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Abstract

In this paper we introduce the Krichevsky-Trofimov estimator for the number
of communities in the Stochastic Block Model (SBM) and prove its eventual almost
sure convergence to the underlying number of communities, without assuming a
known upper bound on that quantity. Our results apply to both the dense and the
sparse regimes. To our knowledge this is the first strong consistency result for the
estimation of the number of communities in the SBM, even in the bounded case.
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1 Introduction

In this paper we address the model selection problem for the Stochastic Block Model
(SBM); that is, the estimation of the number of communities given a sample of the
adjacency matrix. The SBM was introduced by Holland et al. (1983) and has rapidly
popularized in the literature as a model for random networks exhibiting blocks or com-
munities between their nodes. In this model, each node in the network has associated
a latent discrete random variable describing its community label, and given two nodes,
the possibility of a connection between them depends only on the values of the nodes’
latent variables.

From a statistical point of view, some methods have been proposed to address the
problem of parameter estimation or label recovering for the SBM. Some examples include
maximum likelihood estimation (Bickel & Chen, 2009; Amini et al. , 2013), variational
methods (Daudin et al. , 2008; Latouche et al. , 2012), spectral clustering (Rohe et al.
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, 2011) and Bayesian inference (van der Pas et al. , 2017). The asymptotic properties
of these estimators have also been considered in subsequent works such as Bickel et al.
(2013) or Su et al. (2017). All these approaches assume the number of communities is
known a priori.

The model selection problem for the SBM, that is the estimation of the number of
communities, was also addressed before, see for example the recent work Le & Levina
(2015) and references therein. But to our knowledge it was not until Wang et al.
(2017) that a consistency result was obtained for such a penalized estimator. In the
latter, the authors propose a penalized likelihood criterion and show its convergence in
probability (weak consistency) to the true number of communities. Their proof only
applies to the case where the number of candidate values for the estimator is finite (it
is upper bounded by a known constant) and the network average degree grows at least
as a polylog function on the number of nodes. From a practical point of view, the
computation of the log-likelihood function and its supremum is not a simple task due to
the hidden nature of the nodes’ labels. Wang et al. (2017) propose a variational method
as described in Bickel et al. (2013) using the EM algorithm of Daudin et al. (2008), a
profile maximum likelihood criterion as in Bickel & Chen (2009) or the pseudo-likelihood
algorithm in Amini et al. (2013). The method introduced in Wang et al. (2017) has been
subsequently studied in Hu et al. (2016), where the authors propose a modification of
the penalty term. However, in practice, the computation of the suggested estimator still
remains a demanding task since it depends on the profile maximum likelihood function.

In this paper we take an information-theoretic perspective and introduce the Kri-
chevsky-Trofimov (KT) estimator, see Krichevsky & Trofimov (1981), in order to deter-
mine the number of communities of a SBM based on a sample of the adjacency matrix
of the network. We prove the strong consistency of this estimator, in the sense that
the empirical value is equal to the correct number of communities in the model with
probability one, as long as the number of nodes n in the network is su�ciently large.
The strong consistency is proved in the dense regime, where the probability of having an
edge is considered to be constant, and in the sparse regime where this probability goes
to zero with n having order ⇢n. The study of the second regime is more interesting in
the sense that it is necessary to control how much information is required (in the sense
of the number of edges in the network) to estimate the parameters of the model. We
prove that the consistency in the sparse case is guaranteed when the expected degree of
a random selected node grows to infinity as a function of order n⇢n ! 1, weakening
the assumption in Wang et al. (2017) that proves consistency in the regime n⇢n

logn ! 1.
We also consider a smaller order penalty function and we do not assume a known upper
bound on the true number of communities. To our knowledge this is the first strong
consistency result for an estimator of the number of communities, even in the bounded
case.

The paper is organized as follows. In Section 2 we define the model and the nota-
tion used in the paper, in Section 3 we introduce the KT estimator for the number of
communities and state the main result. The proof of the consistency of the estimator is
presented in Section 4.
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2 The Stochastic Block Model

Consider a non-oriented random network with nodes {1, 2, . . . , n}, specified by its adja-
cency matrix Xn⇥n 2 {0, 1}n⇥n that is symmetric and has diagonal entries equal to zero.
Each node i has associated a latent (non-observed) variable Zi on [k] := {1, 2, . . . , k},
the community label of node i.

The SBM with k communities is a probability model for a random network as above,
where the latent variables Zn = (Z1, Z2, · · · , Zn) are independent and identically dis-
tributed random variables over [k] and the law of the adjacency matrix Xn⇥n, condi-
tioned on the value of the latent variables Zn = zn, is a product measure of Bernoulli
random variables whose parameters depend only on the nodes’ labels. More formally,
there exists a probability distribution over [k], denoted by ⇡ = (⇡1, · · · ,⇡k), and a sym-
metric probability matrix P 2 [0, 1]k⇥k such that the distribution of the pair (Zn,Xn⇥n)
is given by

P⇡,P (zn,xn⇥n) =
kY

a=1

⇡
na
a

kY

a,b=1

P
Oa,b/2
a,b

(1� Pa,b)
(na,b�Oa,b)/2 , (2.1)

where the counters na = na(zn), na,b = na,b(zn) and Oa,b = Oa,b(zn,xn⇥n) are given by

na(zn) =
nX

i=1

1{zi = a} , 1  a  k

na,b(zn) =

(
na(zn)nb(zn) , 1  a, b  k ; a 6= b

na(zn)(na(zn)� 1) 1  a, b  k ; a = b

and

Oa,b(zn,xn⇥n) =
nX

i,j=1

1{zi = a, zj = b}xij , 1  a, b  k .

