Chapter 5

Transducers, Beam
Patterns, and Resolution

5.1 INTRODUCTION

A key ingredient of any ultrasonic instrument is the means for generating
and detecting the acoustic waves. Since the origin of most gencrater signals
is electrical in nature ard since the most convenient way of conditioning,
amplifying, and displaving siznals is by electronic eircuits, some device for
translating electrical power into acoustical power, and vice versa, is needed.
Among the possibilities are Induction coil loudspeakers and magnetostric-
live devices, but by far the most convenient transducers at ultrasonic [re-
quencies amgpiczoelcctric crstals and ceramics.

Piezoelectric materals {pieza = pressure) possess the property that a
voltage apptied to them will produce a pressure field on the atoms in their
lattice {a stress) with an accompanying overall contraction or expan-
sion in one or more dimensions of the material (a strain), The stress is a
result of the tack of a center of inversion symmetry in the ioni¢ lattice
structure of the materizl; Figure 3.1 shows how an asymmetric atomic
struciure will distort in an applicd clectoc field. By the piczoelectric property
of the material, electrieal excitation 1s changed into metion and pressure,
the necessary clements for zzoustic waves. Sinee the process is reversible,
a piczoclectric crvstal wilt al<o change an impinging pressure fAeld into a
strain and resulting voltage, 50 11 can be uscd as an ultrasonic receiver just
as well. Certain semicrysiallice polymers, such as poly(vinylidene flzande),
PVIIT, may also be made piazoclectric by stretching and polarizing themn
ina strong electric field dudsg fabrication,
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Figure 5.1 When an electric field £ is applied to a piezoelectric material,
in which charge asymmetry exists on an atomic scale, stresses and strzins
result in the material. This diagram is highly simplified.

In this chapter we discuss the details of electrical stimulation of pi-
ezoelectric transducers, analyze the spatial beam patterns from single
transducers, and introduce the concept of mulfiple-element transducer ar-
rays. It will be shown that the ultimate resolution (lateral and axial) of
bioinstruments is determined by the size, frequency, and acoustica] “or
of the transducer used. :

5.2 ELECTRICAL EXCITATION OF PIEZOELECTRIC
TRANSDUCERS

Figure 5.2a shows a simplified diagram of a piezoelectric material cut and
oriented for use as an ultrasonic transducer. The material might be quartz,
barium titanate, lead zirconium titanate (PZT), or poly(vinylidene fluoride)
{PVDF). Two cpposite faces of the transducer are plated with conductive
metal films; a voltage generator ¥ is attached to the electrodes to produce
an electric fleld E; across the thickness / of the transducer whose magnitude
is given by (assuming the diameter is much larger than D
14

Ez:? . (5.1}

[n piezoelectric matetials in general, any given orientation of the
electric field might produce two stresses (shear and compressional) in any
of the three directions of the crystal, so a complete specification of the
piczoelectric properties of the crystal would require a 3 X 6 tensor to tell
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Figure 5.2 (a) Simplified sketch of a piezoelectric material used
as a transducer with opposing electrodes. (b) Tn order to match
excitation and boundary conditions, an odd number of halfe
wavelengths must fit between the transducer faces.

how each of the six components of the stress is related to each of the three
components of the electric field. However, in practice the material is usually
oriented to take advantage of the largest piezoelectric coefficient, which
for most materials is one for which compressional stress is in the same
direction as the applied electric field along some preferred axis. For the
orientation shown in Figure 5.2a, known as the “thickness” mode of vi-
bration, the pressure on the broad faces will be mainly longitudinal and
the resulting pistonlike action will set up the desired compressional waves.
The piezoelectric coefficient relating the resultant stress to the electric field
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in this case is labeled as either g, or ey, depending upon the convention
used for the particular crystal or ceramic.

There are two interesting possibilities for the temporal nature of the
electrical excitation to the transducer—continuous wave {cw) and pulsed.
These two cases are covered in order next,

5.2.1 Continuous Wave Excitation

If the voltage generator applies a voltage across the transducer of the form
V= ¥4 cos wi, then the pressure waves produced will be continuous si-
nusoidal-type waves of the nature discussed in earlier chapters. These waves
. will propagate inside the crystal with a phase velocity ¢, and will strike the
frontand back faces of the crystal. Here, they will be reflected in proportion
to the impedance mismatch between the crystal material and the ma=zrials
outside. Since the impedance of the transducer material is generally much
higher than that of the air, water, or tissue media against the transducer
feces, the reflection coefficient will be nearly R = —1, so the resmltant
pressure at the two boundaries must be nearly zero and a standing wave
will be set up inside the transducer between its faces.

Only certain frequencies of excitation will be effective in generating
waves that have the proper wavelength inside the transducer to match the
simultaneous requirements for zero pressure at both interfaces. Thes> fre-
quencies, called the resonant frequencies of the transducer, are those for
which an integral number of half-wavelengths fit between the faces of the
transducer cavity. In addition, because the electrical excitaticn has the

same polarity across the entire thickness of the transducer at any zven.

instant (since electrical wavelength is much larger than D), only standing
wave patterns with an odd number of half-wavelengths will be effictantly
driven by the electrical input. Patterns with an even number of half
wavelengths will always have an equal number of regions with oppasite
phases, which will cancel electrically, leading to minimal coupling with the
input field.

Figure 5.2b shows two waves which match both the beundary con-
ditions and the excitation requirement. The lowest frequency to satisty the
resonance condition is called the fundamental frequency of the crvstal,
and at this frequency a single half-wavelength fits inside the cavity. The
nulls of the pressure standing wave occur at the faces of the transducer to
match the boundary conditions. For a transducer of thickness /. the fun-
damental frequency f; will have a wavelength A, inside the transducer such
that
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Since A, = ¢/f;, where ¢, is the compressional wave velocity in the trans-
ducer material, then

=G
fwzl (5.3)

At ultrasonic frequencies, the thickness required to use 3 transducer
crystal in its fundamental mode can be quite thin, making scme crystals
fragile (see Problem 5.1), so very-high-frequency transducers are sometimes
employed in their higher harmonic modes. As an example, Figure 5.2b
shows a third harmenic wave which will oscillate at three times the fre-
quency of the fundamental.

Frequency Response

Near each of the resonant frequencics, the transducer will have a response
to voltage that will vary according to the proximity of its frequency to the
tesonant frequency. A curve showing how the power density [ radiated by
a transducer varies as a function of frequeney around its point of resonance
is given in Figure 5.3. The narrowness or broadness of the TESONance curve,
as measured by the frequency width A fto the half-power points, is defined
by the so-called quality facter, or @, of the cavity in the following way:

A
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Figure 5.3 The resonance curve for a transducer with center frequency /;
and quality factor Q. The larger (0, the narrower the frequency response.
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Thus, a high Q leads to a very narrowly peaked resonance, and a low-Q
transducer has a broadband response:

The magnitude of @ is determined by the losses (absorption and
transmission) encountered in the transducer. By far the largest contributor
1o the losses of most transducers is the transmission of acoustic power
through the faces into neighboring regions, since the internal loss of good
transducer materials, especially quartz, is small, If air forms the regions
on both sides of the transducer, the impedance mismatch is so large that
hardly any power escapes, leading to ( values as high as 30,000. In fact,
for use in high-precision frequency oscillators, quartz crystals are mounted
in small evacuated cans where the vacuum environment gives very low
transmission losses with @ values approaching 1,000,000, Since Af'is so

" smail for these crystals, they are in common use in electronic equipment
whenever accurate frequencies are needed, as in quartz watches.

Of course, if the transducer is to be used for radiating acoustic waves
into tissues, some power is purposely lost through one face of the transducer,
When tissue replaces air at one of the transducer faces, the impedance
mismatch is reduced, power is transmiitted, and the @ of the cavity goes
down dramatically.* Problem 5.7 shows that for a typical rigid crystal
transducer such as quartz radiating into tissue, @ ~ 5-15.

Since air presents a large impedance mismatch with the transducer
(as compared to tissue), no air can be allowed to find its way between the

~ transducer face and the tissue surface being irradiated if maximum power
{ransmission into tissue is desired. Any air layer more than a fraction of a
wavelength in thickness will reflect considerable power back into the trans-
ducer, reducing its effectiveness as a transmitter. Thus, in clinical practice,
mineral oil or commercially available gel is used to ceat the transducer
and force out any air between the transducer/tissue interface.

