	Third	Fourth	Fifth (high)	P^2	Yes	No	P^2
Total n	69,954	13,990	13,991	13,991	13,991	13,991		4643	65,311	
Depression, n	4643	807	849	876	988	1123	< 0.0001			
Median GI	Mars.	47.0	49.8	51.7	53.5	56.3	PLANTA MERINA			

^{*}Ajuste por alguns tipos de alimentos fonte de diferentes tipos de carboidrato- o Quinto quintil foi mais significativo quando o consumo foi de açúcares de adição, e sacarose.


Gangwisch JE, Hale L, Garcia L et al, High glycemic index diet as a risk factor for depression: analyses from the Women's Health Initiative. Am J Clin Nutr 2015; 102: 454-63

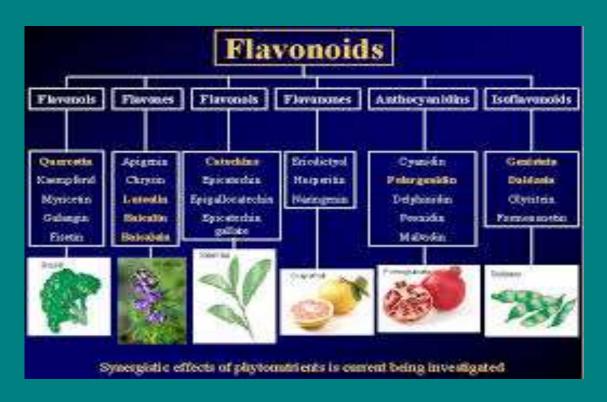
Proteínas, aminoácidos e Cérebro

Fonte: Munóz-Fernandez SS & Ribeiro SML. Nutrition and Alzheimer's Diseases. Clinicis in Geriatric Medicine 2018. In press.

Lipídeos e Cérebro

Nutrientes Antioxidantes

Espécies reativas oxidadas


Abundante no cérebro com DA

Demanda não suprida pelos sistemas antioxidantes

Danos a proteínas, lipídeos e DNA

Contribuição importante para a neurodegeneração

Flavonóides

Neuroproteção

Melhora da função neuronal

FLAVONOIDES Ação além de antioxidante

Indução da neurogênese

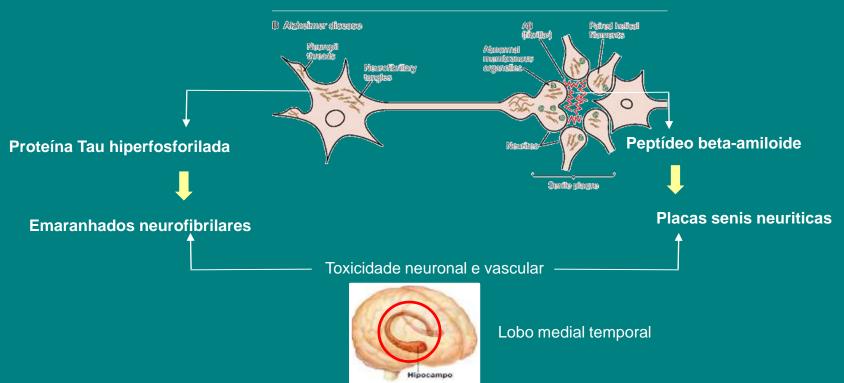
Estímulo à regeneração neuronal

Flavonoides- ações

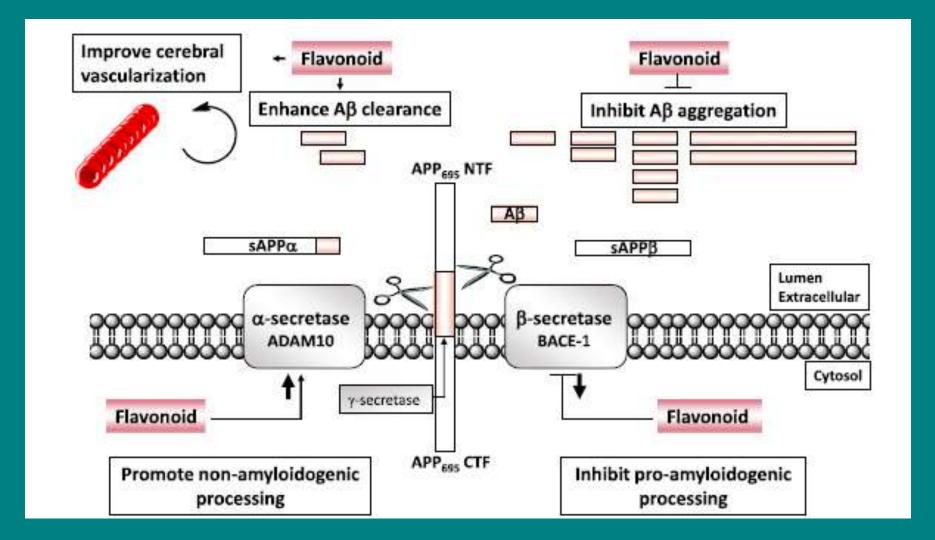
Algumas vias são inibidas

- Neuroinflamação
 - Redução da produção de óxido nítrico e de citocinas inflamatórias
- Viabilidade neuronal
 - Inibição da apoptose
 - Sobrevivência dos neurônios