As it is usual in the definition of likelihood functions, by convention we define 00 = 1 in
(2.1) when some of the parameters are 0.

We denote by ⇥k the parametric space for a model with k communities, given by

⇥k =

(
(⇡, P ) : ⇡ 2 (0, 1]k,

kX

a=1

⇡a = 1, P 2 [0, 1]k⇥k
, P symmetric

)
.

The order of the SBM is defined as the smallest k for which the equality (2.1) holds for
a pair of parameters (⇡0

, P
0) 2 ⇥k and will be denoted by k0. If a SBM has order k0

then it cannot be reduced to a model with less communities than k0; this specifically
means that P 0 does not have two identical columns.

When P
0 is fixed and does not depend on n, the mean degree of a given node grows

linearly in n and this regime produces very connected (dense graphs). For this reason in
this paper we also consider the regime producing sparse graphs (with less edges), that
is we allow P

0 to decrease with n to the zero matrix. In this case we write P
0 = ⇢nS

0,
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where S
0 2 [0, 1]k⇥k does not depend on n and ⇢n is a function decreasing to 0 at a rate

n⇢n ! 1.

3 The KT order estimator

The Krichevsky-Trofimov order estimator in the context of a SBM is a regularized esti-
mator based on a mixture distribution for the adjacency matrix Xn⇥n. Given a sample
(zn,xn⇥n) from the distribution (2.1) with parameters (⇡0

, P
0), where we assume we

only observed the network xn⇥n, the estimator of the number of communities is defined
by

k̂KT(xn⇥n) = argmax
k

{ logKTk(xn⇥n)� pen(k, n) } , (3.1)

where KTk(xn⇥n) is the mixture distribution for a SBM with k communities and pen(k, n)
is a penalizing function that will be specified later.

As it is usual for the KT distributions we choose as “prior” for the pair (⇡, P ) a
product measure obtained by a Dirichlet(1/2, · · · , 1/2) distribution (the prior distribu-
tion for ⇡) and a product of (k2 + k)/2 Beta(1/2, 1/2) distributions (the prior for the
symmetric matrix P ). In other words, we define the distribution on ⇥k

⌫k(⇡, P ) =

"
�( k

2 )
�( 1

2)
k

kY

a=1

⇡
� 1

2
a

#"
Y

1abk

1

�( 1
2)

2 P
� 1

2
a,b

(1� Pa,b)
� 1

2

#
(3.2)

and we construct the mixture distribution for Xn⇥n, based on ⌫k(⇡, P ), given by

KTk(xn⇥n) = E⌫k [P⇡,P (xn⇥n) ] =

Z

⇥k
P⇡,P (xn⇥n)⌫k(⇡, P )d⇡dP , (3.3)

where P⇡,P (xn⇥n) stands for the marginal distribution obtained from (2.1), and given
by

P⇡,P (xn⇥n) =
X

zn2[k]n
P⇡,P (zn,xn⇥n) . (3.4)

As in other model selection problems where the KT approach has proved to be very
useful, as for example in the case of Context Tree Models (Csiszar & Talata, 2006) or
Hidden Markov models (Gassiat & Boucheron, 2003), in the case of the SBM there is
a closed relationship between the KT mixture distribution and the maximum likelihood
function. The following proposition shows a non asymptotic uniform upper bound for
the log ratio between these two functions. Its proof is postponed to the Appendix.

Proposition 3.1. For all k and all n � max(4, k) we have

max
xn⇥n

n
log

sup(⇡,P )2⇥k P⇡,P (xn⇥n)

KTk(xn⇥n)

o

⇣
k(k+2)

2 � 1
2

⌘
log n+ ck,n ,

where

ck,n = k(k+1)
2 log�

�
1
2

�
+ k(k�1)

4n + 1
12n + log

�( 12 )

�( k2 )
+ 7k(k+1)

12 .
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Proposition 3.1 is at the core of the proof of the strong consistency of k̂KT defined by
(3.1). By strong consistency we mean that the estimator equals the order k0 of the SBM
with probability one, for all su�ciently large n (that may depend on the sample xn⇥n).
In order to derive the strong consistency result for the KT order estimator, we need
a penalty function in (3.1) with a given rate of convergence when n grows to infinity.
Although there are a range of possibilities for this penalty function, the specific form we
use in this paper is

pen(k, n) =
k�1X

i=1

(i(i+2)+3+✏)
2 log n

=
h
k(k�1)(2k�1)

12 + k(k�1)
2 + (3+✏)(k�1)

2

i
log n

(3.5)

for some ✏ > 0. The convenience of the expression above will be make clear in the proof of
the consistency result. Observe that the penalty function defined by (3.5) is dominated

by a tern of order k3 log n and then it is of smaller order than the function k(k+1)
2 n log n

used in Wang et al. (2017), so our results also apply in this case. It remains an open
question which is the smallest penalty function for a strongly consistent estimator.