Radiated Power

The power density that a transducer driven by a voltage source will radiate
intc-a medium may be found by using the piezoelectric relationship for
the transducer:

b= et {5 (5.5)
a8z

where

2 is the pressure in the transducer material

E; is the electric field applied

* The resonant frequency of the transducer is also shightly lowered from its lossless
value, because of the loss now encountered.
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2;; is the material’s piezoelectric stress coefficient

£ is the displacement of the particles in the material, so d£/3z
is strain (clongation or compression) of the material

¢ is the elastic stifiness constant of the material

i is a subscript denoting the directions of the pressure, electric
field, and strain (here assumed to be all in the same direction).

The analysis then assumes two countertraveling acoustic waves inside
the transducer, as diagrammed in Figure 5.4. When combined, these two
waves produce the standing wave pattern described earlier. By matching
boundary conditions at the two faces for continuity of both pressure and
velocity across the interfaces, similar to the procedure of Section 3.4.2, and
using Equation (5.5), it can be shown (see Problem 5.3} that the velocity
of the transducer faces at resonance is

2e,-,E,-

Ly =i——zg +7Z, {5.6)

where Z, and Z, are the acoustic impedances of the media on either side
of the transducer, and the = sign denotes that the face velocities are in
opposite directions since a resonant vibration mode with an odd number
of half-wavelengths was assumed. :

‘Many transducers have air in the region to the rear; for this case,
Z, = () and Equation (5.6) gives the velocity of the front face {touching
tissue or water) as

Region 1 Transducer Region 2
, 7
A Z
A
C b
S —— B e
—-
g i
4
z=0 :=1

Figure 5.4 Analysis of waves excited inside a trans-
ducer. Matching the velocity and pressure boundary
conditions at the two faces leads to Equation (5.6).
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zer'z'Ei (5 7)
y=— .
The power diznsity transmitted forward into medium 2 is then easily
found from velocizy continuity and the relaticnship 7 = Zu2 to be

_4etE?
Tz
For the configuration shown in Figure 5.2a where the transducer is excited

by a sinuscidal voltage source, Equation (5.1) may be used to give the
average radiated piower density:

I (3.8)

_2eiV3
Le="p7 o

{3.9)

where V5 is the peak sinusoidal exciting voltage and a factor of § was used
to give the timz averape of power density.

Piezoelectric Coeffficients

As Equation {3.9) shows, the ability of a transducer to convert voltage into
acoustical power is related to the strength of its piezoelectric stress coefficient
e;. Table 5.1 gives some values for various piezoelectric materials com-
monly used as ultrasound transducers. Sometimes the literature will Hst
other related coeffacients, such as 4, the piezoelectric strain coefficient
(sometimes called the transmitting constant), It is related to e;; by the re-
lationship

€ =iy (3.10}

where cj is the material’s elastic stiffness constant (under conditions of
constant electric ficld). Also, the piezoelectric coefficient g, (sometimes
called the voltage cmtput coeflicient, or receiving constant) may be given,
It is related to 4 bw

di= gitrto (5.1H

where ¢, is the relattve dielectric constant of the transducer material {under
unrestrained or fres conditions), and ¢ is the permittivity of free space
{eg = 8.85 % 10 * Fym).

By scanning Table 5.1 it can be seen that there are large differences
in ¢; and ¢, {and therefore in d, and g£:) among the materals. [t would
appear that banumo: titanate or PZT are by far the most efficient radiators,
and indeed theav ae widely used as good transducer materials. But the
picture is moere complicated than just comparing the values of €, Since
other factors must be considered, such as the electrical coupling of the

VALUES FCR SOME PIEZOELECTRIG TRANSDUCER MATERIALS

TABLE 5.1

Piezoelectric
stress coeff.

Relative
dielectric

Acoustic
impedance
Z, {kgfm? s)

Phase
velocity

Elastic
stifiness
¢y (Nfm?)

Density

By (N/V m)

constant ¢,

€ (mjs)

0 (kgfm®)

Material

A7

8.6

4.5
1700

86 > 10° 5.8 % 10° 15 > 10®
5.3 % 107

110 % 10°

231X 100
571 %10}

Quartz (x-cut)

30 % 100

Barium titanate

Lead zirconium

titanate

(PZT)

Poly(vinylidenc

9.2
069

1200
12

83 x 10° 4.0 x 10 30 % 108
3% 107 1.4 % 10 2.5 % 108

7.5 % 10}
1.8 % 10°

flueride)
(PVDF)
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transducer 1o the transmitting and receiving circuitry, the internal losses

of the material, the material’s phase velocity and dielectric constant, the
temperature range allowable, and physical attributes such as flexibility and
ease of fabrication. For example, for a fixed frequency of resonance, Equa-
tion (5.3) shows that a transducer's thickness / is proportional to the ma-
terial’s phase velocity ¢,. Therefore, a transducer made from PVDF, because
of its relatively low ¢, will be thinner than one of barium tifanate. Con-
sequently, since /2 appears in the denominator of Equation (5.9) for output
power, the electric field is high for a given voltage, and PVDF is not as
weak as would be predicted by its low value of ¢; alone.

Equivalent Circuits of Transducers

Electrical characterization of the transducer is very important in deter-
mining the electrical load that the transducer presents to the drive or receiver
circuitry and in optimizing the match between the two. Asa step in finding
t}.ae equivalent electrical circuit, a companion equation to Equation (5.5)
gives the surface charge density o, appearing at the face of the transducer:

o= ¢eq B — dyp; (5.12)

This surface charge, occurring on the two parallel electrodes separated by
Fhe thin piezoelectric material, forms the essence of a parallel-plate capac-
ttor. The capacitance C, of such a parallel-plate capacitor is given by the
well-known equation

A (5.13)
where

¢ = total charge on either plate
V= voltage between plates
A = area of plate (transducer area)
= spacing between plates
¢’ =effective dielectric constant of material between plates.

Due to the piezoelectric activity of the transducer matesal represented by
the second term on the right-hand side of Equation (5.12), the effective
dielectric constant ¢’ of the material when used in a nonfree (p#0) con-
dition is different from its free value of e.€g. T0 determine ¢ for an important
ponfree situation, namely, when the transducer is clarmnped so that all strain
1s zero, Eq. (5.5) with 8£/3z = 0 is substituted into Equation (5.12) for p,:

=€k —dye Ei= érfo(l "M)Ei

€n€,y
=¢&ep(l — g e,)E;
=6l —&N)E; (5.14)

5.2 ELECTRICAL EXCITATION OF PIEZOELECTRIC TRANSDUCERS 79

where « = Vg e, is known as the coeficient of electromechanical coupling
of the material. It can be shown that the parameter « is related to the ratio
of mechanical energy to electrical energy stored in the vibrating transducer.

Using Equation {3.14) in Equator: (5.13) gives the material’s effective
dielectric constant ¢’ under clamped conditions:

€ =cefl— D) (5.15)

and the capacitance of the transducer when clamped:

A
Co= g1 ﬁxz)T (5.16)

A detailed electrical analysis of a transducer at resonance (see Problem
5.4) shows that the transducer appears electrically to be composed of just
two elements: a capacitor of value C given by Equation (5.16), which
represents the accumulation of surface charge on the plates due to the
applied voltage; and a parallel resistor R,,, which represents the transfor-
mation of electrical power into radiated acoustical power. The value of
R, called the motional resisiance, can ezsily be found from Equation (5.9)
and the fact that, for this transducer with no assumed internal losses, all
average electrical power F3/2R,, consumed must equal the average acous-
tical power I,,.4 radiated. Using Equation (3.9) in this equality,

2e5Vid V3

’z; 2R,
or, solving for R,,, -
R = 'z 5.17
™ 4e3A -17)

Figure 5.5a shows the equivalent electrical circuit at resonance, with
the values of Cg and R,, given by Equations (5.16) and (5.17), respectively.
The capacitance  can be moderately high (due to the large values of ¢,
for many transducer materials, as large as ¢ = 1700 for barium titanate),
and the resistance R,, is inversely progortional to the power radiated by
the device; high acoustic radiating ability means a low value for the parallel
R,,, and vice versa. Problem 5.5 gives values typical of a medical imaging
transducer.