PREVENÇÃO DA NEURODEGENERAÇÃO


Algumas vias são ativadas

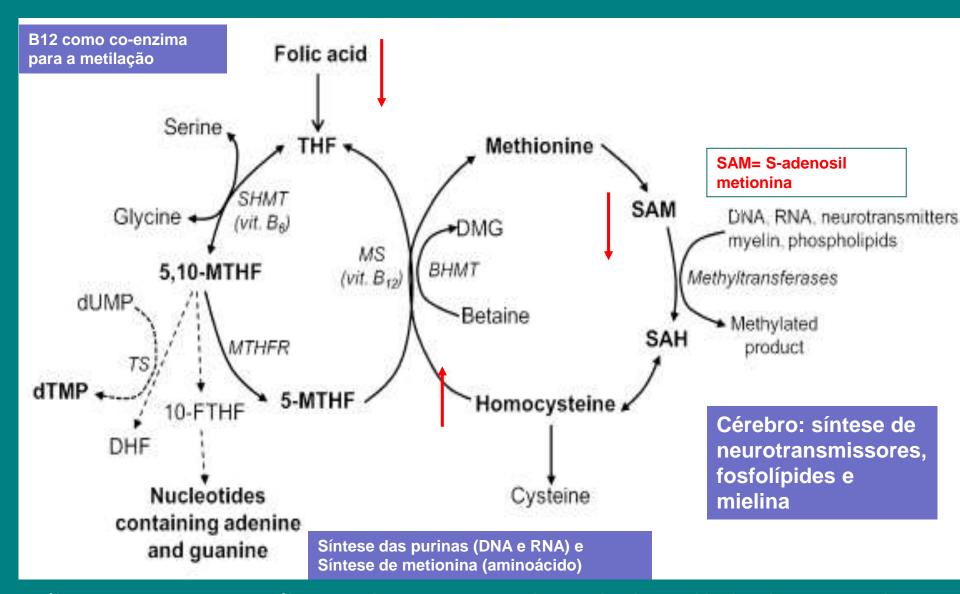
- Morfologia Neuronal
 - Comunicação entre neurônios
 - Plasticidade Sináptica
- Efeitos vasculares
 - Aumento do fluxo sanguíneo
 - Angiogênese
 - Crescimento de novas células nervosas


MELHORA DA MEMÓRIA E DA COGNIÇÃO

Doença de Alzheimer- Aspectos Fisiopatológicos

Perda neuronal e sináptica progressiva

Flavonóides e processo amiloidogênico


B12: Fígado, Ostras, Carne de vaca, ovos, Leite e derivados, Peixes (100g de Truta tem 40%, 100g de Salmão tem 50%, 100g de atum tem 15%), cereais enriquecidos

Vitaminas: complexo B

Ácido Fólico (Folacina): carnes, levedura, vegetais folhosos de cor verde-escuro, legumes e grãos integrais

B6: fígado e carne vermelha, grãos integrais, batatas, vegetais verdes e milho

Vitaminas do complexo B e cérebro: B6, B12 e ácido fólico: participação do "metabolismo de um carbono"

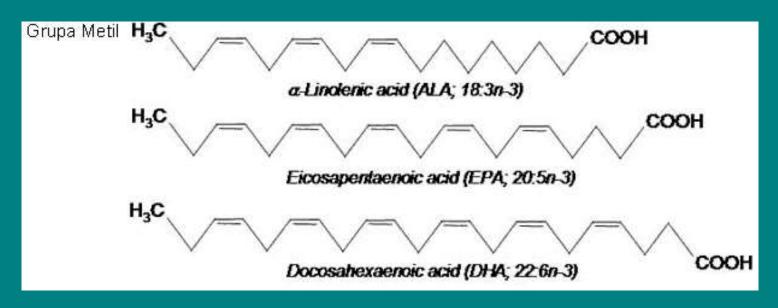
Araújo JR, Martel F, Borges N, Araújo JM, Keating E. Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Research Reviews 2015; 22:9-19;