We finish this section by stating the main theoretical result in this paper.

Theorem 3.2 (Consistency Theorem). Suppose the SBM has order k0 with param-
eters (⇡0

, P
0). Then, for a penalty function of the form (3.5) we have that

k̂KT(xn⇥n) = k0

eventually almost surely as n ! 1.

The proof of this and other auxiliary results are given in the next section and in the
Appendix.

4 Proof of the Consistency Theorem

The proof of Theorem 3.2 is divided in two main parts. The first one, presented in
Subsection 4.1, proves that k̂KT(xn⇥n) does not overestimate the true order k0, eventually
almost surely when n ! 1, even without assuming a known upper bound on k0. The
second part of the proof, presented in Subsection 4.2, shows that k̂KT(xn⇥n) does not
underestimate k0, eventually almost surely when n ! 1. By combining these two
results we prove that k̂KT(xn⇥n) = k0 eventually almost surely as n ! 1.

4.1 Non-overestimation

The main result in this subsection is given by the following proposition.

Proposition 4.1. Let xn⇥n be a sample of size n from a SBM of order k0, with pa-
rameters ⇡

0 and P
0. Then, the k̂KT(xn⇥n) order estimator defined in (3.1) with penalty

function given by (3.5) does not overestimate k0, eventually almost surely when n ! 1.
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The proof of Proposition 4.1 follows straightforward from Lemmas 4.2, 4.3 and 4.4
presented below. These lemmas are inspired in the work Gassiat & Boucheron (2003)
which proves consistency for an order estimator of a Hidden Markov Model.

Lemma 4.2. Under the hypotheses of Proposition 4.1 we have that

k̂KT(xn⇥n) 62 (k0, log n]

eventually almost surely when n ! 1.

Proof. First observe that

P⇡0,P 0(k̂KT(xn⇥n) 2 (k0, log n]) =
lognX

k=k0+1

P⇡0,P 0(k̂KT(xn⇥n) = k) . (4.1)

Using Lemma A.2 we can bound the sum in the right-hand side by

lognX

k=k0+1

exp
n

(k0(k0+2)�1)
2 log n+ ck0,n + pen(k0, n)� pen(k, n)

o

 e
ck0,n log n exp

n
(k0(k0+2)�1)

2 log n+ pen(k0, n)� pen(k0 + 1, n)
o

where the last inequality follows from the fact that pen(k, n) is an increasing function
in k. Moreover, a simple calculation using the specific form in (3.5) gives

(k0(k0+2)�1)
2 log n+ pen(k0, n)� pen(k0 + 1, n)

=
� (k0(k0+2)�1)

2 � (k0(k0+2)�1+4+✏))
2

�
log n

= �(2 + ✏/2) log n .

By using this expression in the right-hand side of the las inequality to bound (4.1) we
obtain that

1X

n=1

P⇡0,P 0(k̂KT(xn⇥n) 2 (k0, log n])  Ck0

1X

n=1

log n

n2+✏/2
< 1 ,

where Ck0 denotes an upper-bound on exp(ck0,n). Now the result follows by the first
Borel Cantelli lemma.

Lemma 4.3. Under the hypotheses of Proposition 4.1 we have that

k̂KT(xn⇥n) 62 (log n, n]

eventually almost surely when n ! 1.
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Proof. As in the proof of Lemma 4.2 we write

P⇡0,P 0(k̂KT(xn⇥n) 2 (log n, n]) =
nX

k=logn

P⇡0,P 0(k̂KT(xn⇥n) = k)

and we use again Lemma A.2 to bound the sum in the right-hand side by
nX

k=logn

exp
n

(k0(k0+2)�1)
2 log n+ ck0,n + pen(k0, n)� pen(k, n)

o

 e
ck0,n n exp

n
� log n

h
� (k0(k0+2)�1)

2 � pen(k0,n)
logn + pen(logn,n)

logn

io
.

Since pen(k, n)/ log(n) does not depend on n and increases cubically in k we have that

lim inf
n!1

pen(logn,n)
logn � (k0(k0+2)�1)

2 � pen(k0,n)
logn > 3

and thus
1X

n=1

n exp
n
� log n

h
� (k0(k0+2)�1)

2 � pen(k0,n)
logn + pen(logn,n)

logn

io
< 1 .

Using the fact that exp(ck0,n) is decreasing on n, the result follows from the first Borel
Cantelli lemma.

Lemma 4.4. Under the hypotheses of Proposition 4.1 we have that

k̂KT(xn⇥n) 62 (n,1)

eventually almost surely when n ! 1.

Proof. Observe that it is enough to prove that

log KTn+m(xn⇥n)� pen(n+m,n)  logKTn(xn⇥n)� pen(n, n)

for all m � 1. By using Proposition 3.1 we have that

� log KTn(xn⇥n)  � log sup
(⇡,P )2⇥n

P⇡,P (xn⇥n) +
⇣
n(n+2)

2 � 1
2

⌘
log n+ cn,n

and by (3.3) we obtain

KTn+m(xn⇥n)  sup
(⇡,P )2⇥n+m

P⇡,P (xn⇥n) .