As the circuit of Figure 5.5a shows, a transducer appears capacitive
in nature night at its frequency of resozance. So, to efficiently match it to
the driving voltage generator, a paralled inductor Ly is sometimes placed
between the transducer and generator. The value of the inductor is chosen
such that the electrical resonance frequency w = V1/L,C} is matched to
the acoustical resonance frequency. A transformer may also be used to
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Figure 5.5 (a} The equivalent electrical eircuit for a lossless
transducer precisely at resonance. Cois the parallel-piate capac-
itance of the device (with a modified dielectric constant ¢ to
account for the piezoelectric activity), and R, is a resisiance
representing the radiation of acoustic power. (b) The complete
equivalent circuit in the neighborhood of resonance adds an
inductance 1. and capacitance € in series with R,,. To complete
the picture, possible internal loss resistances Ry and R, may also
be added. At resonance, the impedances of Z and € cancel.

transform the transducer’s resistance at resonance, R, to match the cutput
impedance of the generator, usually 50 ohms. However, the addition of
an electrical resonance circuit increases the averall electrical Q of the net-
work, and in some applications, such as when short acoustic pulses are
required for echo ranging, a kigh @ is not desirable; the effect of Q on pulse
length is covered in the next section. '

When the frequency driving the transducer is moved away from res-
onance, two more components are needed 1o characterize the equivalent
circuit: an inductor L and a capacitor C in series with R,,. The imped-
ance of these two elements cancel right at resonance but give this branch
a capacitive nature below resonance and an inductive nature above
ICSONANCE.

Te complete the picture, two more resistors may be added to account
for any nenradiative losses in the transducer: a parallel resistor R, (generally
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large) to account for leakage current, and a scries rcsistpr R, (generally
small) to account for internal absorption in the materzal. Figure 5.5b shows
the complete equivalent circuit, which is valid in the neighborhood of
resonance as well as at resonance,

Comparisan of Plezoelectric Materfals

Returning now to Table 5.1, it can be noted that the top three materials
listed in the table are fairly dense, rigid crystals. Quartz occurs both as a
natural crystal or may be man-made (81(s). Barium titanate and PZT are
man-made ceramics that are rendered piezoelectric by first heating above
their Curie temperature, then cooling in the presence of a strong electric
field to produce a permanent “ferroelectric” effect. These man-made ma-
terials may be molded during fabrication to the desired diameter and thick-
ness; sometimes a concave face is molded into the tissue side of the trans-
ducer to give focusing of the radiated beam. Note that these three crystals
have high acoustic imnpedances (compared to soft tissue impedance of about
1.5 % 10% kg/m* s) due to their dense and relatively incompressible nature.

The polymer transducer material PVDF is much softer and less dense
than the other materials. As such, it may be fabricated as a film and has
the possibility of being shaped around nonplanar body surfa.ces. It is fab-
ricated by first stretching the raw material along one direction, then po-
larizing it in a strong dc electric field. The acoustic impedance of PVD_F
is a much closer match to that of tissue, and therefore more power is
coupled out into the tissue. This lowers the O of the transdt-lcer (see Pr'oblem
5.9), making it more broadband and giving it better axial resolution, as
discussed in Section 5.2.2. Unfortunately, these advantages are offset
somewhat by the larger internal loss that PV DF has compared to the'crystal-
ling or ceramic materials, by its lower ternperature range of operation (re-
stricted to below about 80°C for continuous exposure, which limits the
amount of power it can handle as a transmitter due to heat generation by
its internal loss), and by its gencrally lower piezoelectric transmission coel-
ficlents e;; and dj;.

When used in the receiver mode, though, the concern is not so nruch
with the efficiency of the transducer in transforming efectrical energy into
acoustical energy. Rather, the receiver element is often connected to a
high-input i'rnpcdance voltage amplifier, and a pood measure of receiving
sensitivity is the voltage output cocficient g; = dife,¢g. Due to the low
Telative dielectric constant of PVDF (e, = [2), its voltage output coeflicient
is high, making it a better receiving material than an eficient energy trans-
mitling element. _

We now turn cur atteniion to the other basic way of exciting ultrasonic
transducers—with a sharp pulse of electrical voltage. This mode of operation
is actually the most common for medical instrumentation, inasmuch as
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the majority of these imagers use pulsed echoes to locate and image the
deep-lying tissue boundaries within the body. The precision with which
the boundaries are located along the direction of the beam travel (axial
resolution) will be shown to be directly related to the time behavior of the
transducer’s response to the input voltage pulse, as characterized by the @
value of the transducer.

5.2.2 Pulsed Excitation and Axial Resolution

If the electrical input to the transducer is a sharp impulse of voltage, such
as that obtained by rapidly discharging a capacitor using a ¢ircuit similar
to that shown in Figure 5.6, the pressure wave radiated by the transducer
will take the form of an exponentially decaying sinusoid. The voltage pulse
may be either negative or positive with respect to ground: a negative pulse
is often easier to generate with a positive supply using the circuit shown
in Figure 5.6.

Figure 5.7 shows the example of a positive voltage pulse and the
resultant pressure waveform from the transducer. The pressure waveform
does not precisely duplicate the waveform of the voltage (i.e., a sharp pulse
of pressure) because the crystal possesses resonant qualities as discussed in
the previous section. When excited by an impulse, the crystal will resonate
sinusoidally af its fundamental frequency; the envelope of this wave will
decay at a rate proportional to the losses (internal and transmitted) of the

Positive high voitage

R, <
c
High-voltaze + {L -
switching !
transistor 100 pF b 4
b 4 >
h 4 Ra 2
Trigger pulse b b
I | input Y

l Transducer

Figure 5.6 Anelectrical circuit for generating a sharp voltage pulse to a transducer.
During the ofi-time of the transistor, the capacitor charges to the high supply voltage.
When the transistor is turned oa by the trigger pulse, its low on-resistance takes
the left side of the capacitor to near ground voltage, applying a large negative pulse
to the upper transducer terminal. The capacitor then discharges through the trans-
ducer. Ryis a damping resistor for shaping the trailing edee of the pulse.
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Figure 5.7 The pressure waveform radiated by a transducer excited by a sharp
impulse of voltage. The pressure at any distance decays at a rate inverscly propor-
tional to the ( of the transducer. For the waveform of this figure, @ is approxi-

mately 4.5,

transducer. In a real sense, the crystal acts in the same fashion as a bell
when struck a sharp blow by a hammer, except that the losses due to
radiation from the ultrasonic transducer are much larger than those found
in a good-quality bell, so the transducer will not “ring” as long.
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The rate of decay is prepartional to the losses in the transducer, g,
it 18 natural to expect that the rate will be related to the @ of the crysta].
Indecd, a definition of Q that is entirely consistent with Equation (5.4) byt

is of a different form can be given in terms of the energy lost per cycle of
resonance as foliows;

energy stored
T
energy lost per cycle

(5.18)

If we let J represent the energy stored by the crystal, then Equation (5.1 )
can be rearranged in differential form as

ar1 2n
—— e — 5.1%
dt f\ o (5-19)

where f; = frequency of resonance. The solution to Equation (5.19) has
an exponential decay as a function of time:

J=Je " (5.20)
Substituting Equation (5.20) into Equation (5.19) and solving for ¥ yields
the decay rate in terms of (-
27T_f1 Wi
= (5.21)
¢ 0

Since the power output of the transducer is proportional to the energy
stored in its oscillations, and since the magnitude of the radiated pressure

-

- wave is proportional to the square root of the power in the wave, it is -

possible to write the time decay of the envelope of the pressure wave ra-
diating from a transducer with a given (2 as

P=ps e/ = o plen/20) (5.22)

where Equation (5.21) has been used 10 relate v to the @ of the transducer.
Thus, a high Qleadstoalong ringing time whereas a low () gives a shortened
waveform. Figure 5.7 plois the pressure waveform for the example of a
low- transducer,

AS an approximate rule of thumb, it can be said that the number of
cycles contained in the power waveform is roughly numerically equal to
the Q of the transducer.* This can be shown by defining the point in time

when the waveform is effectively ended to he that time 1’ when the power

has diminished to ¢ = 0,043 of i1s original value and the pressure has

* As Problem 5.10 shows, “the ¢ ol the transducer™ is really not correct nomenelature
since the value of € is not a fixed characteristic of the transducer but is determined by the
type of material against which the transducer is placed and will vary from application 1o
application with the same transducer, However, in ultrasonic bicinstrumentation the transducer
is invariably placed against 1issue, so the resulting @ will be reasonable fixed.
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therefore diminished to e™ = 0.208. This point is shown on Figurz 5.7
From Equation {5.22),

-w_l!{:';;r
20" 2
pomd_ 9 (5.23)
2&-’1 2fl

Since the period of one cycle of the power waveform is one-hal_f the. p-a:riod
of the pressure waveform (see Figure 3.1) apd the pressure period is given
by 1/f;, the period of the power waveform is 1/2f,, and

¥ = (J periods of power

As the rule of thumb states, there are approxima‘[e!y 0 _cycles of power
{and, correspondingly, (/2 cycles of pressure) contained in the pulss.