Vitaminas do complexo B e desordens cerebrais

Diminuição da S-adenosilmetionina (SAM)

Via metabólica equilibrada

- Neurotransmissores (ex.: catecolaminas)
- Fosfolípides (membranas celulares)
- Mielina
- Controle de níveis de Bamilóide
- Etapas de fosforilação da proteína TAU


Acúmulo de Homocisteína (Hys)

Desequilíbrio

- Neurotoxidade da Hys
- Vasotoxidade
- Idosos e elevação da Hys: gastrite atrófica, antiácidos, alteração dos receptores para transporte de folato e B12 na barreira hematocefálica
- Níveis elevados de Hys em adultos: riscos de doenças arteriais e cerebrais.

Ácidos graxos do tipo ômega-3 (W-3)

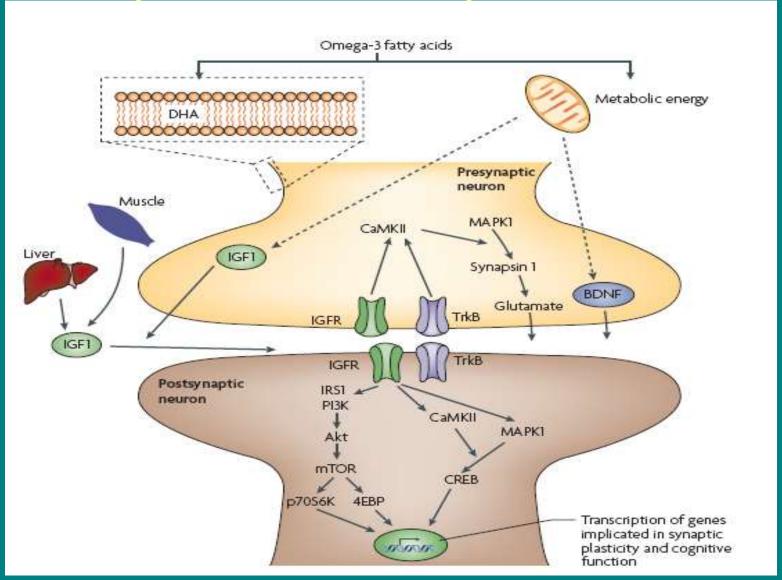
Possíveis relações com sintomas depressivos Hipótese 1. W-3 e neurotransmissão

- Relação entre concentração de W-3 e densidade de receptores de serotonina 2 (5HT-2) e dopamina 2(D2).
- Correlação entre ácido 5-hidroxi-indoleacético (5-HIAA), marcador do turnover de serotonina, e W-3 no plasma

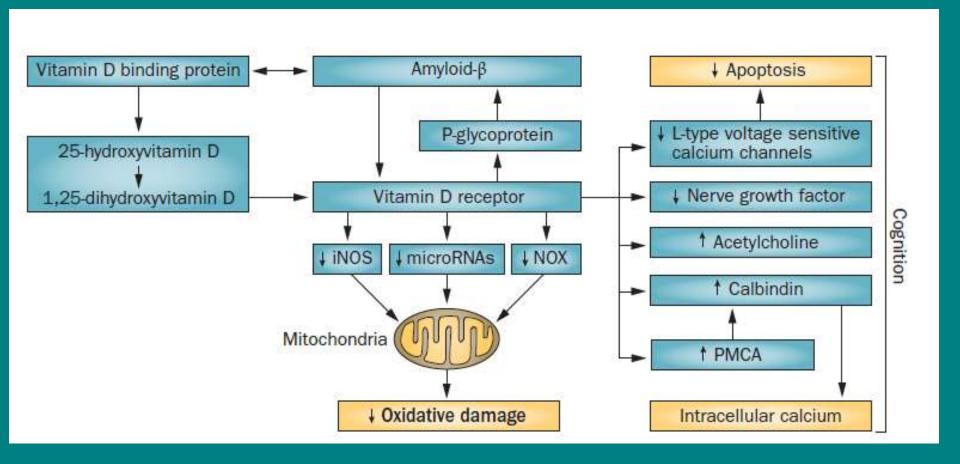
Fontes: Hibbeln JR. Lancet 1998; 351:1213; Delion et al. J Nutr 1994; 124:2466; Chalon et al Lipids 2001; 36: 937; Berg et al Mol Pharmacol 1996; 50:1017

Possíveis relações com sintomas depressivos Hipótese 2. W-3 como anti-inflamatório e anti-oxidante

Microglia Ativada


- Regulação da expressão de espécies oxidadas
- CONTRIBUIÇÃO PARA A PATOGÊNESE NEUROPSIQUIÁTRICA