Thus, as
sup

(⇡,P )2⇥n+m
P⇡,P (xn⇥n) = sup

(⇡,P )2⇥n
P⇡,P (xn⇥n)

we obtain

log KTn+m(xn⇥n)� logKTn(xn⇥n) 
⇣
n(n+2)

2 � 1
2

⌘
log n+ cn,n

 (n(n+2)�1)
2 log n+ n(n+ 1)

⇣
log�( 1

2)
2 + 7

12

⌘
+ n(n�1)

4n + 1
12n � log

�(n2 )

�( 12 )

 pen(n+m,n)� pen(n, n)

where the last inequality holds for n big enough.

7



4.2 Non-underestimation

In this subsection we deal with the proof of the non-underestimation of k̂KT(xn⇥n). The
main result of this section is the following

Proposition 4.5. Let xn⇥n be a sample of size n from a SBM of order k0 with parame-
ters (⇡0

, P
0). Then, the k̂KT(xn⇥n) order estimator defined in (3.1) with penalty function

given by (3.5) does not underestimate k0, eventually almost surely when n ! 1.

In order to prove this result we need Lemmas 4.6 and 4.7 below, that explore limiting
properties of the under-fitted model. That is we handle with the problem of fitting a
SBM of order k0 in the parameter space ⇥k0�1.

An intuitive construction of a (k � 1)-block model from a k-block model is obtained
by merging two given blocks. This merging can be implemented in several ways, but
here we consider the construction given in Wang et al. (2017), with the di↵erence that
instead of using the sample block proportions we use the limiting distribution ⇡ of the
original k-block model.

Given (⇡, P ) 2 ⇥k we define the merging operation Ma,b(⇡, P ) = (⇡⇤
, P

⇤) 2 ⇥k�1

which combines blocks with labels a and b. For ease of exposition we only show the
explicit definition for the case a = k� 1 and b = k. In this case, the merged distribution
⇡
⇤ is given by

⇡
⇤
i = ⇡i for 1  i  k � 2 , (4.2)

⇡
⇤
k�1 = ⇡k�1 + ⇡k .

On the other hand, the merged matrix P
⇤ is obtained as

P
⇤
l,r = Pl,r for 1  l, r  k � 2 ,

P
⇤
l,k�1 =

⇡l⇡k�1Pl,k�1 + ⇡l⇡kPl,k

⇡l⇡k�1 + ⇡l⇡k
for 1  l  k � 2 , (4.3)

P
⇤
k�1,k�1 =

⇡k�1⇡k�1Pk�1,k�1 + 2⇡k�1⇡kPk�1,k + ⇡k⇡kPk,k

⇡k�1⇡k�1 + 2⇡k�1⇡k + ⇡k⇡k
.

For arbitrary a and b the definition is obtained by permuting the labels.
Given xn⇥n originated from the SBM of order k0 and parameters (⇡0

, P
0), we define

the profile likelihood estimator of the label assignment under the (k0 � 1)-block model
as

z?n = argmax
zn2[k0�1]n

sup
(⇡,P )2⇥k0�1

P⇡,P (zn,xn⇥n) . (4.4)

The next lemmas show that the logarithm of the ratio between the maximum likeli-
hood under the true order k0 and the maximum profile likelihood under the under-fitting
k0�1 order model is bounded from below by a function growing faster than n log n, even-
tually almost surely when n ! 1. Each lemma consider one of the two possible regimes
⇢n = ⇢ > 0 (dense regime) or ⇢n ! 0 at a rate n⇢n ! 1 (sparse regime).
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Lemma 4.6 (dense regime). Let (zn,xn⇥n) be a sample of size n from a SBM of order
k0 with parameters (⇡0

, P
0), with P

0 not depending on n. Then there exist r, s 2 [k0]
such that for (⇡⇤

, P
⇤) = Mr,s(⇡0

, P
0) we have that almost surely

lim inf
n!1

1

n2
log

sup(⇡,P )2⇥k0 P⇡,P (zn,xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (z?n,xn⇥n)

� 1

2

"
k0X

a,b=1

⇡
0
a⇡

0
b �(P

0
ab)�

k0�1X

a,b=1

⇡
⇤
a⇡

⇤
b �(P

⇤
a,b)

#
(4.5)

> 0 ,

where �(x) = x log x+ (1� x) log(1� x).

Proof. Given k and z̄n 2 [k]n define the empirical probabilities

⇡̂a(z̄n) =
na(z̄n)

n
, 1  a  k

P̂a,b(z̄n,xn⇥n) =
Oa,b(z̄n,xn⇥n)

na,b(z̄n)
, 1  a, b  k .

(4.6)

Then the maximum likelihood function is given by

log sup
(⇡,P )2⇥k0

P⇡,P (zn,xn⇥n) = n

k0X

a=1

⇡̂a(zn) log ⇡̂a(zn)

+
1

2

k0X

a,b=1

na,b(zn)�(P̂a,b(zn,xn⇥n)) .