Axial Resolution

An important design question is now appropriate: Isit desirabvle o I:aveda
high-Q or a low-0Q transducer for bioinstruments? The answer d.e:;)en s
upon whether the instrument is operated cw (as some-Dop?Ier qo‘.\?eéeri
are) or pulsed (as in echocardiography). If cw, fgr tafﬁmency s'sake_lt is bes

that the transducer has as high a @ as the transmission at the tissue m@rface
will allow. The voltage exciting the transducer should then be a contin uous
sine wave centered at the resonant frequency of the crystal as deterrmiined
» ltSItfhcl)Cp]:;Z:fS:;j pulsed, however, a low-Q transduc_er is desirable. This is
because the axial resolution (AR) of the instrument is dependent upen Fhe
length of the pulsed waveform. Since the df_:pth of the bou‘ndanes beirég
investigated by a pulsed instrument is determined by measuring the roun E-!
trip transit time of the pulses reflected from the bounde'anes. the _mor

accurate this time can be measured, the more accgrate will be t_he Jdeter-
mination of depth. It is clear that & shorter tran‘smltted pulse will =ad Fo
a more precise measurement of the time of arrival of the cchoe§ .:Dd‘lui
turn, the depth of the reflecting borders, If we define the cffectn; pulse
time to be !’ as previously and use the straightforward relationshio that
distance equals the product of time and velocity, we get

"

Axial resolution == ) i53.24)
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Figure 5.8 Conventions for directions related to beam propagation
from & transducer.

where the facter of 2 enters bacarse of the round-trip nature of the reflected
wave (see Problem 5.6).

The nomenclature that is conventionally used to describe the direc-
tions related to a transducer and its propagating beam is summarized in
Figure 5.8. Note that the terms “‘axial” and “longitudinal” are generally
interchangeable, as are “transverse™ and “‘lateral.” Axial resolution pertains
10 spatial resolution in the direcion of beam propagation, whereas trans-
verse resolution 1s measured iz the plane perpendicular to the beam's
direction.

Seen in another way, axial resolution is a measurement of an instru-
ment's ability 1o resclve two refiacting boundaries that are closely spaced
in the axial {or longitudinal) direction of the instrument. Figure 5.9 shows
the time sequence of pulses reflerzted from two closely spaced interfaces. It
can be said that when the twe boundaries are spaced apart in the longi-
tudinal direction a distance equal to or greater than the axial resolution,*
they can be resolved as separat= reflectors. When they are closer, their
echoes blend into one another.

Since the effective time temgth of a transducer’s pulse is related to @,
Equation (5.24) for axial resolution can be rewritten using Equation (5.23):

. . c
Axial cesolution == ~Q—~
th

Putin terms of wavelength,

A
AR~ (5.25)

* Some authors prefer defining ressolution as the inverse of minimal resolvable distance,
with units of cycles per mm. In s wewt, we will use distance directly, since this definition
scems more straightforward. In any ¢ase, the units tell the definition.
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{a)

Interface  Interface
A B

Incident pulse ‘_-'
n

___|!'C|-_ d

(d)

Figure 5.9 Four successive snapshots of the positions and lengths of
echoes from two closely spaced interfaces, When d is reduced to the
point where the echoes overlap but are just resolvable, then d = axial
resolution.

which shows that improved resolution (a smaller value for Equation (5.25))
is a result of a lower-Q transducer. In fact, loss is sometimes purposely
added to the back face of a transducer to lower its @ and improve its
resolution. Although the total acoustic output power of the transducer {for
a given electrical excitation) is reduced by this technique, the increased
axial precision of imaging is often worth the cost. Figure 5.10 shows how
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(b)
Transducer
Absorber
\ Lens and waterprool
| seal
S v rd
N %
Electrical /
connector \ %
Housing Acousticz!
isoizticn

_Figurc 5.10 () A photo of a typical 3.5-MHz single element transducer. Its diameter
--1s approximately 1.5 cm. (b) In order to reduce the @ and improve AR, some
transducers have an absorber added on the rear face of the transducer.

this might be accomplished. Instead of air on the back side of the transducer,
a material having an acoustic impedance much closer to the transducer's
impedance is placed in close contact with the rear transducer face. This
allows power to flow out the rear of the transducer in zddition to that
radiated into the tissue, thus lowering the transducer’s (. If the backing
matcrial is a good ultrasound absorber, this power is permanently lost,
Absarber materials that have been successfully used inelude aluminum-
filled epoxy and tungsten-filled epoxy. Problem 3.8 shows that an absarher-
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backed transducer will possess a lower O and better AR than an air-

backed one. ’
Equation (5.25) also reveals an important relationship between res-

olution and wavelzngth. The shorter the wavelength, the better will be the

- instrument’s ability to resolve detail since a small value for axial resoluticn

leads to improved measurement of spacings. For good resclution, an ul-
trasonic instrument should employ as high a frequency (as short a wave-
length) as possible, limited only by the increased attenuation at the higher
frequencies. For example, aduit echocardiography is normally done at 2.25
MHz as a compromise between resolution and penetration. Pediatric echo-
cardiography, however, will use frequencies as high as 5 MHz to improve
resolution, since the path length into the heart is shorter in children and
higher attenuation per centimeter is therefore allowed.

There are several practical factors that cause the actual axial resolution
of a typical medical instrument to be worse than predicted by Equation
(5.25). One is due to the frequency dependence of tissue absorption, called
dispersive absorptfon, which will effectively lengthen the pulse as it travels
through intervening tissue. As discussed in Chapter 4, most tissues show
a linear increase in absorption with increasing frequency; high frequencies
are attenuated muzch more than lower frequencies. A sharp pulse of trans-
mitted acoustical energy (such as shown in Figure 5.7) actually contaias a
wide spectrum of frequency components, obtained by Fourier analysis of
the time waveform of the pulse. The sharper the pulse, the higher the
frequencies contained in its spectrum. {It can be said that the high-frequency
components contribute to the “sharpness” of the pulse.) When this pulse
travels through tissue, these higher frequencies are selectively lost at a faster
rate than the low-frequency components are. The result is a stretching of
the pulse time leading to worse axial resolution between neighboring
reflectors.

Another factor is any electronic compression which may be purposely
added in the receiver stages of the instrument to decrease its signal dynamic
range before the display (covered in Chapter 6). Often, logarithmic
compression is employed. Compression has the effect of minimizing the
differences betwe=n large-amplitude signals and small-amplitude signals.
When applied to the pulse waveform shown in Figure 5.7, it can be seen
that the effect is t2 boost the tail of the pulse and therefore to effectively
lengthen the pulse in time as seen on the display, again leading to a wors-
ening of the axial resolution.

5.3 BEAM PATTERNS

We now turn our attention to the deseription of the shape of the radiating
beam from the transducer. The behavior of this beam is imporiant in
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determining the spatial sensitivity of the imaging instrument, both in the
transmit and the receive modes.

The pressure wave that propagates from the face of an unfocused
transducer generally maintains the approximate lateral dimensions of the
transducer for a certain distance, but natural divergence begins to spread
the transverse extent of the beam at larger distances so that the beam takes
on a diverging nature, In the region near the transducer (the “near field”),
the beam has many amplitude and phase irregularities due to interference
between the contributing waves from all parts of the transducer’s face,
whereas in the region further from the transducer (the “far field”), the
beam profile is much more uniform and well behaved. To quantitatively
define the transition distance between these near-field and far-field regions,
and to more precisely determine the amount of beam spreading in the far
field, we next mathematically solve for the radiation pattern from an ul-
trasonic transducer,

The geometry of the problem is given in Figure 5.11; a circular co-
ordinate system is initially assumed. The coordinates of the source points
in the plane of the transducer face are denoted p and 8, and the coordinates
pointing to the observation point where the pattern is sought are denoted
r and ¢. The distance from the source points to the observation point is
given by r'. For circularly symmetric sitnations no generality is lost by
letting the observation points lie on the x; axis. From geometry (see Problem
5.11),

r=(r?+ p*—2rp cos § sin ¢)}"? (5.26)

To analyze the observed radiation pattern, we rely upon Huygen’s-

principle, which states that the radiation pattern from a general extended
source can be constructed by considering the source as an appropriately
weighted collection of point sources, each radiating outwardly propagating
spherical waves. To get the complete radiation pattern, the contributions

Y1
Source point
Observation
point

e ——

Transducer
face

Figure 5.11 The general coordinates for solving for the radiation pattern from an
ultrasound transducer,
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of all spherical waves from all point sources comprising the transducer are
added (magnitude and phase) at the point of observation. This decom-
position of the complex problem into a summation of simpler parts (i.c.,
spherical waves radiating from point sources) is allowed because the wave

_equation is a linear equation in the pressure variable, as shown in Prob-

lem 2.7. .
Each point on the transducer face, then, is assumed to be the radiator

of a spherical pressure wave, the form of which is

dp= fcz—zﬁ cos(wt —kr+ g)dS (527

" where dp is the incremental pressure contribution at the observation point

due to a spherical wave from a point source of incremental size 45, & is
the propagation constant of the wave (k = 2x/)), Z is the acoustical imped-
ance of the intervening medium, and r' is the distance from source to
observation point as given by Equation (5.26). Note that the pressure de-
creases as a function of 1/# away from the point source; this is consistent
with the 1/¢? dependence of power density expected from the conservation
of energy prnciple applied to a diverging spherical wave. In obtaining
Equation (5.27), the transducer face was assumed to be vibrating with a
sinusaidal velocity of u = uy cos(w!) perpendicular to the p-f plane.