Aumento da expressão de enzimas antioxidantes


- W3 como desencadeador desse aumento
- MELHORA DO
 ESTRESSE OXIDATIVO;
 MECANISMO
 ANTIDEPRESSIVO

Fontes: Su KP. Biomedicine 2012; 2:68-74; Lu et al Neuropsychopharmacology 2010; 35: 2238-2248

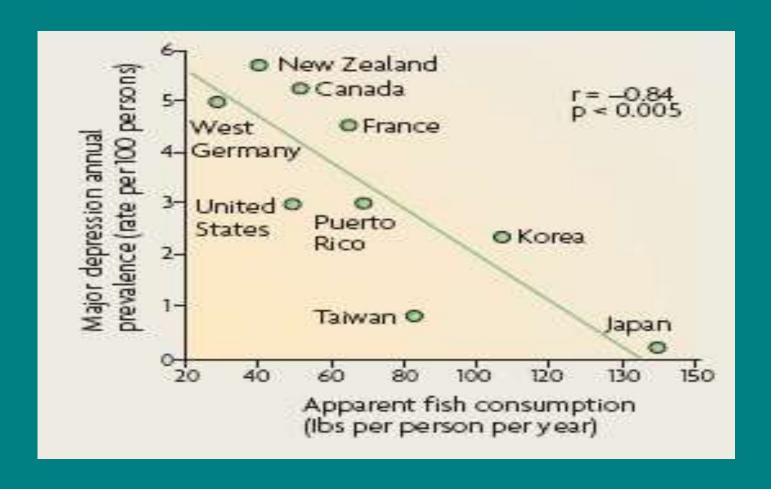
Possíveis relações com sintomas depressivos Hipótese 3. W-3 e neuroplasticidade

Vitamina D



Estudos populacionais: tendência de uma curva U

Substâncias moduladoras da microbiota (e permeabilidade) intestinal



Antioxidantes, flavonóides, vitaminas do complexo B

Consumo contemporâneo de peixes e prevalência anual de depressão maior

Gomez-Pinilla F. Brain-foods: the effects of nutrients on brain function. *Nature Rev Neurosc.* 2008; 9:568-578

Peixes, frutas, verduras, etc

Importância da investigação de padrões alimentares-Mediterrâneo

Revisão sistemática e meta análise

21 estudos incluídos

Frutas, vegetais, peixes e grãos

Associados à redução do risco de depressão

Lay JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr 2014; 99: 181-197

Inúmeros estudos associando padrão mediterrâneo e transtornos mentais

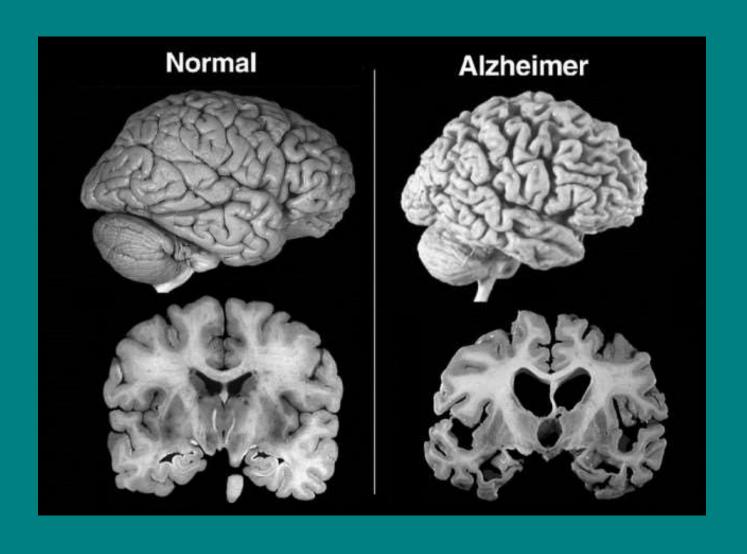
- DM e Alzheimer
- DM e diferentes tipos de demência, principalmente a vascular
- DM e transtornos depressivos
- DM e transtornos psicóticos

7. Detalhamento de algumas doenças psiquiátricas e algumas condutas nutricionais

Doenças neurodegenerativas

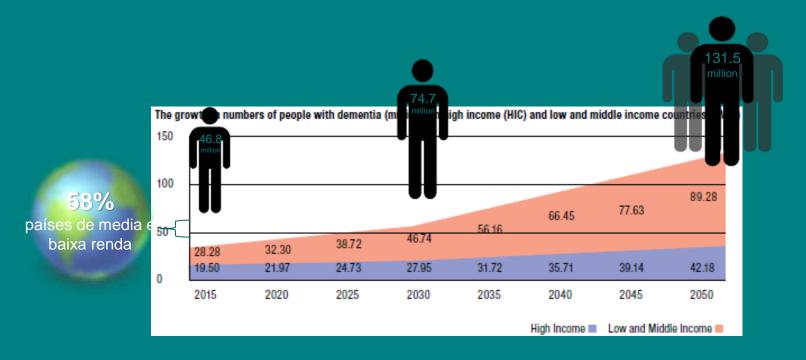
- Demências
- Doença de Alzheimer
- Demência Vascular
- Doença de Parkinson
- Esclerose Múltipla

