Aprendizado de Máquina

Agrupamento de Dados

Eduardo R. Hruschka

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

Motivação e potenciais aplicações

Humanos se interessam por categorizações:

Música: erudita, popular, religiosa etc.

Filmes: Animação, Comédia, Drama etc.

Diversas ciências se baseiam na *organização* de objetos de acordo com suas similaridades.

➤ Biologia:

Reino: Animalia

Ramo: Chordata

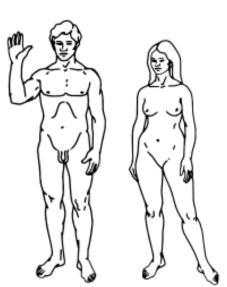
Classe: Mammalia

Ordem: Primatas

Família: Hominidae

Gênero: *Homo* (homem moderno)

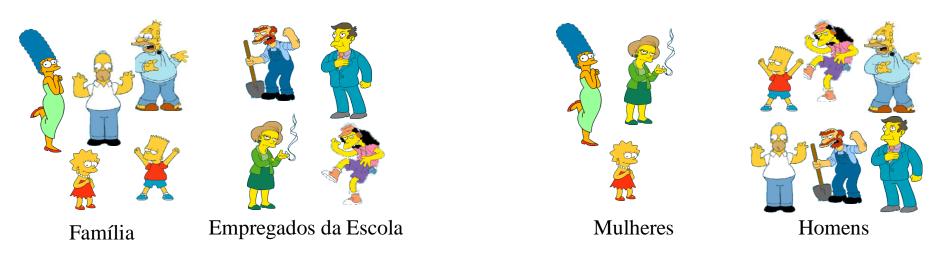
Espécie: Homo sapiens



- Entretanto, existem muitas situações nas quais não sabemos de antemão uma maneira apropriada de agrupar uma coleção de objetos de acordo com suas "similaridades";
 - massas de dados, possivelmente descritas por várias características (atributos) diferentes.
- Frequentemente não sabemos sequer se existe algum **agrupamento natural** dos objetos segundo um conjunto de características que descrevem esses objetos;
- Vejamos um exemplo ilustrativo...

O que é um agrupamento natural entre os seguintes objetos?

Grupo é um conceito subjetivo:

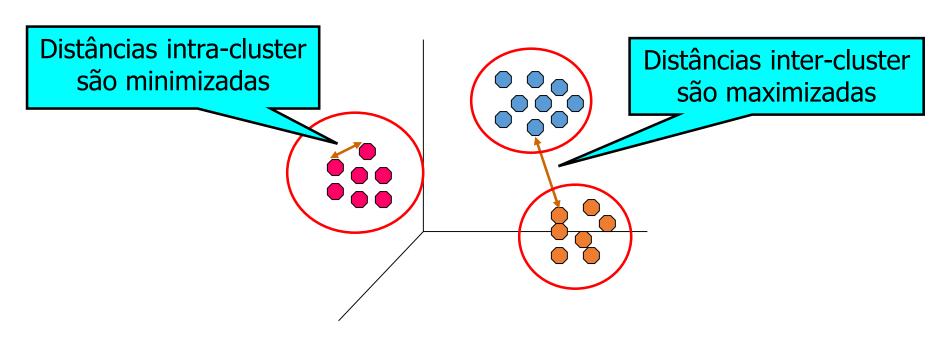


Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

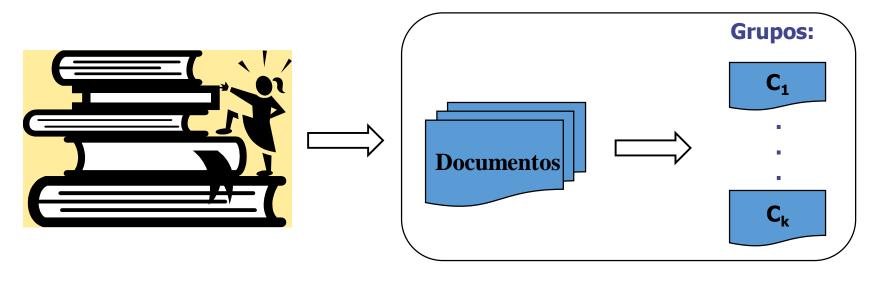
Uma definição para agrupamento de dados

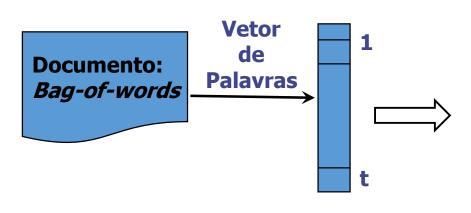
"Finding groups of objects such that the objects in a group are <u>similar</u> (or <u>related</u>) to one another and <u>different</u> from (or <u>unrelated</u> to) the objects in other groups." (Tan et al., 2006)

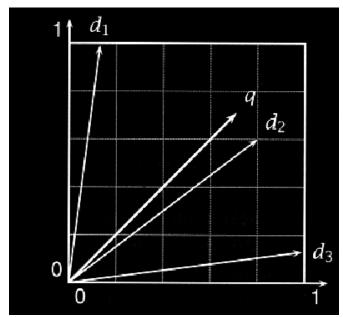
Uma visão matemática/geométrica:



Agrupamento para mineração de textos



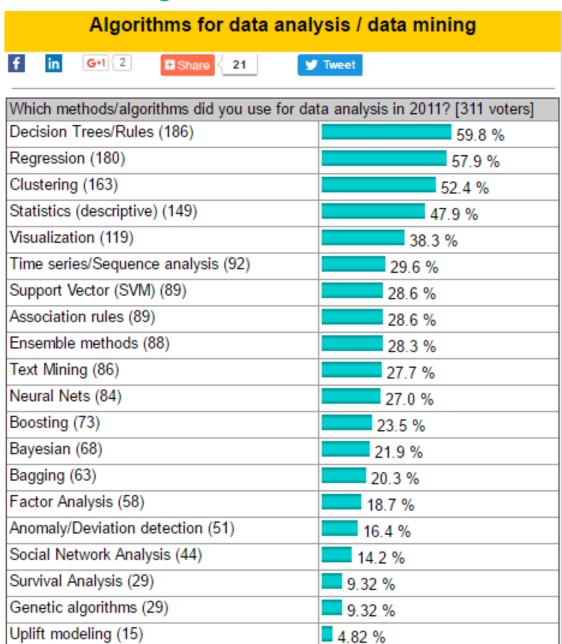




Frequência com que se usa clustering?

Web of Science: +12.000 artigos usando o termo cluster analysis no (título, palavras chaves, resumo) oriundos de mais de 3.000 journals diferentes.

(Xu & Wunsch, *Clustering*, IEEE Press, 2009)



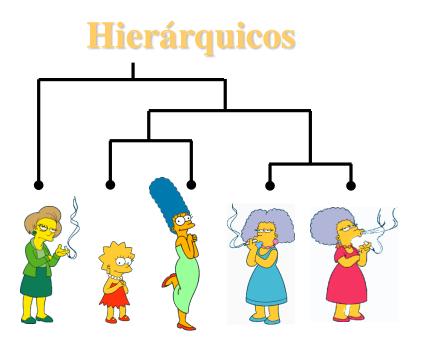
www.kdnuggets.com/polls/2011/algorithms-analytics-data-mining.html

Lembre que algoritmos induzem os *clusters*

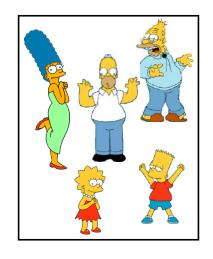
- ➤ Os *clusters* a serem induzidos dependem de uma série de fatores, além dos dados propriamente ditos:
 - > medidas de dis(similaridade), índices de avaliação, parâmetros definidos pelo usuário etc.
 - > fortemente dependente do domínio / problema
- ➤ Na perspectiva de **Aprendizado de Máquina** (AM) há uma relação com o conceito de bias indutivo:
 - > projetista define o que o computador pode aprender
 - > existem centenas de algoritmos...

Métodos particionais e hierárquicos

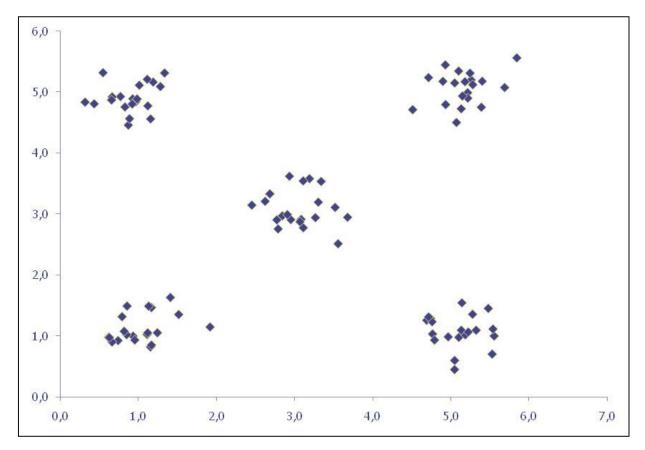
- Particionais: constroem uma partição dos dados
- Hierárquicos: constroem uma hierarquia de partições



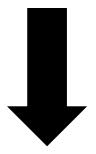
Particionais



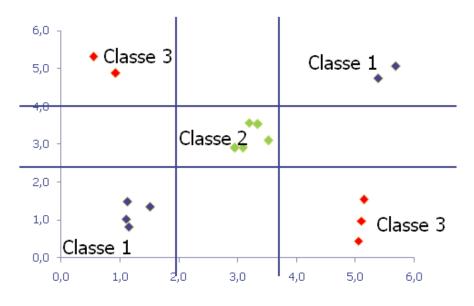
Agrupamento x Classificação

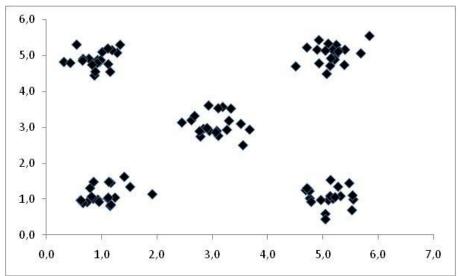


Agrupamento:Indução de grupos
a partir da base
de dados...