The total pressure at the observation point is the integral of the in-
cremental pressures:

p=f dp (5.28)

Assuming all portions of transducer face are oscillating with the same ve-
locity and are in phase with each other, as would be the case for a rigid,
pistonlike transducer, Equations (5.27) and (5.28) may be combined to
give

_ kZuy cos(wt — krr +w/2) p dp o (5.29)

27 Jsource
where p dp d8 has been substituted for dS. For a general transducer shape
and for an arbitrary observation point, this equation is quite difficult to
evaluate and usually requires a computer solution. But it may be evaluated
for some simple cases, as shown below.

5.3.1 Near-Field Pattern (On-Axis) of a Circular
Transducer

Consider the transducer to be a circular disc of radius a. In the near-ficid
region, r’ is not large enough to allow a mathematical simplification of
its form, so Equation (5.29) is still too complex for a general solution.
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We therefore restrict our observation points to be on the = axis, such that
sin ¢ = 0 and r = z. Equation (5.26) then reduces to

r=Vei+z?

Figure 5.12 shows the geometry for this special case. Substitating for ' in
Equatien (5.29) gives

i J’)7r’cZ&!UJ‘“COS(wt*k‘r‘,oz-}-zz-i-ﬁr/’Z) i J‘
P 27 Jo l,/'p?‘—i—zz pae i

Changing variables to § = Vp?+ z? and using straightforward integration
leads to

(2, 6) = ~Zug[sin(ew! —kVa® + 22+ 7/2) — sin{wt ~ kz =+ 7/2)]
= Zug[cos{w — kz) — cos(wt — kVa® + 27)] (5.30)

This result for the on-axis pressure amplitude has a very interesting
interpretation. Note that the first term in the equation, Zay cos{w! — kz),
is just the familiar form for a pressure wave that appears to be coming
from the center of the transducer, whereas the second term, Zuy cos(w?
— kVa?+ z?), which subtracts from the first, appears 10 be a wave coming
from a point at the edge (radius = a) of the transducer. The combination
of these two waves, with phases that change at different r=tes as z varies,
provides the destructive and constructive interference patzarn which pro-
duces the irregularities found in the near field.

s

Cireular (disk)

transducer
4 r Or-axis
8 chservation
poiat

)

Figure 5.12 Geometry for calculating the neai-field on-axis pressure ficld from
a circular transducer of radius @ and diameter D.
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t

Ip(z)i

Transducer =— z—
face FAY

Near field Far field

Figure 5.13 Variation of the magnitude of on-axis pressure field from a circular
transducer of diameter D. This is a plot of the absolute magnitude of Equation
(5.30) at one particular time, ¢ = 0, and is the envelope of the oscillating pressure.
The transition point from the near field to the far field is defined as the position of
the furthest maximum. Beyond that point the field is more uniform.

A plot of the magnitude of Equation (5.30), shown in Figure 5.13,
reveals the rapid variation of on-axis pressure in the near field of a circular
transducer. Note that there is a multitude of points in the near field where
the pressure actually goes 10 zero (complete destructive interference) and
that the rapidity of the spatial oscillation of the pattern decreases as one
moves further away from the face of the transducer. In fact, at large distances
from the face of the transducer, the resultant pressure amplitude is no
longer oscillatory but behaves as a slowly decreasing (1/z) field; this is the
far field.

To mark the transition from near-field to far-field behavior, it is rea-
sonable to choose the on-axis point where Equation (5.30) has its last max-
imum for increasing z. This is the value of z for which the phase difference
between the first cosine term and the second cosine term in Equation
(5.30) is just equal to 7, so both terms are positive and the two terms add.
Thus, if the transition point is denoted zg, then

WWa?+ 23— kezp=7 (5.31)
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Since zz » a for a (ransducer many wavelengths 1n radius, the radical in
Fauation (5.31) may be approximated as
2

a
ln‘az'fzfzzz‘q

4 —
2ZR

Then Equation (5.31) becomes

ka?
kzp+t— —kzg=m

2zZg

Rearranging yields

For many unfocused transducers used in medical imaging. the bady struc-
tures being imaged are not wholly in the far field of the rzdiation pattern
where the fields are desirably uniform. For a 2-cr-diameser transincer at
2.25 MHz, the transition distance is zz = 15 cm. rather &=p.

If the transcucer face is square or rectanguler rather than rou=d, the
above equations do not strictly apply. For example, the pressurz in the
near field never goes exactly to zero anywhere 2s it dozs for = circular
transducer. Nonetheless, the pressure magnitude has mazy peaks znd valk-
leys in the near field, and the qualitative description of thz irregulzr near-
field behavior making a transition to a more uniform far-Geld bahavier is
sti}] valid. This is shown in Figure 5.14, where inteasity maps (proparional
to the square of pressure) are given at three progressively farther &istances
from a square transducer. The smoothing of e beam irregulanties at
greater distances is evident; however, even the mast diszznt map sown in
the figure is not yet in the far field of the transducer.

5.3.2 Far-Field Pattern of an Ultrasound Transducer

When the beam is observed at a large distance from ths transducer. sim-
plifications can be made in the general Equation 13.29) that allow the field
to be calculated at any point {off-axis as well as on-axisi in the mane of
observation. The approximations appear at two places 17 Fquanoen! 329
First, in 1he far field the magnitude of the 7' term which zppears slope in
the denominator of the integrand will not differ apprezzbly from r over
the range of the source integration, since r is much grezter than 1he source
dimensions. This # is therefore sct equal to r (2 consiz=i with r=pect 10

the integration variables) and is brought out of the intazuel.
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z= 100 cm

z=50cm

z=20cm

Figure 5.14 Radiation intensity maps at three planes
progressively more distant from a square transducer
face. Note the progression toward a more uniform
distribution. The transduceris § cm X 5 cm operating
at 3 MHz. Data from P. C. Pedersen and D. A. Chris-
tensen, Acoustical Holegraphy 6 (1975), 711-739,
Plentum Press, '

Second, the r term in the argument of the cosinz also may be ap-
proximated, but since this ¢’ is multiplied by & (= 27 3). and since A is
small at ultrasonic frequencies {making & large), this approximation cannot
be as rough asletting r' = r = constant; the phase term Lr may vary several
radians over the source infegration, causing several oscillzons oftl;c cosing
I;rm. To prescrve this interference effect in the integration, only a partial
simplification of #' from Equation (3.26) is made, knowr: 23 the Fraunhofler
approximation. If the observation distance is far enonzh away from the
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source thiat the source appears small compared to the observation fength,
then r » .o and Equation {5.26) may be approximated by
F = r—pcosfsin ¢ (5.33)

Putzing Equation (5.33) into the phase term of Equation (5.29) and
letting r* = rin the dencminator as discussed above gives

kZ
ole, )= u(,f cos|wt —kr+ kp COSﬁSin¢+Epdpd9
2xr Jsource 2
=K cos[¥(1) + kp sin ¢ cos 8]p dp db (5.34)
where
. kZug
2mr
and

() = (wf —kr+ g)

K and 1) are constants with respect to integration over the source co-
ordinates ¢ and 8. The result of this integration will depend upua the
particular shape of the transducer, Two cases are considered next.