DEMÊNCIAS


Sindromes crônicas e progressivas no cérebro

Deterioração intelectual e cognitiva

Doença de Alzheimer (DA) 50 a 75% dos casos



Doença de Alzheimer

Doença de Alzheimer- Dados epidemiológicos

- Delphi Consensus Study 2005 Prevalência 24,3 milhões, Incidência 4,6 milhões
- Global Burden of Disease 2010 Prevalência 35,6 milhões, Incidência 7,7 milhões
- ADI 2015 Prevalência 46,8 milhões, Incidência 9.9 milhões

Fatores de Risco

- Idade;
- Histórico familiar;
- Baixa escolaridade;
- Lesões cerebrais.

Peso corporal na meia idade e risco de DA

 Muito baixo peso= aumento do risco em cinco vezes (CI= 0,9-33,7; p<0,01); OR=7,9

Peso elevado= aumento do risco em 9
 vezes (Cl= 2,4-37,3, p<0,001); OR=12,6

Obesidade e DA

- Controvérsias na literatura
- Obesidade na meia idade (40-50 anos) mostra associação com demências
 - Dados mais evidentes na demência vascular
 - Obesidade na meia idade= parece estar mais associada à função executiva e testes de velocidade do processamento (=comprometimento vascular; DA= memória episódica)

Obesidade e DA

 Obesidade nas idades mais avançadas parece até ser protetor (críticas quanto aos instrumentos utilizados!)

 Nem todos os estudos controlam as mesmas variáveis (comorbidades, aspectos educacionais, etc)= controvérsia!

Variáveis associadas à obesidade

- Inflamação sistêmica
- Comorbidades, principalmente resistência à insulina
- Obesidade Central (prodrômico da DA)

 Estudo em cérebros humanos: autópsia comparando obesos sem DA (n=12) e não obesos sem DA (n=10) e DA controles (n=3) - maior indicação de beta amiloide no hipocampo, APP e TAU fosforilada nos obesos (Mrak, 2009).

Perda de peso e DA- hipóteses

Fatores Primários

- Transtornos cognitivos, comportamentais e motores
- Atrofia do lobo medial temporal
- Disfunções do olfato e paladar

Fatores Secundários

- Efeitos colaterais de medicamentos
- Fatores sociais
- Comorbidades

Esquecimentos de comer Recusa ao alimento Aumento do gasto energético Incapacidade de realizar tarefas complexas (compra e preparo do alimento) Perda do apetite

Existem 3 fases na Doença de Alzheimer com aproximadamente 2 a 3 anos cada

Fase primária.

Fase secundária.

Fase terciária.

1ª Fase da DA – Primária, inicial ou leve

- Distrações
- Esquecimentos frequentes
- Dificuldade em lembrar nomes/palavras
- Dificuldade em aprender novas informações
- Desorientação em espaços não familiares
- Redução nas atividades sociais dentro e fora de casa.

Fase leve- Alzheimer

- Sintomas relacionados a envelhecimento normal são mais evidentes (perda da sensibilidade gustativa, perda do limiar de sede)
 - Uso de ervas e especiarias
 - Participação do idoso na preparação do alimento, mesmo que timidamente
 - Estimular permanentemente o consumo de água e líquido
- A alimentação como exercício cognitivo: utilização do diário alimentar

O diário alimentar como treino cognitivo

 Exercícios de memória com a utilização do diário alimentar

Educação nutricional como espaço de treino cognitivo e social

 O ato social de comer e preservação/ estimulação da memória/estabelecimento de redes sociais

Santos GD, Ribeiro SML. Aspectos afetivos relacionados ao comportamento alime ntar dos idosos frequentadores de um centro de convivência. Rev. Bras. Geriatr. Gerontol 2011; 14: 319-328,

2ª Fase da DA – Intermediária ou secundária

- Perda das habilidades cognitivas
- Perda mais pronunciada da memória
- Deterioração das habilidades verbais
- Diminuição do conteúdo e da variação da fala
- Aumento de transtornos comportamentais
- Possível surgimento de fenômenos psicóticos.