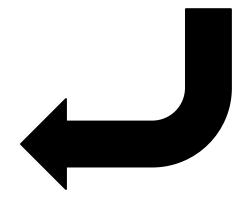


> Grupos obtidos serão então cuidadosamente estudados



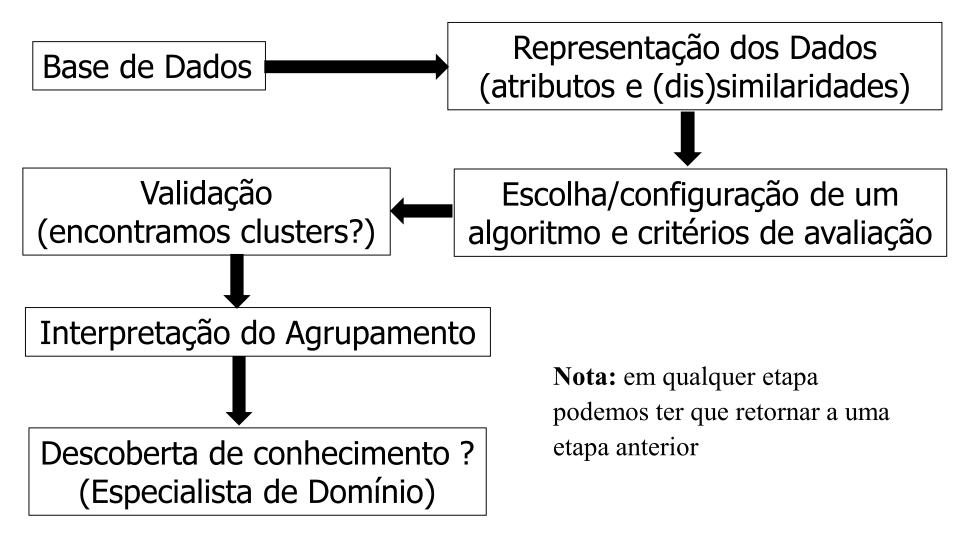


Base de treinamento com dados rotulados: classificador (modelo)



Rotular dados de teste em função do modelo obtido

Ciclo de modelagem em agrupamento



Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

Preliminares

Definição. Considerando um conjunto de N objetos a serem agrupados $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$, uma **partição** (rígida) é uma coleção de k grupos não sobrepostos $\mathbf{P} = \{\mathbf{C}_1, \mathbf{C}_2, ..., \mathbf{C}_k\}$ tal que:

$$\mathbf{C}_1 \cup \mathbf{C}_2 \cup ... \cup \mathbf{C}_k = \mathbf{X}$$

$$\mathbf{C}_i \neq \emptyset$$

$$\mathbf{C}_i \cap \mathbf{C}_j = \emptyset \text{ para } i \neq j$$

 \triangleright Exemplo: $P = \{ (x_1), (x_3, x_4, x_6), (x_2, x_5) \}$

Definição. Uma **Matriz de Partição** é uma matriz com k linhas (no. de grupos) e N colunas (no. de objetos) na qual cada elemento μ_{ij} indica o *grau de pertinência* do j-ésimo objeto (\mathbf{x}_j) ao i-ésimo grupo (\mathbf{C}_i):

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1N} \\ \mu_{21} & \mu_{22} & \cdots & \mu_{2N} \\ \vdots & & \ddots & \vdots \\ \mu_{k1} & \mu_{k2} & \cdots & \mu_{kN} \end{bmatrix}$$

Se essa matriz for **binária**, ou seja, $\mu_{ij} \in \{0,1\}$ e, ainda, se a restrição $\sum_i (\mu_{ij}) = 1 \ \forall j$ for respeitada, então denomina-se de matriz de partição rígida ou sem sobreposição.

Exemplo de matriz de partição: considerando uma partição $\mathbf{P} = \{(\mathbf{x}_1), (\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6), (\mathbf{x}_2, \mathbf{x}_5)\}$ temos:

$$\mathbf{U}(\mathbf{X}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- Algoritmos *particionais* sem sobreposição buscam (explícita ou implicitamente) por uma matriz de partição rígida de um conjunto de objetos **X**.
- Há outras classes de algoritmos?

Particionamento combinatório

Problema: Presumindo que *k* seja conhecido, o no. de possíveis formas de agrupar *N* objetos em *k clusters* é dado por (Liu, 1968):

$$NM(N,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{N}$$

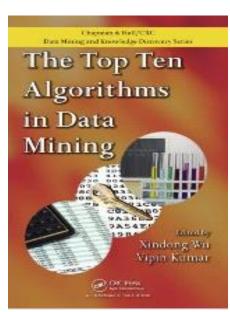
- Por exemplo, NM(100, 5) $\approx 56.6 \times 10^{67}$. Em um computador com capacidade de avaliar 10^9 partições/s, levaria $\approx 1.8 \times 10^{50}$ séculos para processar todas as avaliações.
- Como *k* em geral é desconhecido, problema é ainda maior.
- Em problemas NP-Hard, precisamos de formulações alternativas.

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

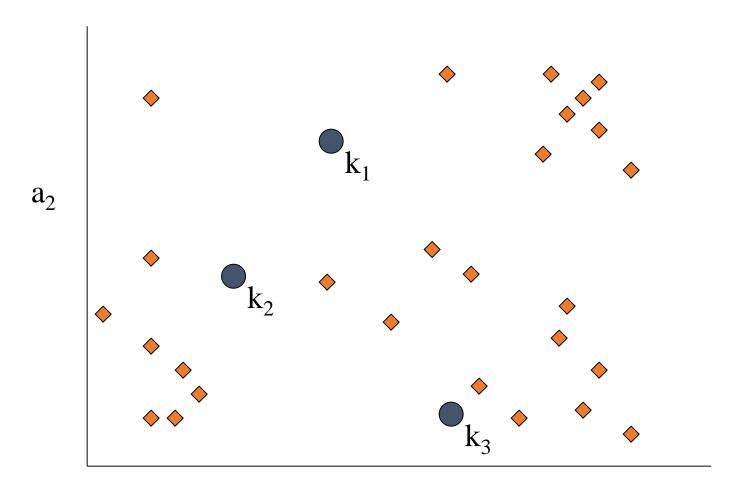
Algoritmo k-means

- ☐ Muito bem estudado (MacQueen, 1967; Kulis & Jordan, 2012)
- ☐ Conceitualmente simples e fácil de implementar
- ☐ Um dos algoritmos mais utilizados na prática:
 - Wu, X. and Kumar, V. (Editors), *The Top Ten Algorithms in Data Mining*, CRC Press, 2009.
 - X. Wu et al., "Top 10 Algorithms in Data Mining", Knowledge and Information Systems, vol. 14, pp. 1-37, 2008.



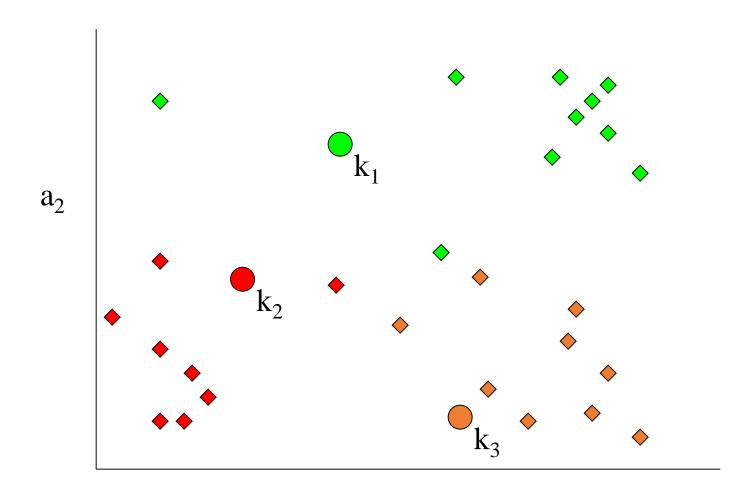
- 1) Escolher aleatoriamente *k* protótipos (centros) para os clusters (grupos)
- Atribuir cada objeto para o cluster de centro mais próximo (segundo alguma medida de distância, e.g. Euclidiana)
- Mover cada centro para a média (centróide) dos objetos do cluster correspondente
- 4) Repetir os passos 2 e 3 até que algum critério de convergência seja obtido:
 - número máximo de iterações
 - limiar máximo de mudanças nos centróides

Escolher 3 centros iniciais:

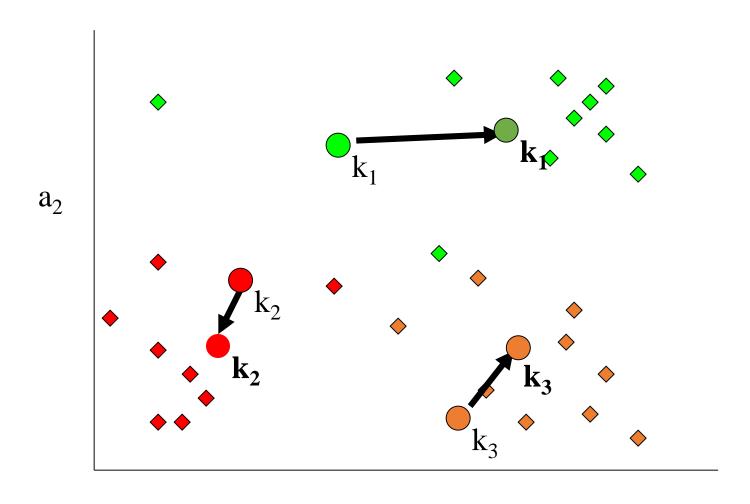


 a_1

Slides desse exemplo são baseados no curso de Gregory Piatetsky-Shapiro, disponível em http://www.kdnuggets.com Atribuir cada objeto ao cluster de centro mais próximo:

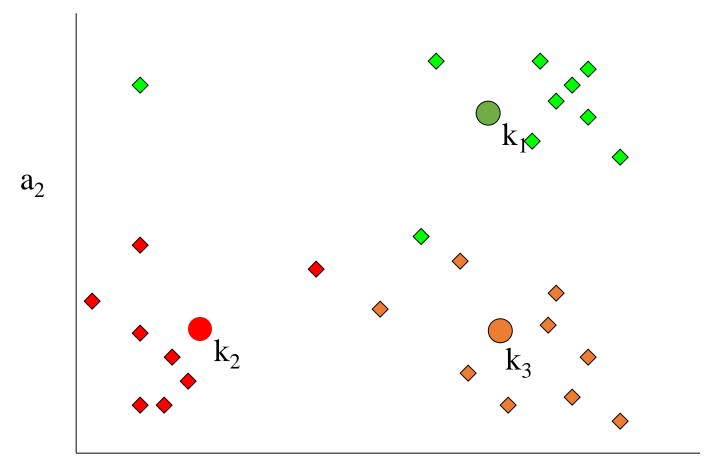


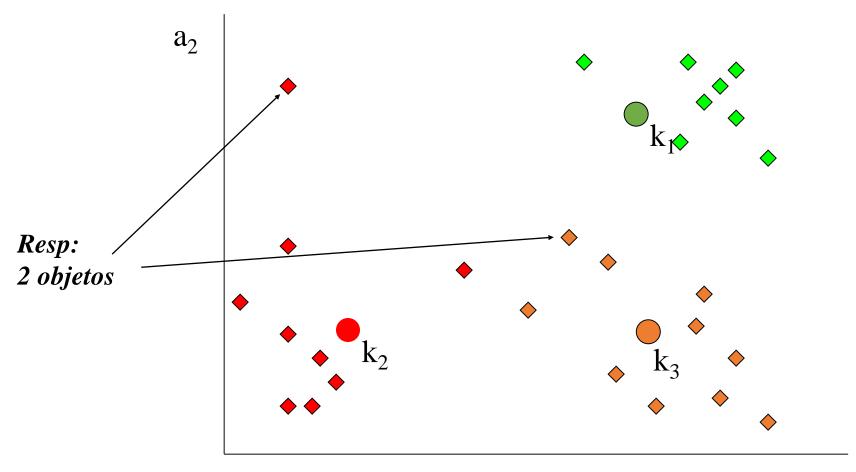
Mover cada centro para o vetor médio do cluster (centróide):



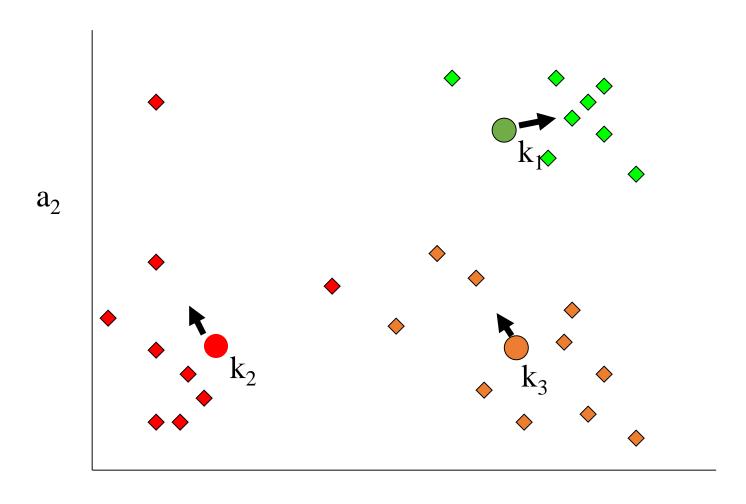
 \mathbf{a}_1

Reatribuir objetos aos clusters mais próximos... Quais mudarão de cluster?

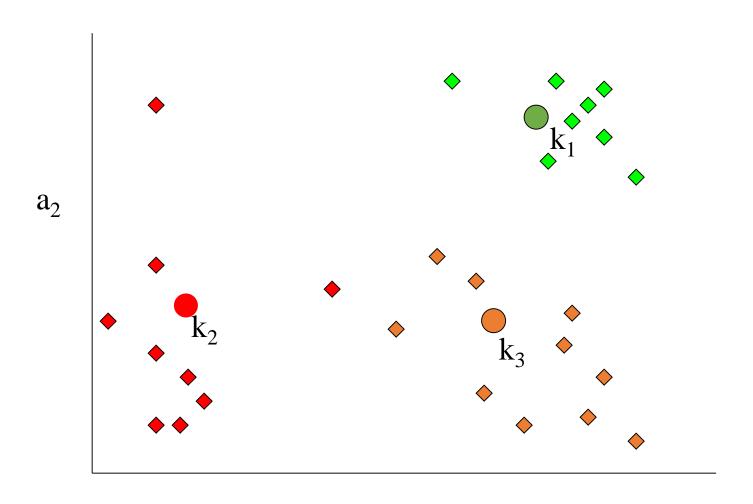




Recalcular vetores médios:



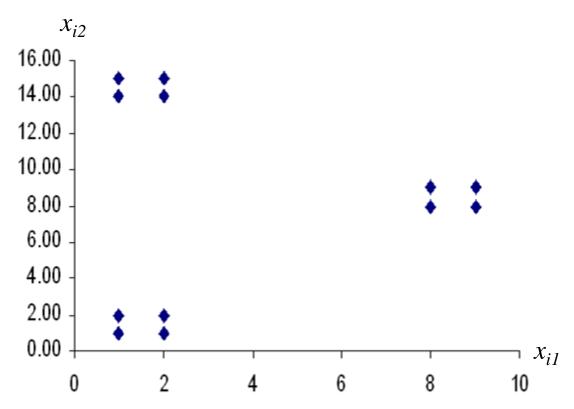
Mover centros dos clusters:



 \mathbf{a}_1

Exercício - Homework

Objeto x _i	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14



Executar k-means com k = 3 nos dados acima a partir dos protótipos [6 6], [4 6] e [5 10]. Quais foram as partições e os centróides obtidos?

k-means sob a perspectiva de otimização

Algoritmo minimiza a seguinte função objetivo:

$$J = \sum_{c=1}^{k} \sum_{\mathbf{x}_{j} \in \mathbf{C}_{c}} d(\mathbf{x}_{j}, \overline{\mathbf{x}}_{c})^{2}$$

$$\overline{\mathbf{x}}_c = \frac{1}{|\mathbf{C}_c|} \sum_{\mathbf{x}_j \in \mathbf{C}_c} \mathbf{x}_j$$

- Minimizar *J* equivale a minimizar as variâncias intra-cluster.
- Para facilitar o entendimento, vamos reescrever o problema de otimização...

- Consideremos:
 - conjunto de objetos $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$
 - conjunto de k centróides quaisquer $\{\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_k\}$
- Podemos reescrever o critério SSE de forma equivalente como:

$$J = \sum_{j=1}^{N} \sum_{c=1}^{k} \mu_{cj} \|\mathbf{x}_{j} - \overline{\mathbf{x}}_{c}\|^{2} ; \sum_{c=1}^{k} \mu_{cj} = 1 \ \forall j \ ; \ \mu_{cj} \in \{0,1\}$$

- Desejamos minimizar J com respeito a $\{\overline{\mathbf{x}}_c\}$ e $\{\mu_{cj}\}$
- Pode-se fazer isso via um procedimento iterativo (2 passos):
 - a) Fixar $\{\overline{\mathbf{x}}_c\}$ e minimizar J com respeito a $\{\mu_{ci}\}$ (**E**)
 - b) Minimizar J com respeito a $\{\bar{\mathbf{x}}_c\}$, fixando-se $\{\mu_{cj}\}$ (M)

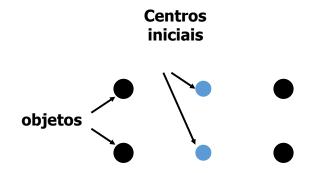
$$J = \sum_{j=1}^{N} \sum_{c=1}^{k} \mu_{cj} \|\mathbf{x}_{j} - \overline{\mathbf{x}}_{c}\|^{2} ; \sum_{c=1}^{k} \mu_{cj} = 1 \ \forall j \ ; \ \mu_{cj} \in \{0,1\}$$

