

FÍSICA DAS RADIAÇÕES Disciplina 5910151

Monitor: José Renato Alcarás

Docente: Prof. Dr. Alexandre Souto Martinez

2º Semestre de 2019

Lista Extra - Ondas

1. A equação de onda unidimensional estabelece uma relação entre variação temporal e de posição para uma função f(z,t) da forma

$$\frac{\partial^2 f}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2},$$

onde c é a velocidade da onda. f pode representar um perfil de onda que se move numa corda ao longo do tempo, por exemplo. Verifique que qualquer função f da forma $f(z,t)=g(z\pm ct)$ é solução da equação de onda unidimensional. Em particular, mostre que f(z,t)=g(z+ct)+h(z-ct) é solução.

2. Verifique quais das funções abaixo são solução da equação de onda unidimensional. $(A, a, b \in \mathbb{R} \text{ são constantes})$

$$f_1(z,t) = Ae^{-b(z-ct)^2};$$

 $f_2(z,t) = A\sin[b(z-ct)];$
 $f_3(z,t) = A\sin(bz)\cos^3(act).$

3. Ondas senoidais são ondas que podem ser resumidas pela forma

$$f(z,t) = A\cos\left[kz - \omega t + \delta\right],$$

onde A é sua amplitude, $k=2\pi/\lambda$ é o número de onda, $\omega=2\pi\nu$ é a frequência angular da onda (com ν sendo sua frequência linear) e δ é sua fase.

- (a) Desenhe $f(z, t_1)$ e $f(z, t_2)$ no plano $z \times f$, com $t_1 < t_2$ e verifique que essa onda se move para a direita ao longo do tempo(sentido crescente de z).
- (b) Mostre que $f(z,t) = \text{Re} \left[A e^{i(kz \omega t + \delta)} \right]$.
- 4. A generalização da equação de onda para três dimensões é dada pela equação

$$\nabla^2 \varphi(x, y, z, t) = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}(x, y, z, t),$$

onde $\nabla^2 = (\partial_x^2, \partial_y^2, \partial_z^2)$ é o operador laplaciano e $\varphi(x,y,z,t)$ é uma função de várias variáveis suficientemente suave (duplamente diferenciável em cada uma das variáveis). Num caso em que um vetor $\vec{A} = A_x(x,y,z,t)\,\hat{\mathbf{x}} + A_y(x,y,z,t)\,\hat{\mathbf{y}} + A_z(x,y,z,t)\,\hat{\mathbf{z}}$ é tal que todas as suas componentes satisfazem à equação de onda tridimensional, compactamos a notação dizendo que

$$\nabla^2 \vec{A}(x, y, z, t) = \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2}(x, y, z, t)$$

- (a) Verifique que, no vácuo, os campos \vec{E} e \vec{B} satisfazem à equação de onda tridimensional.
- (b) Mostre que $\vec{E} = E_0 \cos(kz \omega t + \delta) \hat{\mathbf{x}}$ é solução da equação de onda.