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Module 2a: Modeling Physical Dynamics




Modeling Techniques in this Course

Models that are abstractions of system dynamics
(how system behavior changes over time)

Modeling physical phenomena — differential equations
Feedback control systems — time-domain modeling
Modeling modal behavior — FSMs, hybrid automata, ...
Modeling sensors and actuators —calibration, noise, ...
Hardware and software — concurrency, timing, power, ...
Networks — latencies, error rates, packet losses, ...
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Today’s Lecture: Modeling of
Continuous Dynamics

Ordinary differential equations, Laplace
transforms, feedback control models, ...
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An Example: Helicopter Dynamics

M:-n'n Rolor

Drive Shaft — ~Tail

Coakoit Rolor
ockpit —___
Tail Boom

T Engine, Transmission,
Fuel, ete.

Landing Skids
The Fundamental Parts of any Helicopter
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Modeling Physical Motion

Six degrees of freedom:
o Position: x, y, z
o Orientation: pitch, yaw, roll

X axis

Pitch

Z axis
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Notation

Position is given by three functions:

r:R—R
y:R—R
z:R—R

where the domain R represents time and the co-domain

(range) R represents position along the axis. Collect-
Ing into a vector:

x: R — R?
Position at time ¢t € R is x(t) € R”.
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Notation

Velocity
x: R — R?

IS the derivative, V t € R,

k(1) = (1

Acceleration x: R — R* is the second derivative,

d2

)"( = —X
dt?

Force on an objectis F: R — R?.
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Newton’'s Second Law
Newton’s second law states V ¢ € R,
F(t) = Mx(t)

where M is the mass. To account for initial position
and velocity, convert this to an integral equation

t

x(t) = X(O)—I—/X(T)dT

0
/ F(a)dadrT,
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Orientation

e Orientation: #: R — R3
e Angular velocity: 6: R — R?

e Angular acceleration: 6: R — R3

Z axis

e Torque: T: R — R3

"0, (t) ] roll
0(t)=| 6,(t) | = | yaw
| 6.(t) ] [ pitch
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Angular version of force is torque.
For a point mass rotating around a fixed axis:

e radius of the arm: »r ¢ R

e force orthogonaltoarm: f ¢ R | |

e mass of the object: m € R

=rf(t)

angular momentum, momentum

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2x meters of circumference per 1
meter of radius), so as units, are optional.
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Rotational Version of Newton’s Second Law

d :
T(t) = = (1(06(1))
where [(t) is a 3 x 3 matrix called the moment of in-

ertia tensor.

I Ta(t) | d I Iar(t) Iaz/(f) [Jz(t) 11 QI(IL) |
T,(0) | == (| Le(® L Lo(®) || 6,00
@) ] T \L La(®) Ly(t) La(t) ] | 0.(t)

Here, for example, 7),(¢) is the net torque around the
y axis (which would cause changes in yaw), I,.(t) IS
the inertia that determines how acceleration around
the = axis is related to torque around the y axis.
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Simplified Model

Yaw dynamics:
Ty(t) - [yyéy(t)

To account for initial angular velocity, write as

1

0,(6) = 6,0)+ 1 [ T,(ir

vy
0
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“Plant” and Controller
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Actor Model of Systems

A system is a function that 5
accepts an input signaland X parameters| Y

yields an output signal. —P D q <

The domain and range of rxR—R, yR—R
the system function are
sets of signals, which S: X —=Y

themselves are functions.
X=Y=(R—R)

Parameters may affect the
definition of the function S.
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Actor Model of the Helicopter

Helicopter
Input is the net torque of T 7 R
the tail rotor and the top Y b W b Y
rotor. Output is the angular 0,(0)

velocity around the y axis.

Parameters of the

model are shown In . . |

the box. The input ¢, (t) = 6,(0) 4 7 /Ty(T)dT
and output relation is Yy

given by the equation

to the right.
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Helicopter

y Lyy 0,
Composition of Actor Models | 6,(0) |
U = fl’,
Helicopter y==
Scale Integrator
o X Y x V'
x=1, — j S < y = 0,
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Actor Models with Multiple Inputs
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Proportional controller

Controller Helicopter

N AN
4 0,(0)

desired error net
angular signal torque
velocit :
e =yl - 6,(1) Ty(t) = Ke(t)
. . [ Note that the angular
0,(r1) = 6y(0)+ ]—/Ty(t)a’t velocity appears on
Y0 both sides, so this
! equation is not trivial
= 8,(0)+— [(w(t)—by(x))dr  tosolve.
Yy
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Controller Helicopter

Behavior of v ' e b AN
the controller 6,(0)

6,(6) = 0,(0) + 1 [ (0(r) = b,(r)ir

Desired angular velocity: \|j(t) — ()

Simplifies differential ; K
equation to: 6,(r) = "1 /
0

Which can be solved as ¢ e —Kt/I,,
follows (see textbook): 0,(1) = 6,(0)e "u(r)
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Exercise

Reformulate the helicopter model so that it has two
inputs, the torque of the top rotor and the torque of the
tail rotor.

Show (by simulation) that if the top rotor applies a
constant torque, then our controller cannot keep the
helicopter from rotating. Increasing the feedback gain,
however, reduces the rate of rotation.

A better controller would include an integrator in the
controller. Such controllers are studied in EECS 128.
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Questions
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Controller Helicopter

Behavior of Y ’ e b T, I 6,
| by |

the controller . 6,(0)

0,(6) = 6,0+ 1 [(0(7) = b,(r))dr

yy
Assume that helicopter is initially at rest,

and that the desired signal is

Y(t) = au(t)

for some constant a.
By calculus (see notes), the solution is

0,(t) = au(t)(1 — e Kt/ 1uy)
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