Circular Disk Transducer of Radius a
For a circularly symmetric source, the limits of integration become simply

a 2x
plér = Kf J. cos[T(0) + kp sin ¢ cos 6148 p dp
o Jo

Using the trizonometric identity cos {4 + B) = cos A cos B — sin 4 sin B
gives

] 2x
pleg,r )= KJ’ [cos \If(z)f cos(kp sin ¢ cos 0)d6
0 0
2o
—sin \I’(!)f sin(kp sin ¢ ¢cos H)dﬁ}p dp (5.35)
0
The last integral in this equation is zero since the sine term is an odd
funciton of the ¢vclical argument {cos ) as & ranges from 0 to 27, The

other inc=gral over 8 is of the form which results in a Bessel function, as
given in reference texts on Bessel functions:

Ix
f cos(x cos 8)d8 = 2= Jy(x)
0
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where J is the Bessel function of the first kind with order zero. Therefore,

" Equation (5.35) becomes

ple,r,0)=2xKcos \P(t)f Jo(kpsin o dp (5.36)
o
This integral, in turn, can be evaluated by the relation

ijo(x)a’x =xJ{x)

where J| is the Bessel function of the first kind with order 1. Then, Equation

(5.36) becomes (see Problem 5.13}

(5.37)

p($,r.0)=wa’K cos w(z)[ﬂ‘ﬁ_ﬁl}.@]

kasin ¢

The instantanecus radiated power density pattern may be found from 7 =
#/Z, and reinserting the previous definitions for X and ¥(z) vields

(5.38)

Z .4 =2 _ 4 2
Kour = 7a%1d 7 sin*(wt — kr) [le(ka sin q&)]

AZr? kasin ¢

Some interesting observations about the far-field radiation pattern
from a circular transducer may be obtained from Equation (5.38). First,
note that the power density decreases as 1/r? in this region, as would be
expected when the measurements are made far enough away that the source
appears as a small radiator of diverging waves. More importantly, the dis-
tribution with respect to angle behaves according to the term in the square
brackets, the so-called directional factor:

2J(ka sin tﬁ)]

kasin ¢ (5.39)

H () =[

To obtain a feeling of the shape of this far-field pattern, it may be
plotted on an observation screen a distance z away from the transducer.
If the angles of divergence of the beam are not too great, the small angle
approximation

sin qﬁw% (5.40)

may be used, where x, is the coordinate in the plane of observation; refer
1o Figure 5.1 1. Then, the directional factor Equation (5,39) may be written
in terms of distance on the observation plane:

2J x(kax1/2)]

kax,/z 40

Hc(x|)=[
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The square of this term is plotted in Figure 5.15a and gives an indication
of the extent of the power density pattern at a distance z from the transducer.
Due to the denominator of H.(x,) and the behavior of J,, the power density
drops off rapidly as x, increases from the center of the pattern. Also, there
are repetitive zeros and side peaks as the Bessel function J, oscillates with
the increasing arguments.

The great majority of power is contained in the central {main) lobe
of the pattern between the first zeros on either side of this central peak,
However, some power is found in the side lobes which neighbor the main
lobe. The extent of the main lobe may be defined as occupying the area
between the first zeros; these zeros occur at

J,(iB.SB)tO____ T (542
or

z

X =33.83 a

as shown in Figure 5.15a. Note that the width of the main lobe increases
linearly with distance z in the far-field region.

Returning now to the angular dependence of the far-field radiation
pattern, Equation {5.39) shows that the pattern may be considered to be
a vircularly symmetric function of the angle ¢ via the term sin ¢; this
equation is valid even for large ¢. An angular plot of the logarithm of the
square of Equation (5.39) in terms of decibels {to compress the range) is
given in Figure 5.15b in polar coordinates; such a plot is sometimes referred
to as the antenna pattern of the radiator. To obtain such a specific angular
plot, a value of the transducer radius ¢ must be given. For this figure, the
transducer diameter is assumed to be 10 wavelengths wide, so 2 = S\ or
ka = 10x.

The angular position of the first zero defines the amount of divergence
(half-angle) ¢, of the main lobe as it propagates from 1he source; from
Equation (5.42),

ing =i§é
S ©a ka
ar
L A
g =sin '(0.6[5) (5.43)

It is convenient to use this angle as a measure of divergence of the beam
from a circular transducer, although some authors consider it too conser-
vative. The smaller angular width to the half-power points (—3 dB) rather
than to the zeros is sometimes used; twice this angle is known as the Full
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Figure 5.15 (a) The far-field power density pattern observed at a distance z from
2 circular transducer of radius a. (b) An angular plot of the same pattern in polar
coordinates. The intensity is plotted ia logarithmic {decibel) units. In this example,
the transducer diameter equals 10 wavelengths.

Width to Half Maximum (FWHM) of power density. In this text, however,
we shall use ¢4 given by Equation (3.4 3) as the measure of divergence (half-
angle) for reasons that will become <lear when the concept of lateral res-

olution is discussed.
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Note the inverse relationship in Equation (5.43) between ¢, and the
transducer radins a. When aisa large number of wavelengths (as measured
in the tissue), the far-field beam is highly directed; conversely, when g is
small, the beam spreads considerably as it propagates from the transducer,
In fact, when a is approximately one-half a wavelength (i.e., the diameter
is one wavelength) or smaller, the haif-angle of divergence is greater than
90° and the beam appears to be radiating hemispherically more or less
isotropically from a point source. )

A word of caution regarding the use of far-field patterns: Most single
transducers used in medical imaging are many tissue wavelengths in di-
ameter so the transition distance zy is large enough for the reflecting objects
{o fall in the near-field region. Also, the transducers are often Jocused by
an integral lens (covered in Section 5.5). In either case, the far-field diver-
gence angle ¢, does not directly apply to the imaged region. However,
multiple-element transducers, such as the linear arrays found in real-time
scanners and discussed at the end of this chapter, are usually made of a
series of small unfocused elements, and the radiation pattern from each
of these small elements is determined by the far-field considerations of
Equation (5.43). Also, for focused transducers the shapes of the beams in
the focal plane will be shown later to be scaled-down versions of the far-
field patterns found abave.

Rectangular Transducer of Dimensions b X &

The analysis of the far-field radiation from a'rectangularly shaped transducer
with width & in the x; direction and height /1 in the yy direction proceeds
from Equation (5.34) in a manner similar to that outlined above for a
circular one; Figure 5.16a shows the orientation. Note that in the source
plane, p cos § = x,. Initially restricting our observation to be along the x,
axis (¢ = ¢,), Equation (5.34) may be integrated over the rectangular source
to give (see Problem 5.14)

(5.44)

p(¢.‘c, ¥, I) —th cos ‘P(I){ {kb Siﬂ Qﬁ\)]lz J

A similar expression holds for observations along the y, axis (¢ = ¢,), and
since the source is the shape of a rectangle whose boundaries may be ex-
pressed by equations that are mathematically separable in x, and Iy, the
complete expression for [ar-field power density frem a rectangular trans-
ducer is also separable in ¢, and P, .

_ DR Z sin(wt — k) [sin[{kb sin ¢,)/2] sinf(kh sin <j&_,.J/2]]2

s dpem0) (kb sin ¢,)/2 (kfsin ¢,)/2

?\Zrz

153

(@
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sin? (kh sin ¢ i)
{hh sin ¢,/2)?

sin® (kb sin ¢, /2)
(kb sin ¢, /2)?

try for determining the far-field radiation from
far-field power density pattem.as observed
he pattern in the y; direction.

Figure 5.16 (a) The geome
a rectangular transducer,. (b) The
in the x; direction superimposed on t

The term in the square brackets is the directional factor:

sin[(k® sin ¢,)/2] sin[(k/ sin qs,‘}/z]}
Hildo 4,7 [ (kbsin ¢,)/2  (khsing))/2

al-
The far-field beam pattern from a rcctangulfir element has the Tarzsc ?nuain
itative features as those described for a cFrcul_ar source, such o man
tobe. side lobes, and so on, except that the directionality now has the

(5.45)
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{sin x)/x. Note that the half-angle ta the first zero marking the extent of
the main lobe is now given in the x; direction by

sin(kb sin ¢m) ~0
2
or

kb sin ¢y~ 27
or

=cin—! E = a1 —lé 4
g = sIn (kb) sin (b (5.48)

A similar equation describes the divergence as measured in the » direction:

(5.47)

Figure 5.16b shows that, as opposed to the pattern from a circular trans-
ducer, the pattern here s asymmetric. The inverse relationship betwesp
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This progressive spreading of the beam width is diagrammed ql%ah-
tatively in Figure 5.17. In the near field, also known as the Erc?snel region,
he beam is nearly collimated until it approaches the: transition distance
t;r At this point the beam has started to spread a little, (gml'[]le tfmtlfnlolr(si;

of iti » the near field and the far fie
“transition zone” here between ‘
\djg’ii ilsvhich the beam changes its character from nearly collimated edges
iverging edges.) .

tO dlvzisg it %ravels into the far field, also known as the Fraunhofer reg}wn%
the bearn widens further and eventually approaches the constant angle o

" )

Transducer

size and divergence angle still applies, however.