Using that na,b = nanb for a 6= b and na,a = na(na � 1) the last expression is equal to

n

k0X

a=1

⇡̂a(zn) log ⇡̂a(zn)�
n

2

k0X

a=1

⇡̂a(zn)�(P̂a,a(zn,xn⇥n))

+
n
2

2

k0X

a,b=1

⇡̂a(zn)⇡̂b(zn)�(P̂a,b(zn,xn⇥n)) .

(4.7)

The first two terms in (4.7) are of smaller order compared to n
2, so by the Strong Law

of Large Numbers we have that almost surely

lim
n!1

1

n2
log sup

(⇡,P )2⇥k0

P⇡,P (zn,xn⇥n) =
1

2

k0X

a,b=1

⇡
0
a⇡

0
b �(P

0
a,b) . (4.8)

Similarly for k0 � 1 and z?n 2 [k0 � 1]n we have that almost surely

lim sup
n!1

1

n2
log sup

(⇡,P )2⇥k0�1

P⇡,P (z
?

n,xn⇥n) =
1

2

k0�1X

a,b=1

⇡̃a⇡̃b �(P̃a,b) , (4.9)
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for some (⇡̃, P̃ ) 2 ⇥k0�1. Combining (4.8) and (4.9) we have that almost surely

lim inf
n!1

1

n2
log

sup(⇡,P )2⇥k0 P⇡,P (zn,xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (z?n,xn⇥n)

=
1

2

k0X

a,b=1

⇡
0
a⇡

0
b �(P

0
a,b)�

1

2

k0�1X

a,b=1

⇡̃a⇡̃b �(P̃a,b) .

(4.10)

To obtain a lower bound for (4.10) we need to compute (⇡̃, P̃ ) that minimizes the right-
hand side. This is equivalent to obtain (⇡̃, P̃ ) 2 ⇥k0�1 that maximizes the second term

k0�1X

a,b=1

⇡̃a⇡̃b �(P̃a,b) . (4.11)

Denote by (eZn,
eXn⇥n) a (k0 � 1)-order SBM with distribution (⇡̃, P̃ ). By definition

P̃
ã,b̃

=
P (X̃i,j = 1, Z̃i = ã, Z̃j = b̃)

P (Z̃i = ã, Z̃j = b̃)
.

Observe that when eXn⇥n = Xn⇥n, the numerator equals

k0X

a,b=1

P (Xi,j = 1|Zi = a, Zj = b)P (Zi = a, Zj = b, Z̃i = ã, Z̃j = b̃)

=
k0X

a,b=1

P (Zi = a, Z̃i = ã)P 0
a,b P (Zj = b, Z̃j = b̃)

= (QP
0
Q

T )
ã,b̃

,

where Q(a, ã) denotes a joint distribution on [k0]⇥ [k0 � 1] (a coupling) with marginals
⇡
0 and ⇡̃, respectively. Similarly, the denominator can be written as

k0X

a,b=1

P (Zi = a, Z̃i = ã)P (Zj = b, Z̃j = b̃) = (Q(11T )QT )
ã,b̃

,

where 1 denotes the matrix with dimension (k0�1)⇥k0 and all entries equal to 1. Then
we can rewrite (4.11) as

k0�1X

a,b=1

(Q(11T )QT )a,b �


(QP

0
Q

T )a,b
(Q(11T )QT )a,b

�
. (4.12)

Therefore, finding a pair (⇡̃, P̃ ) maximizing (4.11) is equivalent to finding an optimal
coupling Q maximizing (4.12). Wang et al. (2017) proved that there exist r, s 2 [k0]
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such that (4.12) achieves its maximum at (⇡⇤
, P

⇤) = Mr,s(⇡0
, P

0), see Lemma A.2 there.
This concludes the proof of the first inequality in (4.5). In order to prove the second
strict inequality in (4.5), we consider for convenience and without loss of generality,
r = k0 � 1 and s = k0 (the other cases can be handled by a permutation of the labels).
Notice that in the right-hand side of (4.10), with (⇡̃, P̃ ) substituted by the optimal value
Mk0�1,k0(⇡

0
, P

0) defined by (4.2) and (4.3), all the terms with 1  a, b  k0 � 2 cancel.
Moreover, as � is a convex function, Jensen’s inequality implies that

⇡
⇤
a⇡

⇤
k0�1�(P

⇤
a,k0�1)  ⇡

0
a⇡

0
k0�1�(P

0
a,k0�1) + ⇡

0
a⇡

0
k0
�(P 0

a,k0
) (4.13)

for all a = 1, . . . , k0 � 2 and similarly

(⇡⇤
k0�1)

2
�(P ⇤

k0�1,k0�1) 
k0X

a,b=k0�1

⇡
0
a⇡

0
b�(P

0
a,b) . (4.14)

The equality holds for all a in (4.13) and in (4.14) simultaneously if and only if

P
0
a,k0

= Pa,k0�1 for all a = 1, . . . , k0 ,

in which case the matrix P
0 would have two identical columns, contradicting the fact

that the sample (zn,xn⇥n) originated from a SBM with order k0. Therefore the strict
inequality must hold in (4.13) for at least one a or in (4.14), showing that the second
inequality in (4.5) holds.