- a) Fixar $\{\bar{\mathbf{x}}_c\}$ e minimizar J com respeito a $\{\mu_{ci}\}$ (**Passo E**)
 - Termos envolvendo diferentes *j* são independentes
 - Logo, pode-se otimizá-los separadamente
 - μ_{ci} =1 para c que fornece o menor valor do erro quadrático
 - * Atribuir $\mu_{ci}=1$ para o grupo mais próximo.
- b) Minimizar *J* com respeito a $\{\bar{\mathbf{x}}_c\}$, fixando-se $\{\mu_{ci}\}$ (Passo M)
 - Derivar J com respeito a cada $\overline{\mathbf{x}}_c$ e igualar a zero:

- Derivar
$$J$$
 com respeito a cada $\overline{\mathbf{x}}_c$ e igualar a zero:
$$\nabla_{\overline{\mathbf{x}}_c} J = \sum_{j=1}^N \mu_{cj} \nabla_{\overline{\mathbf{x}}_c} \left[\left(\mathbf{x}_j - \overline{\mathbf{x}}_c \right)^T \left(\mathbf{x}_j - \overline{\mathbf{x}}_c \right) \right] = 2 \sum_{j=1}^N \mu_{cj} \left(\overline{\mathbf{x}}_c - \mathbf{x}_j \right) = \mathbf{0} \quad \Rightarrow \quad \overline{\overline{\mathbf{x}}_c} = \frac{\sum_{j=1}^N \mu_{cj} \mathbf{x}_j}{\sum_{j=1}^N \mu_{cj}}$$

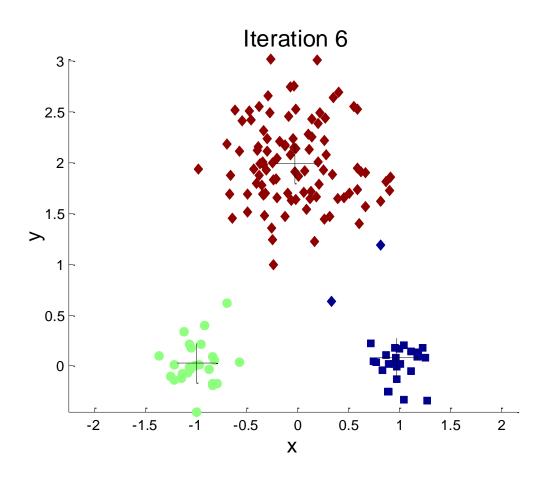
Sensibilidade em relação à inicialização

- Resultado pode variar significativamente dependendo da escolha das sementes (protótipos) iniciais
- *k*-means pode "ficar preso" em ótimos locais:

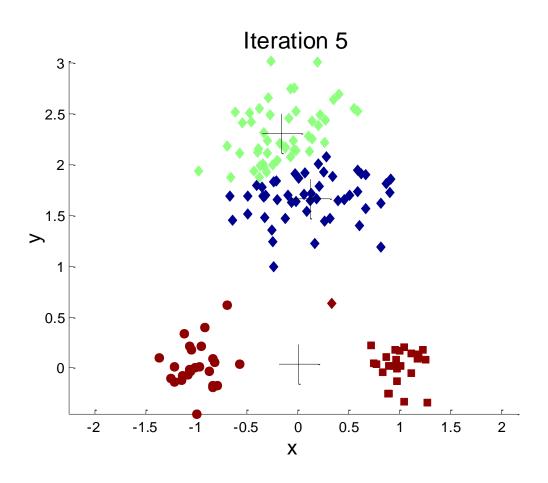


Como evitar ... ?

Exemplos – Inicialização 1



Exemplos – Inicialização 2

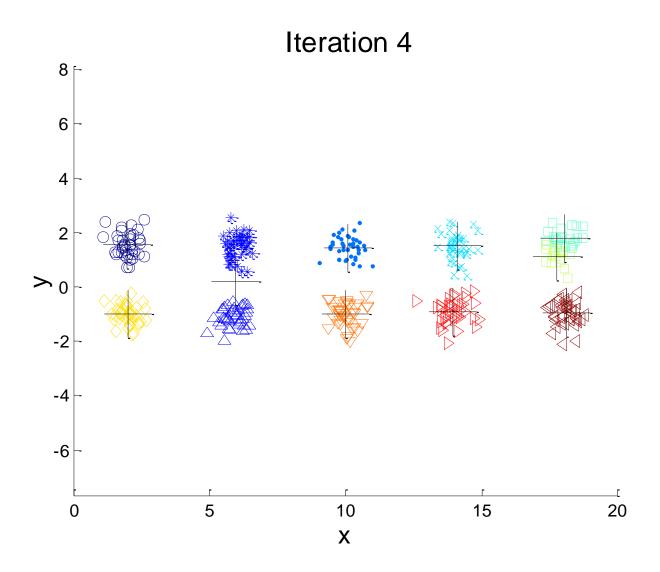


Inicialização (problema)

- □ Premissa: Uma boa seleção de k protótipos iniciais em uma base de dados com k grupos naturais é tal que cada protótipo é um objeto de um grupo diferente.
- No entanto, a chance de se selecionar um protótipo de cada grupo é pequena, especialmente para k grande.
- Consideremos grupos balanceados, com uma mesma quantidade g = N / k de objetos cada. A probabilidade de selecionar 1 protótipo de cada grupo diferente é:

$$P = \frac{\text{no. de maneiras de selecionar 1 objeto de cada grupo (N / k objetos)}}{\text{no. de maneiras de selecionar k dentre N objetos}} = \frac{k!}{k^k}$$

Para k = 10 temos P = 0.00036.



Tan, Steinbach & Kumar, Introduction to Data Mining, 2006.

Como lidar com o problema?

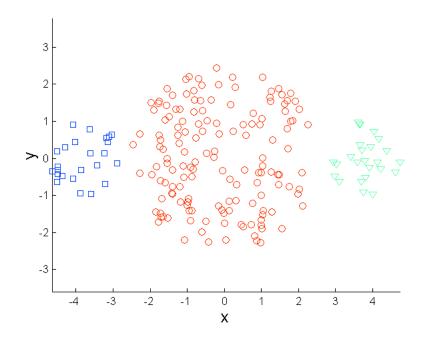
- Múltiplas Execuções (inicializações aleatórias):
- Funciona bem em muitos problemas;
- Pode demandar muitas execuções (especialmente com *k* alto).
- Agrupamento Hierárquico: agrupa-se uma amostra dos dados para tomar os centros da partição com k grupos.
- Seleção "informada" em uma amostra dos dados:
- Tomar o 1º protótipo como um objeto aleatório ou como o centro dos dados (*grand mean*);
- Sucessivamente escolhe-se o próximo protótipo como o objeto mais distante dos protótipos correntes.
- ► Busca Guiada: X-means, *k*-means evolutivo, ...

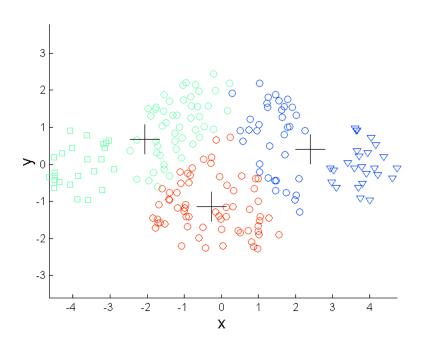
Problemas estruturais

Algoritmo *k*-means funciona bem se:

- Clusters são (hiper)esféricos e bem separados
- Clusters de volumes aproximadamente iguais
- Cluster com quantidades de pontos semelhantes

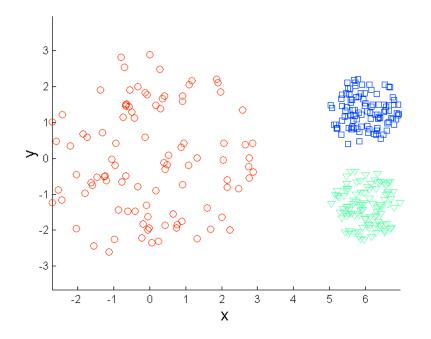
Vejamos alguns exemplos ilustrativos de problemas...

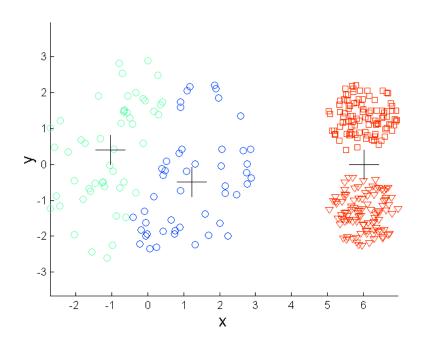




Estrutura correta

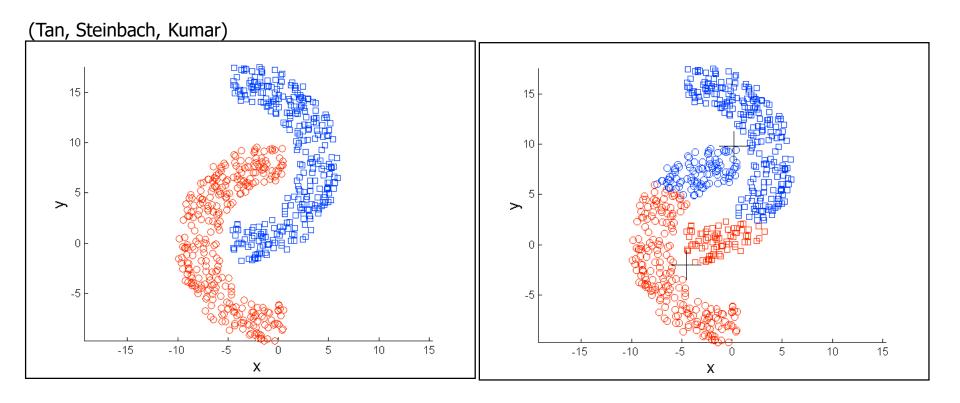
k-means (3 Clusters)





Estrutura correta

K-means (3 Clusters)



Nota: na prática, esse problema em geral não é crítico, i.e., há pouco interesse na maioria das aplicações de mundo real.