Fase moderada

 O idoso esquece que já realizou as refeições

- Importância de se realizar várias refeições pequenas durante o dia
- Importância (difícil) de manter as refeições juntamente com a família
- Maior incidência de disfagias: atenção à consistência, uso de espessantes.
- Aromatização da água ajuda na ingestão (folhas de hortelã, cascas de frutas)
- Maior queixa quanto a texturas

3ª Fase da DA – Terciária ou Avançada

- Transtornos na fala- de monossilábica a total desaparecimento
- Sintomas psicóticos transitórios
- Perda do controle da bexiga e do intestino;
- Alterações importantes na marcha e movimentos involuntários.

Fase avançada

- Apatia, perda cognitiva absoluta
- Risco grade de broncoaspiração e asfixia
- Incapacidade de se alimentar sozinho
- Esquecimento da finalidade dos talheres
- Não sabe o que fazer com o alimento na boca
- Disfagias

Fase avançada

- Dieta pastosa
- Líquidos com espessantes ou engrossados
- Necessidade de suplementos hipercalóricos
- Possível necessidade de suporte nutricional por sonda enteral, gastrostomia ou ileostomia.

Tratamento Farmacológicoinibidores da acetil-colinesterase

- Donepezila
- Rivastigmina
- Galantamina

Demência vascular

Relação com a presença de doenças crônicas como hipertensão, diabetes, dislipidemias

Aspectos preventivos similares a essas doenças

Dificuldades de se avaliar o tipo de demência que a pessoa está sendo acometida

Doença de Parkinson

Transtorno neurológico degenerativo primário

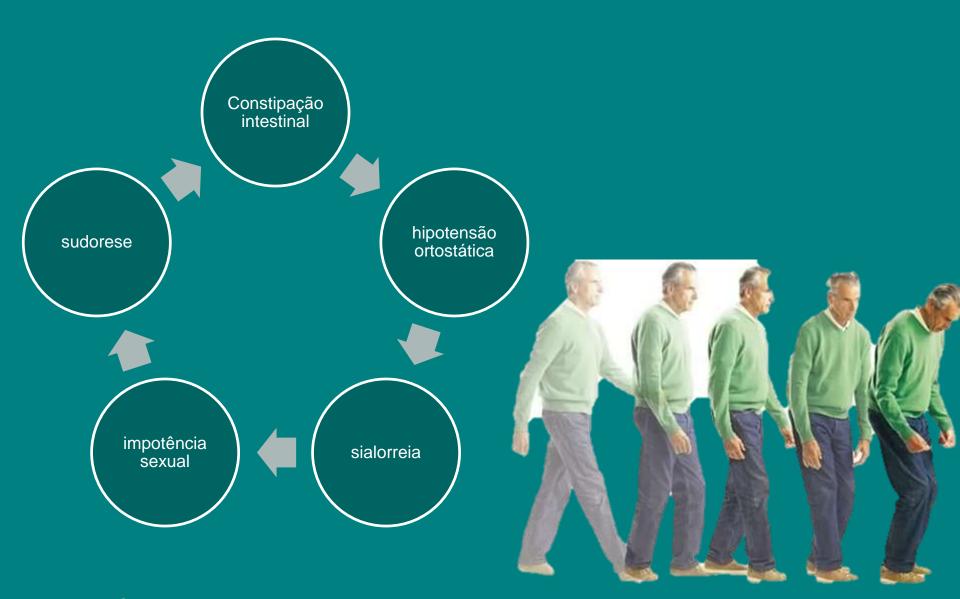
Afeta o sistema motor do indivíduo

Ocorre a perda de neurônios (que produzem principalmente dopamina) da área compacta da substância negra

Deterioração da transmissão dos movimentos musculares

Doença de Parkinson

 Segunda doença neurodegenerativa mais comum em todo o mundo. Alterações funcionais dos sistemas dopaminérgico, noradrenérgico, serotoninérgico e colinérgico.

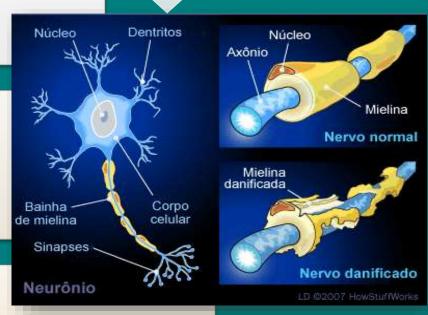

Werneck, A.L.S, 2010.

Quadro clínico (geralmente mais evidentes com cerca de 80% de redução na dopamina)

Em muitos casos o paciente desenvolve disfagia, começa a salivar e está em risco de sufocação e aspiração.