Lemma 4.7 (sparse regime). Let (zn,xn⇥n) be a sample of size n from a SBM of order
k0 with parameters (⇡0

, ⇢nS
0), where ⇢n ! 0 at a rate n⇢n ! 1. Then there exist

r, s 2 [k0] such that for (⇡⇤
, P

⇤) = Mr,s(⇡0
, S

0) we have that almost surely

lim inf
n!1

1

⇢nn
2
log

sup(⇡,P )2⇥k0 P⇡,P (zn,xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (z?n,xn⇥n)

� 1

2

"
k0X

a,b=1

⇡
0
a⇡

0
b ⌧(S

0
a,b)�

k0�1X

a,b=1

⇡
⇤
a⇡

⇤
b ⌧(P

⇤
a,b)

#
(4.15)

> 0 ,

where ⌧(x) = x log x� x.

Proof. This proof follows the same arguments used in the proof of Lemma 4.6, but as in
this case P

0 decreases to 0 some limits must be handled di↵erently. As shown in (4.7)

11



we have that

log sup
(⇡,P )2⇥k0

P⇡,P (zn,xn⇥n) = n

k0X

a=1

⇡̂a(zn) log ⇡̂a(zn)

� n

2

k0X

a=1

⇡̂a(zn)�(P̂a,a(zn,xn⇥n)) (4.16)

+
n
2

2

k0X

a,b=1

⇡̂a(zn)⇡̂b(zn)�(P̂a,b(zn,xn⇥n)) .

For ⇢n ! 0, Bickel & Chen (2009) proved that

k0X

a,b=1

⇡̂a(zn)⇡̂b(zn)�(P̂a,b(zn,xn⇥n))

= ⇢n

k0X

a,b=1

⇡̂a(zn)⇡̂b(zn) ⌧
⇣
P̂a,b(zn,xn⇥n)

⇢n

⌘
+

En

n2
log ⇢n +O(⇢2n) , (4.17)

where En =
k0P

a,b=1
Oab(zn,xn⇥n) (twice the total number of edges in the graph) and

⌧(x) = x log x� x. Thus, as ⇢nn ! 1 we can drop the first two terms in (4.16) and we
have that

1

⇢nn
2
log sup

(⇡,P )2⇥k0

P⇡,P (zn,xn⇥n) =
1

2

k0X

a,b=1

⇡̂a(zn)⇡̂b(zn)⌧
⇣
P̂a,b(zn,xn⇥n)

⇢n

⌘

+
En log ⇢n
2⇢nn2

+O(⇢n) (4.18)

and

1

⇢nn
2
log sup

(⇡,P )2⇥k0�1

P⇡,P (z
?

n,xn⇥n) =
1

2

k0�1X

a,b=1

⇡̂a(z
?

n)⇡̂b(z
?

n)⌧
⇣
P̂a,b(z?n,xn⇥n)

⇢n

⌘

+
En log ⇢n
2⇢nn2

+O(⇢n) . (4.19)

Now, as in the proof of Lemma 4.6 there must exist some (⇡̃, S̃) 2 ⇥k0�1 such that
almost surely

lim inf
n!1

1

⇢nn
2
log

sup(⇡,P )2⇥k0 P⇡,P (zn,xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (z?n,xn⇥n)

=
1

2

k0X

a,b=1

⇡
0
a⇡

0
b ⌧(S

0
a,b)�

1

2

k0�1X

a,b=1

⇡̃a⇡̃b ⌧(S̃a,b) . (4.20)
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As before, we want to obtain (⇡̃, S̃) 2 ⇥k0�1 that maximizes the second term in the
right-hand side of the equality above. The rest of the proof here is analogous to that of
Lemma 4.6, by observing that ⌧ is also a convex function and therefore the lower bound
on 0 in (4.15) also holds.

Proof of Prosposition 4.5. To prove that k̂KT(xn⇥n) does not underestimate k0 it is
enough to show that for all k < k0

logKTk0(xn⇥n)� pen(k0, n) > logKTk(xn⇥n)� pen(k, n)

eventually almost surely when n ! 1. As

lim
n!1

1

⇢nn
2

h
pen(k0, n)� pen(k, n)

i
= 0

this is equivalent to show that

lim inf
n!1

1

⇢nn
2
log

KTk0(xn⇥n)

KTk(xn⇥n)
> 0 .

First note that the logarithm above can be written as

log
KTk0(xn⇥n)

KTk(xn⇥n)
= log

KTk0(xn⇥n)

sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

+ log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

KTk(xn⇥n)
.

Using Proposition (3.1) we have that the first term in the right-hand side can be bounded
below by

log
KTk0(xn⇥n)

sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)
� �

⇣
k0(k0+2)

2 � 1
2

⌘
log n� ck0,n . (4.21)

On the other hand, the second term can be lower-bounded by using

log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

KTk(xn⇥n)

= log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
+ log

sup(⇡,P )2⇥k P⇡,P (xn⇥n)

KTk(xn⇥n)
(4.22)

� log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
.