Custo computacional

Complexidade (assintótica) de tempo:

$$O(i \cdot K \cdot N \cdot n)$$

- O que isso significa?

O que dizer sobre a constante de tempo?

→ Computar Distância Euclidiana via aproximações sucessivas (Newton-Raphson) custa caro.

Se também tenho problema de espaço em memória...

- → Solução aproximada (sampling)
- → Paralelizar (mesmo computador) ou distribuir (e.g., map-reduce) o processamento.

Implementações eficientes

- Desempenho computacional pode ser melhorado:
 - Estruturas de Dados, e.g. kd-trees
 - Algoritmos:
 - Atualização recursiva dos centróides

Cálculo dos centróides só depende dos valores anteriores, dos nos. de objetos dos grupos e dos objetos que mudaram de grupo

Exercício: a partir da equação do cálculo do centróide, escrever a equação de atualização recursiva descrita acima.

- Uso da desigualdade triangular
- Paralelização (vide discussão a seguir)

Algoritmo *k*-means paralelo e/ou distribuído

Dados distribuídos em múltiplos data sites ou processadores

> Algoritmo:

- Mesmos protótipos iniciais são distribuídos a cada sítio de dados
- Cada sítio executa (em paralelo) uma iteração de k-means
- Protótipos locais e nos. de objetos dos grupos são comunicados
- Protótipos globais são calculados e retransmitidos aos sítios
- Repete-se o processo

Resumo das (des)vantagens do k-means

Vantagens

- Simples e intuitivo
- Complexidade linear em todas as variáveis críticas
- Eficaz em muitos cenários de aplicação
- Resultados de interpretação simples

Desvantagens

- k = ?
- Sensível à inicialização dos protótipos (mínimos locais de J)
- Limita-se a encontrar clusters volumétricos / globulares
- Cada item deve pertencer a um único cluster (partição rígida)
- Limitado a atributos numéricos
- Sensível a outliers

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

Executar k-means múltiplas vezes

Rodar *k*-means repetidas vezes a partir de diferentes valores de *k* e de posições iniciais dos protótipos:

<u>Ordenado</u>: n_p inicializações para cada $k \in [k_{min}, k_{max}]$

<u>Aleatório</u>: n_T inicializações com k sorteado em [k_{min}, k_{max}]

Tomam a melhor partição resultante de acordo com algum critério de qualidade (**critério de validade de agrupamento**)

- > Vantagens: estimam k e são menos sensíveis a mínimos locais
- > **Desvantagem:** custo computacional pode ser elevado

Poderíamos usar *J* para estimar k*?

- \triangleright Sim se todas as partições têm o mesmo k (fixo).
- \triangleright E se k^* for desconhecido e, portanto, variável ?

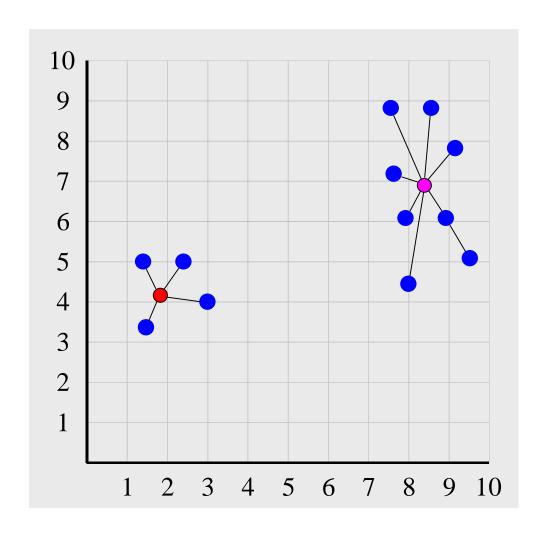
Para responder, considere, por exemplo, que as partições são geradas a partir de múltiplas execuções do algoritmo:

- Com protótipos iniciais aleatórios
- Com no. variável de grupos $k \in [k_{min}, k_{max}]$
- Vejamos um exemplo ilustrativo...

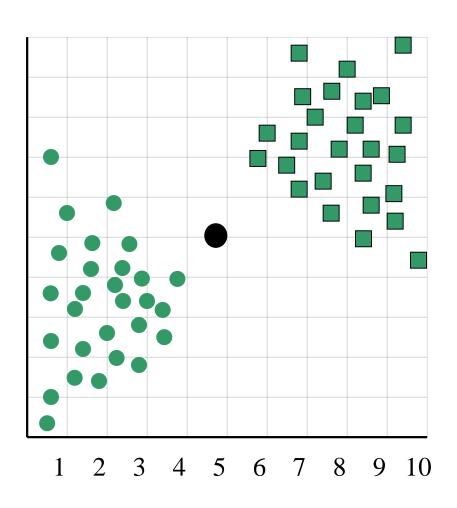
Erro Quadrático:

$$J = \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in \mathbf{C}_{i}} d(\mathbf{x}_{j}, \overline{\mathbf{x}}_{i})^{2}$$

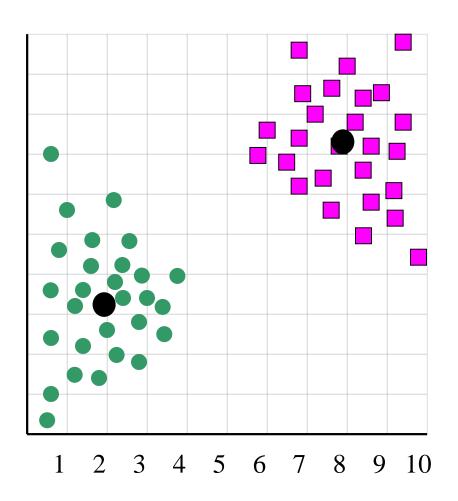
Função Objetivo



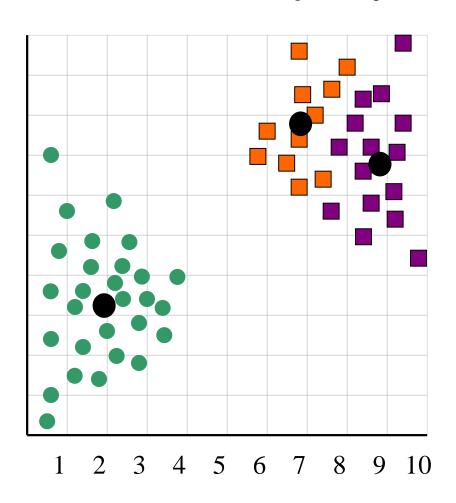
Para k = 1, o valor da função objetivo é 873



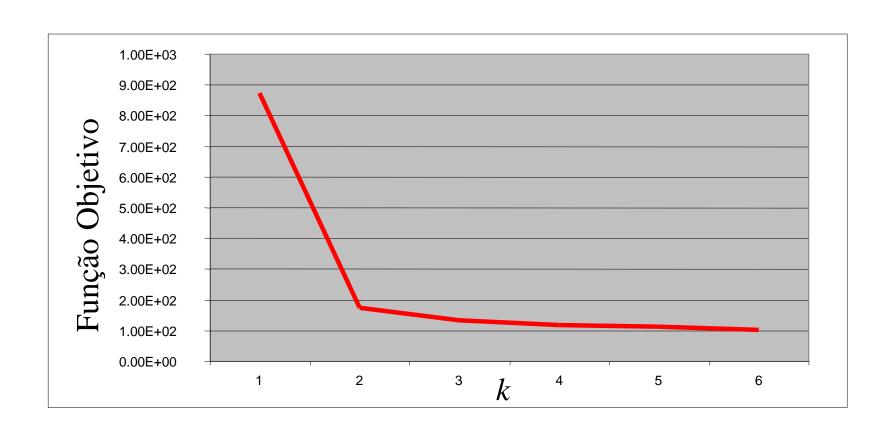
Para k = 2, o valor da função objetivo é 173



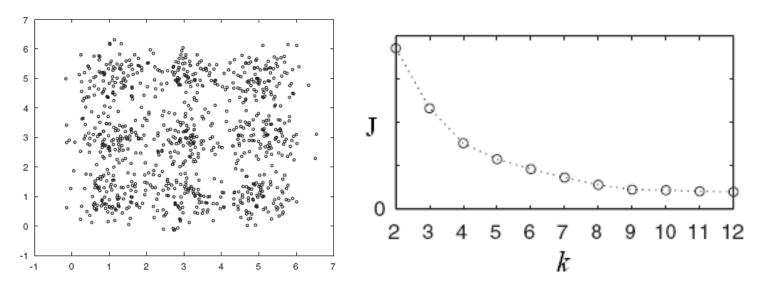
Para k = 3, o valor da função objetivo é 134



Podemos então repetir este procedimento e plotar os valores da função objetivo J para k = 1, ..., 6, ... e tentar identificar um "joelho" :



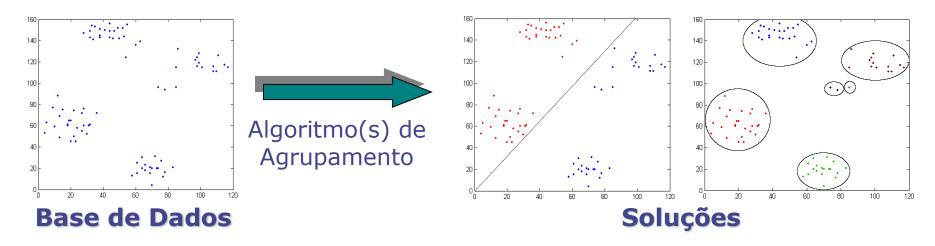
 Infelizmente os resultados não são sempre tão claros quanto no exemplo anterior:



- Outras alternativas para lidar com o problema de se estimar o número de clusters?
- Índices de validade relativos...