For a rectangular element

that is taller than it is wide (ie., & > b), the

far-field radiation pattern of

the element will be wider than it is tall fie, ¢,y > $ys from Equations
(5.46) and (3.47)]. More will be said about rectangular radiation patterns
when arrays of small elements are discussed at the end of this chapter.

5.4 WIDTH OF BEAM IN NEAR FIELD AND FAR FIELD

As the previous section described, the beam pattern in the near field has
& very irreguiar interior, with many peaks and vaileys, especially near the
transducer face; Figure 5.14 showed this. The lateral extent of the near

field is roughly confined to the size of the transducer, although it must be

admitted that it is difficult to precisely define the edge of such an irregu-
lar field.

As 1he beam progresses into the far field, its topology becomes much
more smooth, eventually evolving into a well-defined single main lobe with
low-intensity side lobes as shown in Figure 5.15a. The edges of this beam
now spread linearly with distance, and the width of the main lobe, as given
by the half-angle ¢, to the first zere on each side, asymptotically diverges

at a conslant angle inversely proportional to the transducer diameter and
therefore the near-fiefd beam diameter.

- - _J ..
Near-field ’ Far-field e
Fresnel region - Fraunhofer region

(b

Beam B

Beam A
Transducer A

 —

T ——

\

Transducer B

i tes away from an unfocused
i . a) The shape of 2 beam as it propagat ¢
flgr?slzuielr—!ﬂie)beam stays approximately coflimated in the near ﬁeld,rbut dw:rlr'lg;slx
i . 1 Tom a
i i half-angle ¢4. (b) The beam
1 1y in the far field approaching a
Ilrz‘:irdzcer diverges more rapidly than the beam from a larger transducer.
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divergence ¢4. It is interesting to note in Figure 5.17b that the beam from
a small transducer (transducer B) starts small but eventually becomes larger
since it possesses a shorter zp and greater ¢, than transducer A.

Smoothing the Beam’s Profile

The irregularities within the near field and the presence of side lobes in
the far field are sometimes an inconvenience when atternptin_g to predict
the returns from reflectors in the beam’s pattern. There is a technique for
smoothing out these irregularities, although a price is paid. It is based upon
the fact that, if the beam’s amplitude profile as a function of radius was
Gaussian-shaped at the transducer face (peaked at the center and decreasing
to zero as exp(—p?/a?}) toward the edges) rather than being the uniform
amplitude across the transducer face assumed above, then the radiated
beam’s profile would be smoothly Gaussian-shaped everywhere in the near
field as well as in the far field.

Therefore, if by some means the transducer excitation profile ap-
proximates a Gaussian form with decreasing activity away [rom the center,
the beam would be expected to be more uniform in its transverse behavior.
Various ways of achieving a shaded profile at the radiating surtace include

placing a radially varying absorber in front of the transducer, designing

the transducer face to have a star shape with some unexcited areas near
the edges, or by using a concentric ring transducer (“bull’s-eye™) and exciting
the outer rings with progressively less drive voltage than the center rings.
All these techniques, known as apodization because they reduce the “feet™
(side lobes) in the radiated beam pattern, will produce an overall smoother
beam profile. The disadvantages, however, are that less total power is ra-
diated, the transducer is more complex, and, as Equation (5.43) shows,

the beam diverges at a greater angle since the effective transducer diameter
is smaller, ‘

' 5.5 FOCUSING WITH LENSES, AND LATERAL
RESOLUTION

The beam width from an unfocused transducer is generally too wide
to give adequate definition of the fine lateral features of objects. being im-
aged. Therefore, a lens or other focusing scheme such as a spherical reflector
is usually employed to converge the radiating beam into a spot at the focal
plane of the lens. However, the size of the focused beam cannot be infinitely
small, since the natural divergence of a propagating wave as described in
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the previous section will attempt to spread even a converging beam, re-
ducing the focusing effect of the lens. The further away the focal plane is
from the lens, the larger the focused spot will be.

The equations of Section 5.3 can be used to evaluate the size of the
focused spot once they are modified to include the effects of the lens. .As
in optics, an acoustical lens is fabricated from a disk of material by forming
a curved refracting surface on one or both of its faces; Figure 5.18 shqws
the cross-section of a plano-concave focusing lens. As opposed to optics,

(a)
Lens: ¢

Medium: ¢,

(b)

*

|
r ’f

Figure 5.18 (a) A focusing lens made of material (such as polystyrene) with
phase velocity greater than in the surrounding medium. (b} A lens has the prop-
erty of transforming angles into position on the focal plane.
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the lens material generally possesses an acoustic phase velocity which is
greater than that of the matarial surrounding it {water or tissue). Thus, 3
converging (positive) lens will have a concave face, Problem 5.18 yge
Snell’s law for ray tracing zo show that a plano-concave lens having 4
surface with radius of curva-ure R; will preduce focusing at a focal length
equal to

(5.48)

where ¢ is the phase velocizy of the lens material and ¢, is the phase
velocity of the medium into which the wave is focused.

Lenses have the properzy of transferming angles into position. Tha
is, all rays entering the lens at a common angle ¢ will get directed 1o 3
radius x; on the focal plane s shawn in Figure 5.18b. Under the small-
angle approximation, geomesry gives the transformation relationship as

sin ¢ 2o 2t (5.49)

l
Therefore, a lens of focal lemgth J placed in front of the beam from a
circular transducer whosa radiation pattern is given by Equation (5.39)
will transform the far-field ar:gular distribution into a spatial distribution
on the {ocal plane via the tramsformation of Equaticn (5.49}. Making this
substitution into Equation {5-39) vields the spatial distribution of the pres-
sure at a focused spot from a circular transducer of radius a:

2N (kax,/ 1})
kﬂ;\‘]/l’f

Hiz)= { (5.50)
and the focused patiern looks exactly like the far-field pattern of Figure
5.15a, except that it is scaled down by an amount /;/z. Figure 5.19 shows
how the focused spot would appear face-on.

Size of Focused Spot

The focused spot has a dense central portion (corresponding to the main
lobe) surrounded by minor rings {the side lobes). The diameter of the central
portion is defined as previousiz: the distance between the st zeres bound-
ing the main lobe. From Equazion (3.50) the radius of the first zero is found

at
_ 383061

Ry
ka a

— Lt ik <t
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Figure 5.19 The greatly magnified pattern of a focused spot from a lens of
focal length [, The entering beam diameter is D.

or, put in terms of original beam {transducer) diameter D = 2¢, the diameter
between first zeros is the focused spot diameter & = 2x,:

ol ' (5.51)
d= 2.44(D)?\

Figure 5.20 defines the quantities entering Equation '(5.5 1}

For the case of a rectangular transducer of width b, an analagogs
development can be undertaken to find the width w of the focused spot in
the direction parallel to b. Using Equations (5.44) and (5.49), the result
for a rectangular transducer is

W’—"Z(!’E—;{))\ (5.52)
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Transducer

Lens

7

Figure 5.20 A lens will focus the beam to a small spet, but the size d of the focused
spot depends upon I D, and A according to Equation (5.51 ).

The effects of divergence are manifested in these relationships. In
Equation (5.51) the larger the diameter D of the transducer, the smaller is
the tendency of divergence to expand the beam, and the smaller the spot
of focus. Also, the further away the position of focus fr, the greater is the
effect of divergence, leading to a larger o,

How small can the beam be focused practically? The ratio in the.
parentheses in Equation (5.51) is known as the “fnumber” of the lens;
and due to practical limitations such as spherical aberration, it is difficult
to fabricate a quality lens whose fnumber is much smaller than unity.
Therefore, as a rule of thumb, it can be said that the smallest possible
focused spot is on the order of the wavelength of radiation used_*

Not only is it impossible to focus to an infinitely small spot, it may
be impossible to get any narrowing at all in the beam diameter if the at-

tempted focal distance is 100 far away. Equation (5.51) shows that 4 will
be greater than D if

DZ
b> == (5.53)

or, in ather words, no focusing occurs if
greater than about the transition distanc

is only possible at distances within the
transducer.

the focal length of the lens is
€. Thus, it may be said that focusing
near field, not in the far field of a

* This limitation a

" ppears in optics and general quantum-mechanical wave analyses as
well as in acoustics.