By combining (4.21) and (4.22) we obtain

1

⇢nn
2
log

KTk0(xn⇥n)

KTk0(xn⇥n)
� �

⇣
k0(k0+2)

2 � 1
2

⌘ log n

⇢nn
2
�

ck0,n

⇢nn
2

+
1

⇢nn
2
log

sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
.
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Now, as n⇢n ! 1 it su�ces to show that for k < k0, almost surely we have

lim inf
n!1

1

⇢nn
2
log

sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
> 0 . (4.23)

We start with k = k0 � 1. Using z?n defined by (4.4) we have that

sup
(⇡,P )2⇥k0�1

P⇡,P (xn⇥n) 
X

zn2[k0�1]n

sup
(⇡,P )2⇥k0�1

P⇡,P (xn⇥n, zn)

 (k0 � 1)n sup
(⇡,P )2⇥k0�1

P⇡,P (z
?

n,xn⇥n)

and on the other hand

sup
(⇡,P )2⇥k0

P⇡,P (xn⇥n) = sup
(⇡,P )2⇥k0

X

z̄n2[k0]n
P⇡,P (z̄n,xn⇥n)

� sup
(⇡,P )2⇥k0

P⇡,P (zn,xn⇥n) .

Therefore

log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (xn⇥n)
� log

sup(⇡,P )2⇥k0 P⇡,P (zn,xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (z?n,xn⇥n)

� n log (k0 � 1) . (4.24)

Using that n⇢n ! 1 on both regimes ⇢n = ⇢ > 0 (dense regime) and ⇢n ! 0 (sparse
regime) we have, by Lemmas 4.6 and 4.7 that almost surely (4.23) holds for k = k0 � 1.
To complete the proof, let k < k0 � 1. In this case we can write

log
sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
= log

sup(⇡,P )2⇥k0 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k0�1 P⇡,P (xn⇥n)

+ log
sup(⇡,P )2⇥k0�1 P⇡,P (xn⇥n)

sup(⇡,P )2⇥k P⇡,P (xn⇥n)
.

The first term in the right-hand side can be handled in the same way as in (4.24). On the
other hand the second term is non-negative because the maximum likelihood function is
a non-decreasing function of the dimension of the model and k < k0 � 1. This finishes
the proof of Proposition 4.5

5 Discussion

In this paper we introduced a model selection procedure based on the Krichevsky-
Trofimov mixture distribution for the number of communities in the Stochastic Block
Model. We proved the almost sure convergence (strong consistency) of the penalized
estimator (3.1) to the underlying number of communities, without assuming a known
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upper bound on that quantity. To our knowledge this is the first strong consistency
result for an estimator of the number of communities, even in the bounded case.

The family of penalty functions of the form (3.5) are of smaller order compared to
the ones used in Wang et al. (2017), therefore our results also apply to their family
of penalty functions. Moreover, we consider a wider family of sparse models with edge
probability of order ⇢n, where ⇢n can decrease to 0 at a rate n⇢n ! 1. It remains
open if it is even possible to obtain consistency in the sparse regime with ⇢n = 1/n
and which are the smallest penalty functions for a consistent estimator of the number
of communities.
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A Proofs of auxiliary results

We begin by stating without proof a basic inequality for the Gamma function. The proof
of this result can be found in Davisson et al. (1981).

Lemma A.1. For integers n = n1 + · · ·+ nJ we have that

JQ
j=1

�
nj

n

�nj

JQ
j=1

�
�
nj +

1
2

�  1

�
�
n+ 1

2

�
�
�
1
2

�J�1
. (A.1)

We now follow by presenting the proof a Proposition 3.1.

Proof of Proposition 3.1. The proof is based on Liu & Narayan (1994, Lemma 3.4). For
(⇡, P ) 2 ⇥k we have that

P⇡,P (zn) =
kY

a=1

⇡
na
a (A.2)

and

P⇡,P (xn⇥n|zn) =
Y

1abk


P

Õa,b

a,b
(1� Pa,b)

(ña,b�Õa,b)

� 1
2

, (A.3)

where

ña,b =

(
2na,b , 1  a, b  k ; a 6= b

na,b 1  a, b  k ; a = b

and

Õa,b =

(
2Oa,b , 1  a, b  k ; a 6= b

Oa,b 1  a, b  k ; a = b .

Using that the maximum likelihood estimators for ⇡a and Pa,b are given by
na

n
and

Õa,b

ña,b

(respectively) we can bound above (A.2) and (A.3) by

P⇡,P (zn)  sup
(⇡,P )2⇥k

P⇡,P (zn) =
kY

a=1

⇣
na

n

⌘na

. (A.4)

and

P⇡,P (xn⇥n|zn)  sup
(⇡,P )2⇥k

P⇡,P (xn⇥n|zn)

=
Y

1abk

 
Õa,b

ña,b

!Õa,b/2 
1�

Õa,b

ña,b

!(ña,b�Õa,b)/2

. (A.5)
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Observe that the Krichevsky-Trofimov mixture distribution defined in (3.3) can be writ-
ten as

KTk(xn⇥n) =
X

zn2[k]n

✓Z

⇥k
1

P⇡,P (zn)⌫
1
k(⇡)d⇡

◆✓Z

⇥k
2

P⇡,P (xn⇥n|zn)⌫2k(P )dP

◆

=
X

zn2[k]n
KTk(zn)KTk(xn⇥n|zn) , (A.6)

where

⌫
1
k(⇡) =

�(k2 )

�(12)
k

kY

a=1

⇡
�1/2
a , ⌫

2
k(P ) =

Y

1abk

1

�(12)
2
P

�1/2
a,b

(1� Pa,b)
�1/2

,

⇥k

1 = {⇡ |⇡ 2 (0, 1]k,
kX

a=1

⇡a = 1} ,

and
⇥k

2 = {P |P 2 [0, 1]k⇥k
, P is symmetric }.