Critérios de validade relativos

A aplicação de um ou mais algoritmos usualmente retorna múltiplas soluções que precisam ser comparadas:



Precisamos de critérios objetivos para compará-las:

- Produzir uma ordenação de um conjunto de partições de acordo com suas avaliações
- Índices numéricos de validade relativos. Vejamos um deles...

Critério da silhueta

SWC = Silhueta média sobre todos os objetos: $SWC = \frac{1}{N} \sum_{i=1}^{N} s(i)$

Silhueta (i-ésimo objeto):
$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 (s(i) := 0 para singletons)

objeto ao seu cluster

a(i): dissimilaridade b(i): dissimilaridade média média do i-ésimo do i-ésimo objeto ao cluster vizinho mais próximo

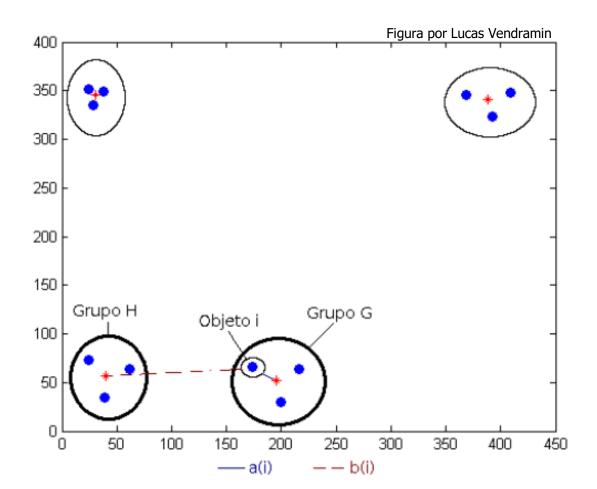
Silhueta Original: a(i) e b(i) são calculados como a distância média (Euclidiana, Mahalanobis etc.) do i-ésimo objeto a todos os demais objetos do cluster em questão - O(N²).

Propriedade Favorável: SWC \in [-1,+1]

Silhueta simplificada

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

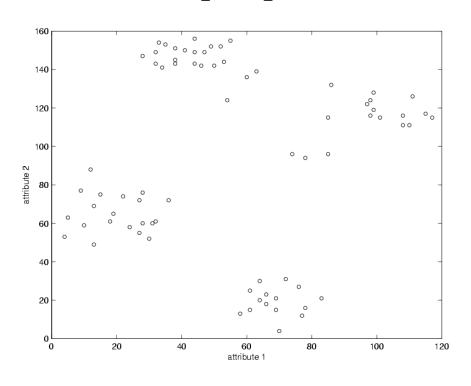
$$SWC = \frac{1}{N} \sum_{i=1}^{N} s(i)$$

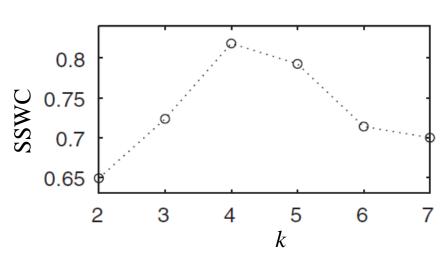


Silhueta Simplificada: a(i) e b(i) são calculados como a distância do i-ésimo objeto ao centróide do cluster em questão - O(N).

Exemplo:

- ☐ Relembrando a subjetividade do problema:
 - Quantos grupos abaixo?
 - Sob a perspectiva deste **critério** (SSWC) temos:





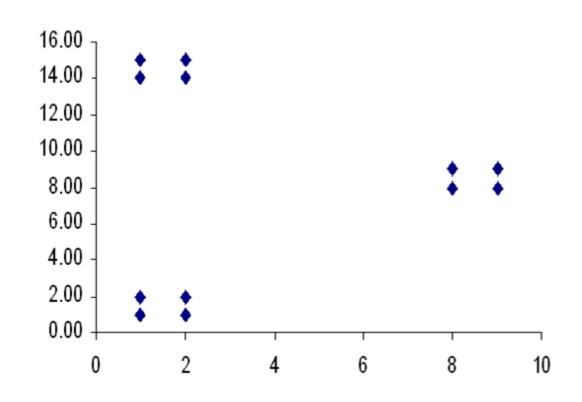
Existem vários outros critérios

-	Criterion	Complexity
	Calinski-Harabasz (VRC)	O(nN)
	Davies-Bouldin (DB)	$O(n(k^2 + N))$
	Dunn	$O(nN^2)$
	Silhouette Width Criterion (SWC)	$O(nN^2)$
	Alternative Silhouette (ASWC)	$O(nN^2)$
	Simplified Silhouette (SSWC)	O(nNk)
	Alternative Simplified Silhouette (ASSWC)	O(nNk)
	PBM	$O(n(k^2+N))$
	C-Index	$O(N^2(n + log_2N))$
	Gamma	$O(nN^2 + N^4/k])$
	G(+)	$O(nN^2 + N^4/k])$
	Tau	$O(nN^2 + N^4/k])$
	Point-Biserial	$O(nN^2)$
	$\mathrm{C}/\sqrt{\mathrm{k}}$	O(nN)
*	Trace(W)	O(nN)
*	Trace(CovW)	O(nN)
*	$Trace(W^{-1}B)$	$O(n^2N + n^3)$
*	T / W	$O(n^2N + n^3)$
*	Nlog(T / W)	$O(n^2N+n^3)$
*	$ m k^2W$	$O(n^2N + n^3)$
*	$\log(SSB/SSW)$	$O(n(k^2+N))$
*	Ball-Hall	O(nN)
*	McClain-Rao	$O(nN^2)$

Vendramin, Campello, Hruschka "*Relative Clustering Validity Criteria: A Comparative Overview*" **Statistical Analysis and Data Mining**, Vol. 3, p. 209-235, 2010.

Exercício

Objeto x _i	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14



Calcule o valor para as silhuetas para a partição *correta* acima e também para uma partição formada por dois clusters à sua escolha.

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

Bisecting *k*-means (particional-hierárquico):

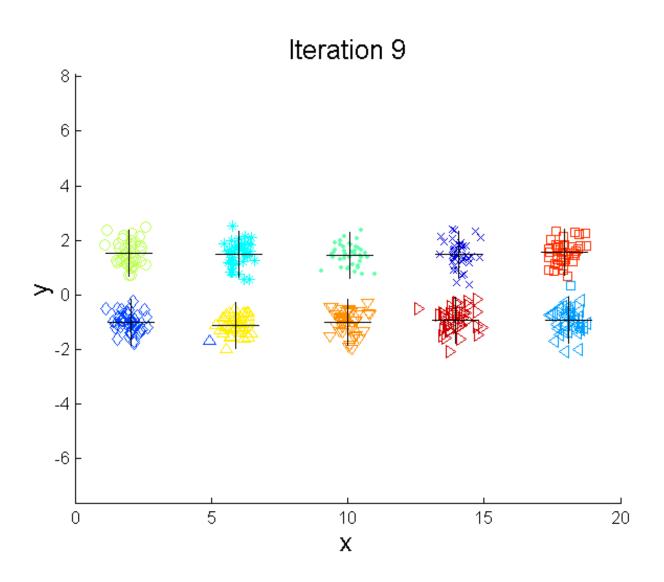
Recursivamente particiona a base de dados em dois grupos, gerando uma "árvore de partições". Lembrar que:

$$P = \frac{\text{no. de maneiras de selecionar 1 objeto de cada grupo (N / k objetos)}}{\text{no. de maneiras de selecionar k dentre N objetos}} = \frac{k!}{k^k}$$

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to $number_of_iterations$ do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

$$SSE(\mathbf{C}_i) = \sum_{\mathbf{x}_i \in \mathbf{C}_i} d(\mathbf{x}_j, \overline{\mathbf{x}}_i)^2 \rightarrow Sum \text{ of Squared Errors (para } \mathbf{C}_i)$$

Exemplo:



Notas sobre Bisecting *k*-means:

- Note que fazendo K = N (no. total de objetos) no passo 8 do algoritmo, obtemos uma hierarquia completa
- No passo 3, a seleção do grupo a ser bi-seccionado pode ser feita de diferentes maneiras, por exemplo usando outro critério de avaliação de qualidade dos grupos, para eleger o "pior":
 - -Diâmetro máximo (sensível a *outliers*)
 - -SSE normalizado pelo no. de objetos do grupo (mais robusto)

Complexidade computacional

- k-means roda em O(Nkn)*. Para k = 2 tem-se O(Nn). Presumindo que $no_of_iterations = 1$ no passo 4 temos:
- Pior Caso: cada divisão separa apenas 1 objeto dos demais
 - $-O(Nn + (N-1)n + (N-2)n + ... + 2n) \rightarrow O(N^2n)$
- Melhor Caso: cada divisão separa o grupo de forma balanceada
 - -Árvore binária com $\log_2 N$ níveis, cada um somando N objetos $\rightarrow O(nN \log_2 N)$

