
CINÉTICA DAS REAÇÕES QUÍMICAS

Determinação da ordem da reação

Método diferencial de Van't Hoff:

$$v = k.C^n$$
, portanto

Graficamente tem-se:

$$tg\alpha = n$$

Determinação da ordem da reação

Método Integral:

- A metodologia anterior (há outros como o tempo de meia vida) é ainda uma "herança cultural" da época em que nem se pensava em *TI*
- Na prática a ordem da reação é determinada por métodos estatísticos
 - Escolhe-se a ordem que melhor se ajusta aos dados experimentais
 - A escolha é determinada pela ordem que apresentar o maior valor de R² estatístico.

1. Os dados cinéticos apresentados na tabela a seguir foram obtidos para a redução do FeO pelo C num sistema escória/ferro fundido, em temperatura constante. Tratase, portanto, de reação heterogênea. Considere o ferro fundido com 4,5% C e que o consumo de carbono é mínimo, ou seja, o teor de C pode ser considerado constante durante o processo. Isso permite a definição da constante de velocidade observada (k_{obs}), onde os parâmetros mantidos constantes durante a reação podem ser agrupados à constante de velocidade (k) originando k_{obs}.

Pede-se:

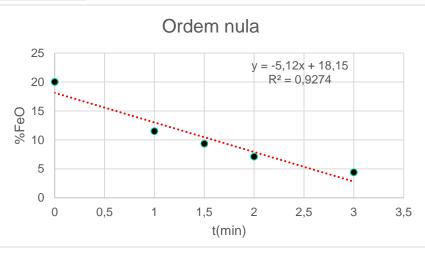
- (a) Qual é a reação do sistema e quais são as fases e seus respectivos constituintes?
- (b) Mostre que a reação obedece a cinética de primeira ordem em relação ao FeO.
- (c) Qual o teor de FeO após 5 min de reação?

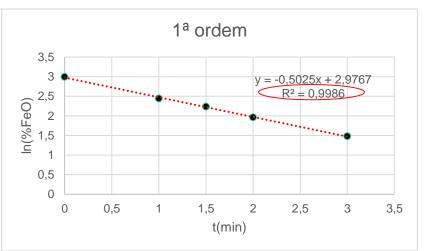
FeO na escória (% massa)	20,00	11,50	9,35	7,10	4,40
Tempo (min)	0	1,0	1,5	2,0	3,0

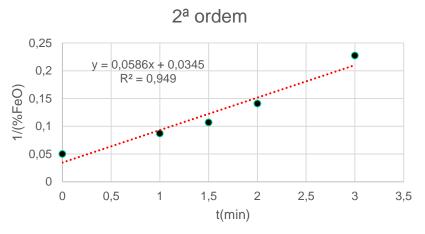
- a) Reação: $[FeO]_{escória} + \underline{C} \rightarrow \{Fe\} + (CO)$
 - Fases: Escória Metal Gás
 - Constituintes das Fases: FeO e outros óxidos; Fe; C;
 CO
- b) Se a quantidade de fase metálica é muito maior que a de fase escória: $C_C = cte$

$$v_{FeO} = \frac{dC_{FeO}}{dt} = k.C_C^{x}.C_{FeO}^{y} = k_{obs}.C_{FeO}^{y}$$

t(min)	0	1	1,5	2	3	Média
%FeO	20	11,5	9,35	7,1	4,4	
k(n=0)		-8,50	-7,10	-6,45	-5,20	
k(n=1)		-0,55	-0,51	-0,52	-0,50	-0,5208
k(n=2)		0,037	0,038	0,045	0,059	1
In(%FeO)	2,995732	2,442347	2,235376	1,960095	1,481605	
1/%FeO	0,05	0,086957	0,106952	0,140845	0,227273	


CUIDADO!!


c) Se $k = -0.5208 \text{ min}^{-1}$, então:


$$0,5208 = \frac{1}{5} \ln \frac{20\%}{C_{FeO}}$$

$$C_{FeO} = 1,48\% FeO$$

Graficamente $k = -0.5025 \text{ min}^{-1}$, então:

$$0,5025 = \frac{1}{5} \ln \frac{20\%}{C_{FeO}}$$
$$C_{FeO} = 1,62\% FeO$$

Flávio Beneduce PMT3206

VELOCIDADE DAS REAÇÕES QUÍMICAS

Para casa: Para a eliminação de Cu de uma sucata de aço, funde-se a sucata num forno à indução colocando o banho em contato com sulfeto de sódio. Num estudo cinético deste processo os seguintes dados foram obtidos:

t(min)	1	2	3	4	5
%Cu	0.062	0.0584	0.055	0.0522	0.05

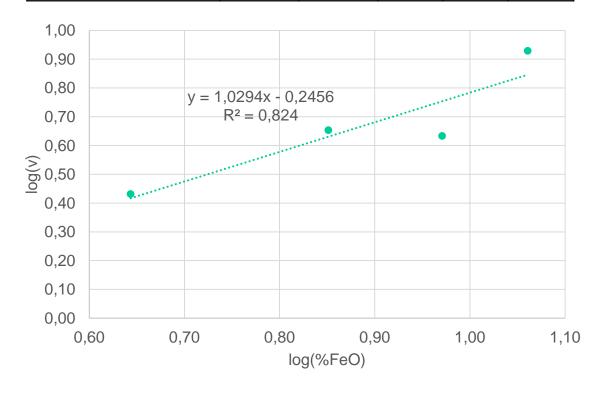
Sabendo-se que a reação de decoperização é $2Cu_{Fe}$ + (Na_2S) = (Cu_2S) + 2Na, pede-se:

- a) a ordem da reação;
- b) a constante de velocidade;
- c) a concentração inicial provável de Cu.

Exercício

A variação da concentração de FeO em uma escória com o tempo está apresentada na tabela a seguir. Calcule a ordem a reação pelo método diferencial. Estime também a constante de velocidade.

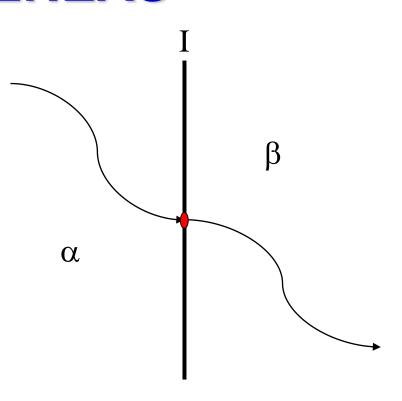
t(min)	0	1,0	1,5	2,0	3,0
%FeO	20	11,50	9,35	7,10	4,40



Exercício

t(min)	0	1,0	1,5	2,0	3,0
%FeO	20	11,50	9,35	7,10	4,40
v(%FeO/min)		8,5	4,3	4,5	2,7
Log%FeO		1,06	0,97	0,85	0,64
Logv		0,93	0,63	0,65	0,43

t(min)	0,00	1,00	1,50	2,00	3,00
%FeO	20,00	11,50	9,35	7,10	4,40
v(%FeO/min)		8,50	4,30	4,50	2,70
log%FeO		1,06	0,97	0,85	0,64
logv		0,93	0,63	0,65	0,43


n=1,03 (primeira ordem)

log(k) = -0.2456 ou k = 0.57 min⁻¹

REAÇÕES HETEROGÊNEAS

- Etapas básicas (em série):
 - Transporte dos reagentes até a interface (convecção e difusão)
 - 2) Reação química
 - 3) Transporte dos produtos para longe da interface (convecção e difusão)

A etapa mais lenta determinará a velocidade global do sistema se elas forem em série.