Disautonomia

- Medicamentos antiparkinsonianos Levodopaconvertida em dopamina nos gânglios da base, produzindo alívio dos sintomas.
- ➤ Terapia anticolinérgica controle do tremor e rigidez, podem ser utilizados em combinação com a levodopa e se contrapõem à ação do neutrotransmissor acetilcolina.


Dieta e Parkinson

- Risco de perda de peso (tremores; redução do apetite pelos medicamentos- Levodopa)
- Dificuldades de mastigação e deglutição-DISFAGIAS
- Interação Levodopa com proteínas da dietaplanejamento das refeições (distribuição)
- Adequação de vitamina B6- cofator da conversão do Levodopa em dopamina
- Alimentação rica em fibras- alterações do movimento intestinal

Esclerose Múltipla

Doença inflamatória crônica, desmielinizante, autoimune que afeta o SNC

> Degradação da bainha de mielina Responsável pela proteção das células nervosas do cérebro e da medula espinhal

Causa mais importante de doença do SNC em adultos jovens

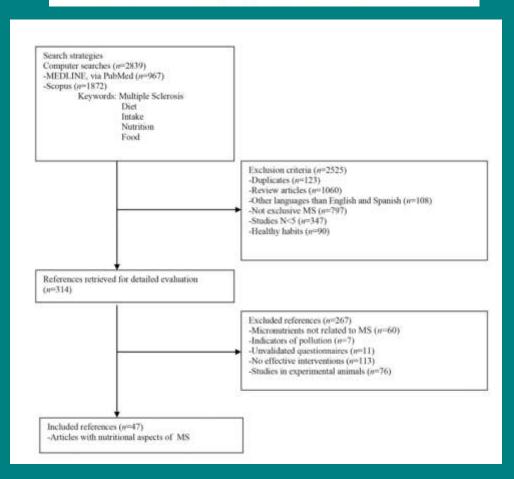
Esclerose Múltipla

Sistema Imune

Linfócitos Thelper pró inflamatórios (TH1 e TH17) Antígenos proteicos e lipídicos da bainha de mielina

Formação de tecido fibroso

Comprometimento da transmissão dos impulsos nervosos pelo neurônios


Sintomas conforme local da lesão

EBERS, 2008; HOHLFELD, 2010.

Influence of Diet in Multiple Sclerosis: A Systematic Review^{1,2}

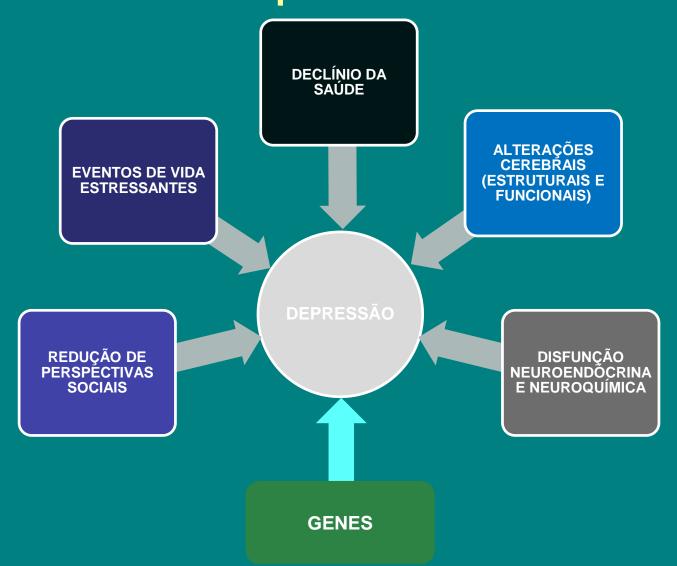
M José Bagur,³ M Antonia Murcia,^{4,5} Antonia M Jiménez-Monreal,^{4,5} Josep A Tur,^{5,6} M Mar Bibiloni,^{5,6} Gonzalo L Alonso,³ and Magdalena Martínez-Tomé,^{4,5}*

©2017 American Society for Nutrition. Adv Nutr 2017;8:463–72;

RS a partir dos 47 estudos verificaram relação com risco de: desenvolvimento, evolução e sintomas da EM