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

k-medoids

- Substituir centróide por um objeto representativo (*medoid*);
- Medoid é o objeto mais próximo aos demais objetos do grupo mais próximo em média (empates resolvidos aleatoriamente);
- > Menos sensível a *outliers*;
- > permite cálculo relacional (requer apenas matriz de distâncias);
- ➤ Pode ser aplicado a bases com atributos categóricos;
- Converge com qualquer medida de (dis)similaridade
- Complexidade quadrática com nº. de objetos (N)

Agenda

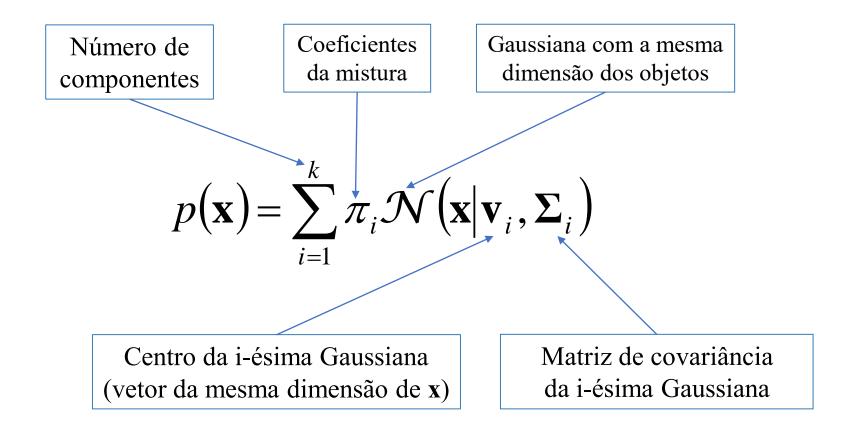
- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

EM para mistura de Gaussianas

- O Algoritmo **EM** (Expectation Maximization) é um procedimento genérico para a modelagem probabilística de um conjunto de dados;
- Basicamente, **EM** otimiza os parâmetros de uma função de distribuição de probabilidades (p.d.f.) de forma que esta represente os dados da forma mais verossímil possível;
- Modelo mais utilizado: Mistura de Gaussianas

GMM (Gaussian Mixture Model)

Um GMM é representado pela *p.d.f* :



Exemplo

	A	21	В	02	В	04	Α	48	Α	39	A	ЭТ	
	A	43	A	47	Α	51	В	64	В	62	Α	48	
	В	62	A	52	Α	52	Α	51	В	64	В	64	
	В	64	В	64	В	62	В	63	A	52	Α	42	
Objetos:	A	45	A	51	Α	49	Α	43	В	63	Α	48	
•	A	42	В	65	Α	48	В	65	В	64	Α	41	
	A	46	A	48	В	62	В	66	A	48			
	A	45	A	49	Α	43	В	65	В	64			
	Α	45	Α	46	Α	40	A	46	Α	48			

Modelo:



Dado $X = \{x_1, x_2, ..., x_N\}$ de N observações *i.i.d* temos:

$$p(\mathbf{X}) = p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \prod_{j=1}^N p(\mathbf{x}_j) = \prod_{j=1}^N \sum_{l=1}^k \pi_l \mathcal{N}(\mathbf{x}_j | \mathbf{v}_l, \mathbf{\Sigma}_l)$$

Por conveniência matemática, utiliza-se da log-verossimilhança:

$$\ln(p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\Sigma}, \mathbf{v})) = \sum_{j=1}^{N} \ln\left(\sum_{l=1}^{k} \pi_{l} \mathcal{N}(\mathbf{x}_{j} | \mathbf{v}_{l}, \boldsymbol{\Sigma}_{l})\right)$$

Maximizar a verossimilhança pode ser visto como maximizar a compatibilidade entre as N observações e o modelo

• EM (Dempster et al., 1977) é um algoritmo de otimização que visa maximizar a (log) verossimilhança em dois passos:

■ Passo E (Expectation)

-Avalia as probabilidades a posteriori μ_{ij} (i = 1, ..., k; j = 1, ..., N) a partir das N observações $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ e do modelo corrente, dado pelos parâmetros $\mathbf{\Sigma} = \{\mathbf{\Sigma}_1, ..., \mathbf{\Sigma}_k\}$, $\mathbf{v} = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ e $\mathbf{\pi} = \{\pi_1, ..., \pi_k\}$.

■ Passo M (Maximization)

 Ajusta os parâmetros do modelo visando maximizar a logverossimilhança.

Passos E e M

E: computar
$$\mu_{ij}$$
 ($i = 1, ..., k; j = 1, ..., N$)

$$\mu_{ij} = \frac{\pi_i \mathcal{N}\left(\mathbf{x}_j \middle| \mathbf{v}_i, \mathbf{\Sigma}_i\right)}{\sum_{l=1}^k \pi_l \mathcal{N}\left(\mathbf{x}_j \middle| \mathbf{v}_l, \mathbf{\Sigma}_l\right)}$$

$$\mathcal{N}(\mathbf{x}_{j} | \mathbf{v}_{i}, \mathbf{\Sigma}_{i}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{\Sigma}_{i})^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{j} - \mathbf{v}_{i})^{T} \mathbf{\Sigma}_{i}^{-1} (\mathbf{x}_{j} - \mathbf{v}_{i})\right\}$$

$$\mathbf{v}_i = \frac{1}{N_i} \sum_{j=1}^{N} \mu_{ij} \mathbf{x}_j$$
 centróide ponderado

M: computar
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \mu_{ij} (\mathbf{x}_{j} - \mathbf{v}_{i}) (\mathbf{x}_{j} - \mathbf{v}_{i})^{T} \longrightarrow \text{covariância ponderada}$$

$$\pi_i = \frac{N_i}{N}$$
 Coeficientes = prob. a priori do i-ésimo componente

$$N_i = \sum_{i=1}^N \mu_{ij}$$
 N $^\circ$ efetivo de pontos atribuídos ao i-ésimo grupo

Algoritmo EM

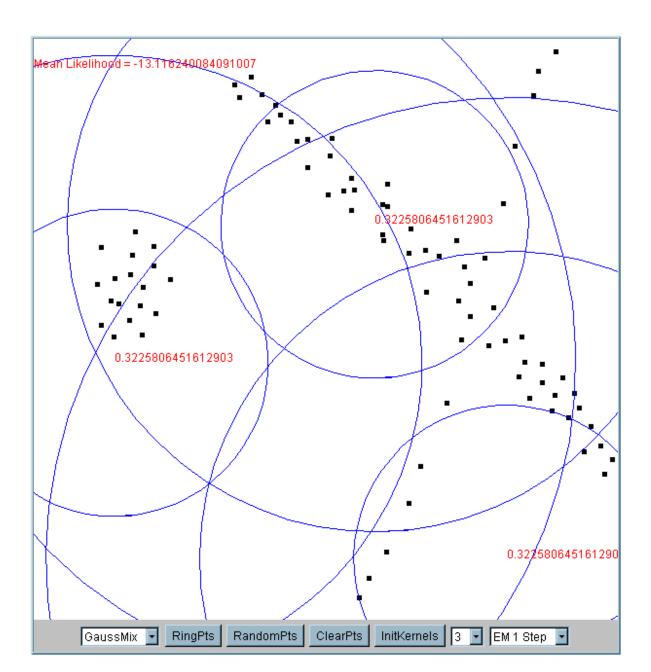
- 1. Inicialização (via k-means)
 - protótipos \mathbf{v}_i = centróides finais do k-means
 - covariâncias Σ_i = matrizes de covariância dos grupos
 - probabilidades μ_{ij} (para N_i e π_i) = matriz de partição final
- 2. Passo E
- 3. Passo M
- 4. Avaliação do Critério de Parada (função de logverossimilhança)
- 5. Interrupção ou Retorno ao Passo 2

EM x k-means

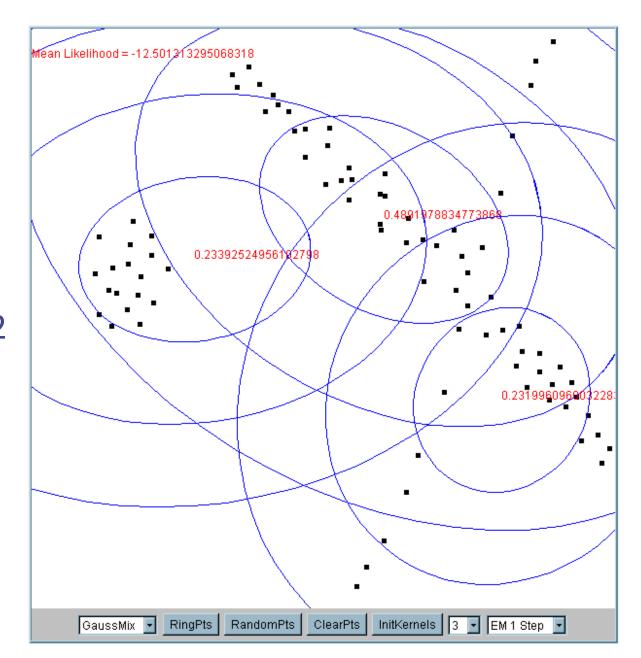
- EM produz informação muito mais rica sobre os dados (Probabilidades associadas a cada objeto / cluster);
- Probabilidades produzidas por EM podem facilmente ser convertidas em uma partição rígida;
- Essa partição é capaz de representar clusters alongados, elipsoidais, com atributos correlacionados;
- No entanto, todas as vantagens acima vêm com um elevado custo computacional associado:
 - Cálculo das Normais Multi-Dimensionais demanda as inversas das matrizes de covariância \sum_i $O(n^3)$;
 - k-means é um caso particular de EM. Ambos estão sujeitos a mínimos locais.