We start with the evaluation of KTk(zn). By a simple calculation we have that

KTk(zn) =
�
�
k

2

�

�
�
1
2

�k

Q
k

a=1 �
�
na +

1
2

�

�
�
n+ k

2

� . (A.7)

Then combining (A.4) and (A.7) we obtain the bound

P⇡,P (zn)

KTk(zn)


�
�
1
2

�k
�
�
n+ k

2

�

�
�
k

2

�
kY

a=1

⇣
na

n

⌘na

�
�
na +

1
2

� (A.8)

Using the fact that n1 + · · · + nk = n and Lemma A.1 we can bound the second factor
in the right-hand side of the last inequality by

kY

a=1

⇣
na

n

⌘na

�
�
na +

1
2

�  1

�
�
1
2

�k�1
�
�
n+ 1

2

� (A.9)

and then we obtain the bound

P⇡,P (zn)

KTk(zn)


�
�
1
2

�
�
�
n+ k

2

�

�
�
k

2

�
�
�
n+ 1

2

� . (A.10)

The same arguments above can be used to derive the upper bound

P⇡,P (xn⇥n|zn1 )
KTk(xn⇥n|zn1 )

 �
�
1
2

�k(k�1)
2 + k

Y

1abk

�
⇣
ña,b

2 + 1
⌘

�
⇣
ña,b

2 + 1
2

⌘ . (A.11)
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Thus combining the bounds in (A.10) and (A.11) we obtain

log
P⇡,P (xn⇥n)

KTk(xn⇥n)
 log

✓
�( 1

2)�(n+
k
2 )

�( k
2 )�(n+

1
2)

◆
+
⇣
k(k�1)

2 + k

⌘
log�

�
1
2

�

+
X

1abk

log

 
�
⇣ ña,b

2 +1
⌘

�
⇣ ña,b

2 + 1
2

⌘

!
. (A.12)

It can be shown, as in Gassiat & Boucheron (2003, Appendix I), that

log

✓
�( 1

2)�(n+
k
2 )

�( k
2 )�(n+

1
2)

◆

�
k�1
2

�
log n+ k(k�1)

4n + 1
12n + log

�( 12 )

�( k2 )
(A.13)

and for 1  a  b  k,

log

 
�
⇣ ña,b

2 +1
⌘

�
⇣ ña,b

2 + 1
2

⌘

!
 1

2 log
⇣
ña,b

2

⌘
+ 1

na,b
+ 1

6na,b

 log n+ 7
6

(A.14)

where the last inequality follows from the fact that ña,b  2n2 for all a and b. Setting

ck,n = k(k+1)
2 log�

�
1
2

�
+ k(k�1)

4n + 1
12n + log

�(
1
2)

�(
k

2 )
+ 7k(k+1)

12

and combining (A.12), (A.13) and (A.14) the result follows.

Now we state and prove a lemma that is useful to bound the probability of overesti-
mation.

Lemma A.2. For k > k0 we have

P⇡0,P 0(k̂KT(xn⇥n) = k)  exp
n

(k0(k0+2)�1)
2 log n+ ck0,n + dk0,k,n

o
,

where dk0,k,n = pen(k0, n)� pen(k, n).

Proof. For k > k0 define the events

A(k) =
n
argmax

k0
{ logKTk0(xn⇥n)� pen(k0, n) } = k

o

and
B(k) =

n
KTk0(xn⇥n)  KTk(xn⇥n)e

dk0,k,n

o
.

Observe that A(k) ⇢ B(k) for all k. Then

P⇡0,P 0(k̂KT(xn⇥n) = k) =
X

xn⇥n

P⇡0,P 0(xn⇥n)1A(k)


X

xn⇥n

P⇡0,P 0(xn⇥n)1B(k) . (A.15)
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By Proposition 3.1

logP⇡0,P 0(xn⇥n)  log sup
(⇡,P )2⇥k0

P⇡,P (xn⇥n)

 logKTk0(xn⇥n) +
⇣
k0(k0+2)�1

2

⌘
log n+ ck0,n

and therefore

P⇡0,P 0(xn⇥n)  KTk0(xn⇥n)n

⇣
k0(k0+2)�1

2

⌘

e
ck0,n . (A.16)

Applying (A.16) in (A.15) we obtain that

P⇡0,P 0(k̂KT(xn⇥n) = k) 
X

xn⇥n

KTk0(xn⇥n)n

⇣
k0(k0+2)�1

2

⌘

e
ck0,n1B(k)


X

xn⇥n

KTk(xn⇥n) e
dk0,k,nn

⇣
k0(k0+2)�1

2

⌘

e
ck0,n

= exp
n

(k0(k0+2)�1)
2 log n+ ck0,n + dk0,k,n

o
,

where the last equality follows from the fact that KTk(·) is a probability distribution on
the space of adjacency matrices. This concludes the proof of Lemma A.2.
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