Aumento dos riscos

- Sódio
- Açúcar simples
- Gorduras saturadas
- Desnutrição proteica


Sem diferença nos riscos

- Álcool
- Cafeína

Redução dos riscos

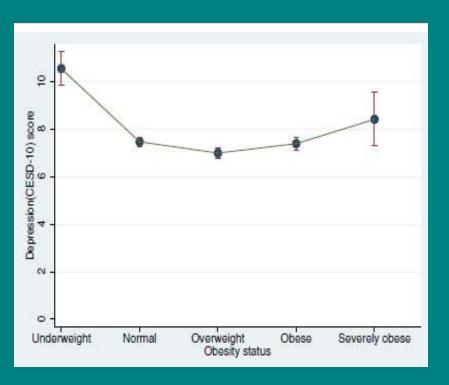
- Frutas e vegetais
- Laticícios baixos em gordura
- Consumo de peixes
- Ácidos graxos insaturados e poliinsaturados (W-3)
- Grãos integrais e leguminosas
- Chá verde
- Suplementos de vitaminas e minerais (vitE, VitD, zinco)
- Semente de cânhamo
- Luz solar

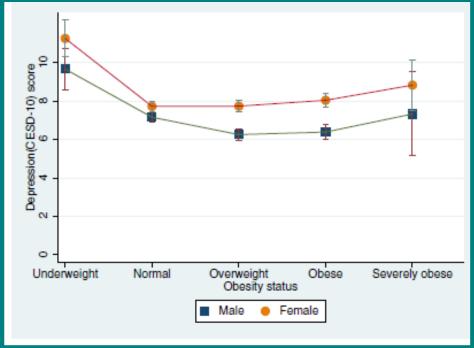
Morbidade depressiva- alguns aspectos

As 10 maiores causas de sobrecarga de doença no mundo: 2004 -2030

2004	As % of				As % of	2030
Disease or injury	total DALYs	Rank		Rank	total DALYs	Disease or injury
Lower respiratory infections	6.2	1		1	6.2	Unipolar depressive disorders
Diarrhoeal diseases	4.8	2		2	5.5	Ischaemic heart disease
Unipolar depressive disorders	4.3	3	1	3	4.9	Road traffic accidents
Ischaemic heart disease	4.1	4	+ \	4	4.3	Cerebrovascular disease
HIV/AIDS	3.8	5	1	5	3.8	COPD
Cerebrovascular disease	3.1	6	X/ /×	6	3.2	Lower respiratory infections
Prematurity and low birth weight	2.9	7	1 / 1	7	2.9	Hearing loss, adult onset
Birth asphyxia and birth trauma	2.7	8	\times	8	2.7	Refractive errors
Road traffic accidents	2.7	9		9	2.5	HIV/AIDS
Neonatal infections and other ^a	2.7	10		10	2.3	Diabetes mellitus
COPD	2.0	13		11	1.9	Neonatal infections and other
Refractive errors	1.8	14	/// \\	12	1.9	Prematurity and low birth weight
Hearing loss, adult onset	1.8	15	//	15	1.9	Birth asphyxia and birth trauma
Diabetes mellitus	1.3	19	/	18	1.6	Diarrhoeal diseases

Etiologia baseada na neurobiologia


- Hipótese monaminérgica : mudanças na concentração de monoaminas (5-HT, noradrenalina e dopamina)
- As monoaminas estimulam a expressão genética de NEUROTROFINAS, como o FATOR NEUROTRÓPICO DERIVADO DO CÉREBRO (BDNF), necessárias para a função e a sobrevivência dos neurônios do SNC


Neuroinflamação e morbidade depressiva

- Tratamento "localizado" parece não ser totalmente eficiente
- Estudos atuais propondo tratamento sistêmico
- Foco na inflamação
- Perspectiva para o papel da nutrição

Estado nutricional Depressão e Peso corporal

Korean Longitudinal Study of Aging (KLoSA). 7672 adultos entre 50 e 102 anos IMC e CES-D (versão coreana)

Noh et al. Body mass index and depressive symptoms in middle aged and older adults. BMC Public Health 2015; 15:310

Relação entre peso (adiposidade) excessivo e sintomas depressivos/depressão: Caminhos mais prováveis

- Inflamação sistêmica
- Comorbidades, principalmente resistência à insulina,

Relação entre peso (adiposidade) excessivo e sintomas depressivos/depressão: resultados controversos

 Estudo na China- 1965 indivíduos- relação inversa entre sintomas depressivos e gordura abdominal (Wong et al, 2011)

 EUA (Pittsburgh)- 1372 indivíduos de baixas condições econômicas- associação positiva entre sintomas depressivos e IMC (Florez et al, 2015)

Perda de peso/Desnutrição e depressão

ANSAN Geriatric Study- Japão- 836 idososdepressão associada com baixa massa corporal e sarcopenia (Kim et al, 2011).

Brasil, Londrina- 267 idosos. Associação entre risco nutricional e sintomas depressivos (Cabrera et al, 2007)

Baixo peso Sarcopenia Fragilidade

Condições econômicas e sociais Anorexia da idade Ingestão insuficiente de alimentos

Obrigada! smlribeiro@usp.br