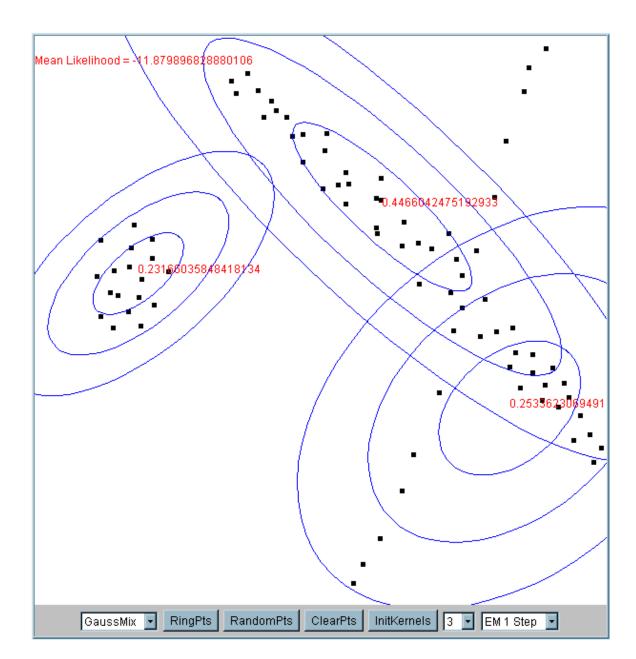
Fonte do exemplo: Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.



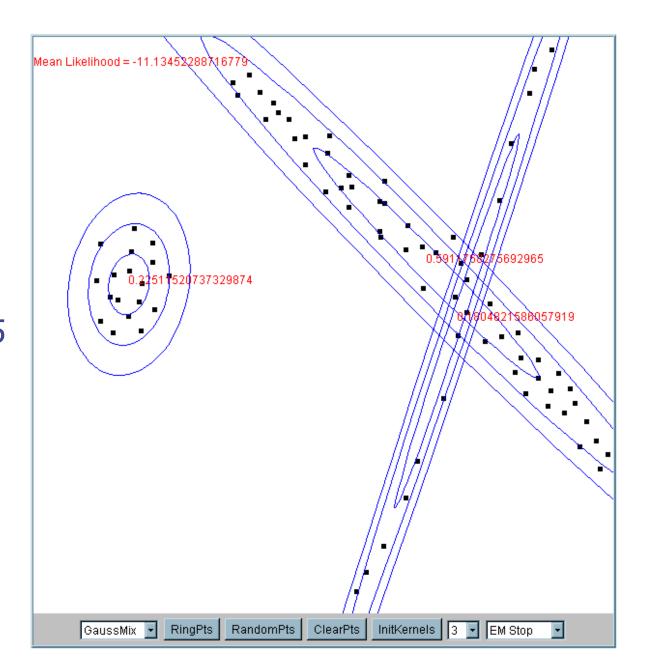
Iteração 1



Iteração 2



Iteração 5



Iteração 25

Exercício

Objeto	х			
1	-1.31			
2	-0.43			
3	0.34			
4	3.57			
5	2.76			
6	0.30			
7	9.06			
8	4.45			
9	2.87			
10	4.42			

Execute manualmente iterações do EM na base de dados ao lado (n = 1, N = 10), com k = 2. Tome protótipos iniciais arbitrários e os demais parâmetros inicializados a partir destes, de maneira análoga à inicialização via k-means.

Ilustre o resultado obtido de forma gráfica

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos

Validação

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

(Jain and Dubes, Algorithms for Clustering Data, 1988)

- Validação é um termo que se refere de forma ampla aos diferentes procedimentos para avaliar de maneira objetiva e quantitativa os resultados de análise de agrupamento.
- Cada um desses procedimentos pode nos ajudar a responder uma ou mais questões do tipo:
- Encontramos grupos de fato?
 - grupos são pouco usuais ou facilmente encontrados ao acaso?
- Qual a qualidade (relativa ou absoluta) dos grupos encontrados?
- Qual é o número natural / mais apropriado de grupos?

- A maneira quantitativa para validação é alcançada através de algum tipo de **índice**. Há 3 tipos de **índices/critérios de validade**:
- **Externos**: Avalia o grau de correspondência entre a estrutura de grupos (partição ou hierarquia) sob avaliação e informação a priori na forma de uma solução de agrupamento esperada ou conhecida.
- Internos: Avalia o grau de compatibilidade entre a estrutura de grupos sob avaliação e os dados, usando apenas os próprios dados.
- Relativos: Avaliam qual dentre duas ou mais estruturas de grupos é melhor sob algum aspecto. Tipicamente são critérios internos capazes de quantificar a qualidade relativa.
- ➤ Já vimos exemplos de índices internos (J) e relativos (silhuetas). Vejamos agora exemplos de índices externos...

- Embora o problema de *clustering* seja não supervisionado, em alguns cenários o resultado de agrupamento desejado pode ser conhecido. Por exemplo:
 - Reconhecimento visual dos clusters naturais (bases 2D, 3D)
 - Especialista de domínio
 - Bases geradas sinteticamente com distribuições conhecidas
 - -Benchmark data sets
 - Bases de classificação sob a hipótese de que classes são grupos
- <u>Índices externos</u> medem o nível de compatibilidade entre uma partição obtida e uma partição de referência dos mesmos dados

- Estudaremos os índices mais usados (Rand e Jaccard). Adotaremos a seguinte terminologia:
 - grupos da **partição de referência** (golden truth) → "classes"
 - grupos da partição sob avaliação → clusters (grupos)
- Podemos então definir as grandezas de interesse:
 - a: No. de pares da mesma classe e do mesmo cluster
 - **b**: No. de pares da mesma classe e de clusters distintos
 - c: No. de pares de classes distintas e do mesmo cluster
 - d: No. de pares de classes e clusters distintos

$$RI = \frac{a+d}{a+b+c+d}$$

Número de pares de objetos:

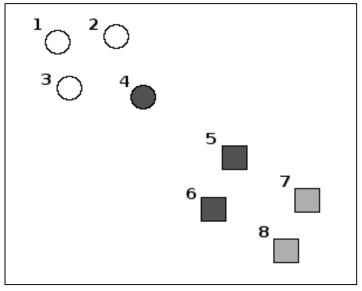
a: da mesma classe e do mesmo cluster (grupo)

b: da mesma classe e de clusters distintos

c: de classes distintas e do mesmo cluster

d: de classes distintas e de clusters distintos

Figura por Lucas Vendramin



2 Classes (Círculos e Quadrados)

3 Clusters (Preto, Branco e Cinza)

$$a = 5$$
; $b = 7$; $c = 2$; $d = 14$

$$RI = 5+14/(5+7+2+14) = 0.6785$$

Limitações do Rand Index

- **Viés** de favorecer a comparação de partições com níveis mais elevados de granularidade, i.e., apresenta valores mais elevados ao comparar partições com mais grupos.
- Por quê?
 - —mesmo peso para objetos agregados (termo a) ou separados (d)
 - —termo **d** tende a dominar o índice
 - -quanto mais grupos, mais pares pertencem a grupos distintos
 - □isso é válido em qualquer uma das duas partições
 - probabilidade / incidência de pares em comum é maior

Índice de Jaccard

Elimina o termo **d** sob a ótica de que um agrupamento é uma coleção de agregações de pares de objetos (separações sendo apenas uma consequência):

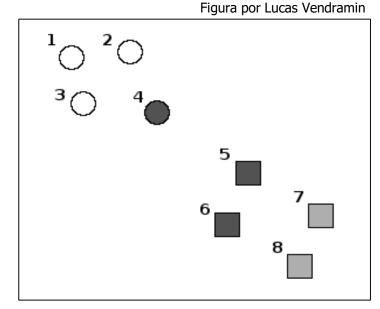
$$Jc = \frac{a}{a+b+c}$$

Número de pares de objetos:

a: da mesma classe e do mesmo cluster

b: da mesma classe e de clusters distintos

c: de classes distintas e do mesmo cluster



2 Classes (Círculos e Quadrados) 3 Clusters (Preto, Branco e Cinza)

$$a = 5$$
; $b = 7$; $c = 2$

$$Jc = 5/(5+7+2) = 0.3571$$

Referências Bibliográficas

- Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, 1988.
- Kaufman, L., Rousseeuw, P. J., Finding Groups in Data An Introduction to Cluster Analysis, Wiley, 2005.
- Tan, P.-N., Steinbach, M., and Kumar, V., *Introduction to Data Mining*, Addison-Wesley, 2006.
- Wu, X. and Kumar, V., The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC, 2009.
- D. Steinley, *K-Means Clustering: A Half-Century Synthesis*, British J. of Mathematical and Stat. Psychology, V. 59, 2006.

Agenda

- Motivação e conceitos
- Definições preliminares
- k-means
- Estimando o número de clusters a partir dos dados
- Bisecting k-means
- k-medoids
- EM para misturas de Gaussianas
- Avaliação de agrupamentos