=

| _
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Lateral Resolution

The spot size of the focused beam determi_ncs_ the transverse Sspzt;al ;1?1-2-
lution of a medical ultrasound imager, as mdlce_tted in l?lg,ure;I . .S The,
the focused beam is swept uniforml)_r past a pair of point re ecLor]. Lhe
waveform of the envelope of the received echoes depends uporli t e at 2
spacing of the points. When far apart, the echoes frf)m eac IE)ou:m :vc
distinct, and it is clear that there are t.wo separate points, A}s; t e:;tart e
closer, however, approaching the spacing d, the separate ec c};le§ o
blend together, and at some stage t%1c points are so close th?lt t .e1r z; oo
carnot be separately resolved: that is, they appear as one reflecting ¢ _|s * i
The spacing in the transverse plane at whx'ch the pr:)mts ?re .]u:,T i u;;e
arately resolvable is known as the lateral resolution (LR); and from Fig

5.21 a reasonable measure of LR is the diameter of the focused spot 4.

That is,
IR=d

" and the motivation for focusing the beam to reduce the. focused spot size
" din an imaging system is obvious. Using Eq. (5.51) for a circular transducer,

L (5.54)
LR = 2.44( D))\ :

This relationship, along with the previous expression for axial resolution,

i in Table 3.2, ) o
N resﬁidclz:a now make an important observation: The resolution in all

directions {(=xial and lateral} is closely related to wavelength, and as a prac-

tical matter cannot be made smaller than the wavelength used. Thcreforf‘:i
high resolution machines will employ as high a frequency as possible, unti

increasing zitenuation takes the signal to the lower limit of the signal-to--

noise ratio. Echo instruments for imaging tiny ohjec'ts in the eye, fo.r in-
stance, may go as high as 15 MHz since the absorbing path length is so
short there. .

Depth of Focus

There is one disadvantage to tight focusing of the be.am. Althougl} ;t im-
praves tateral resolution for reflecting objects located mhtheE plain]e ggt Sc;x:é
i in ot i rther away than the focal le
in planes either nearer or fu : :
Cpg::tsromi:d because the beam is somewhat larger than d.on either side
of thi foca:[ plane. The problem gets worse with decrease in the focused
ize, as shown in Figure 5.22. S '
e The axial distance over which the beam maintains lts_apprommal'e
focused siz= is termed the depth of focus. To obtain an estimate of this
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(a)

Focused spot

Heb T

Reflector spacing: Received signal:

(b)

4 - F =

{c)

q

(dy

Figure 5.21 (a) The lateral spatial resolution is determined by the size 4 of 1he

focused spot. (b)-(d} The signal received from a pair of point reflectors as their
lateral spacing is progressively narrowed.
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TABLE 5.2 THEORETICAL EXPRESSIONS
FOR SPATIAL RESOLUTION

Q
)
AR=7
¥
= 244 L
LR 24(0)

distance, note that the beam shapes on both sides of the focal point are

mirror itnages of one another, reflected about the focal plane. The beam
behavior on one side of this plane, from the focus outward, has the same
general characteristics that we earlier examined in Figure 5.17a for a beam
propagating from an initially planar wavefront of a given diameter. There-
fore, it stays approximately collimated within the transition distance zg.
Applied to the situation here, the transition distance of Equation (3.32)
becomes

dZ

ZRd="T

RA™ 4

The depth of focus may be estimated to be twice this distance due to
symmetry about the focal plane:

Focal
Beam B " plane

: rd

\\ __47"4/‘

Beam A I : Vid,
d, _
/”"'"-'--\\ 7 e

Vs N

/ \\ T
/, Depth of \‘
focus B
Depth of focus A

Figure 5.22 The depth of focus describes the longitudinal distance over which
the beam maintains its approximate focused size. It gets shorter for tightly focused
beams.
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D

dl l} =
Depth of focus == o =} A (5.55)

where Equation (5.51) was used to get the last resclt.

The tradeoff between focused size and depth of focus sometimes dic.
tates a compromise in lens design. For example, in fixed-focus systems,
the fens may be purposely given a nensphercal surface to cause the focused
spot size to be Jarger than the theoretical limit, thereDy increasing the depth
of focus.

Example of Resolution Values

A numerical example of the spatial resolution limirs for a typical medical
ultrasound system is enlightening. The transducer pictured earlier in Figure
5.10 is designed for shallow cardiac imaging. It cpeTates at 3.5 MHz with
a 2 of approximately 7. Its beam diameter is 1.3 ¢ and tae focal length
of the lens is 5 cm. Therefore, A = 0.043 cm in tsse, and the theoretical
resolution limits are

7 .
AR = (2)0.043 =0.075 cm

LR = 2.44(1—55-)0.043 =0.35 c¢m

and depth of focus is approximately equal to 1.4 cne.

However, practical factors will worsen the lat=ral resolution. Thess
factors include lens aberrations, objects being outside the depth of focus,
side-lobe (or grating-lobe) off-axis sensitivity, spatzal interference noise
{speckle) due to the coherent nature of ultrasourd, aod signal compression
in the receiver elecironics. In addition, as meationed in Section 5.2.2,
practical factors such as dispersive absorption in tissez and signal compres-
sion in the receiver will degrade the axial resolution. Therefore, the actual
resolutions are perhaps two to three times their thecretical values above.
Note that, as is usually the case, the axial resolutios is much better than
the latcral resclution.

5.6 LINEAR ARRAYS’

In real-time B-scanners, described in the next chaprer, the transducer 1§
sometimes composed of a lincar array of closely spzced elements (usually
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rectangular) as shown in Figure 5.23. Although cach clement may be small

. in terms of number of wavelengths, the overall width L can be appreciable

(5 to 10 cm). The question is: What width is used in Equation (5.46) to
calculate the angular divergence of the beam radiated from this unfecused

- transducer, the single-element width & or the overall-array width JF,? The
s answer depends upon whether the elemgnts are excited one-at a time or
= whether they are all radiating together,

If excited one at a time (as is done in the sequentially pulsed linear
array machine), the pattern is, not surprisingly, ju_st that ?f a single ele_ment;
this pattern was covered in Figure 5.16b and is relatively broad in the
horizental direction, cr azimuth, due to the smallness of the elements.

{a)

h

Elevation
¥y
Azimuth

Iﬁ X1
'2"”“""@7‘“‘

(b}

T
PN

Figure 5.23 (a) The geometry for a linear array of rectangular elements. {b) A top
view of two neighboring ¢lements showing that at selected angles ¢,.. the path
length difference / is equa!l to an integral number of wavelengths.
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If the elernents are excited simultaneously and coherently (as in the
phased-array imager), the effective transducer width is I and the far-fiely
divergence, given by Equation (5.46), will be much narrower. Correspond.
ingly, ifthis coherent array is focused, the beam will converge to a smaller
spot size with improved lateral resolution. {Note, however, that the beam
divergence in the vertical direction, called the elevation, will be the same
whether the elements are excited independently or coherently: in both
cases the effective array height is A).

Grating Lobes

There is a complexity in the radiation pattern which accompanies the seg.
mentation of the transducer into an array of elements. It is the appearance
of reduced-amplitude images of the main beam (complete with side lobes)
known as grating lobes, centered around one or more discrete angles in
the ¢, plane. The angles of the grating lobes, denoted ¢,,, are found to be
those angles for which rays from two neighboring elements are in phase
with each other by 2 multiple of 27 constructive interference therefore
takes place at these angles, and some power is radiated in those directions.
An alternate way of stating the condition for constructive interference is
that the path length difference / between rays from the neighboring efements
is equal to an integer number of wavelengths, Figure 5.23b shows that this

occurs when
. I nx
SN gy, = — = —
s s

or

A
¢>gn=sin~'(ﬁ-) n=x1,42,. .. (5.56)

§

There will be as many grating lobe orders in the pattern as the number of
solutions of Equaticn (5.56) that fall within +90°, Notice that, as the spacing
sincreases in size with respect to a wavelength, the grating lobes get closer
together in angle and increase in number.

Figure 5.24 shows an example of a 16-element array with a total
length of L = 27, Therefore, s = (27/15)A = 1.8 and

g1 =+33.7°

Only the first-order grating lobes are present in this pattern since the second-
order (1 = 2) and higher-order lobes are not valid solutions (within +90°)
of Equation (5.56) for s = 1.8\. The shape of the main beam and the
displaced grating lobes is determined by applying Equation (5.45) with the
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Main beam:
sin (&L sin ¢, {2)
(kL sin ¢_/2)?
Envelope:
sin? (kb sin¢_/2)
(kb sin ¢ /2)?
n=+1

“ Figure5.24 The power density beam pattern in the x; direction from a [6:element
linear array whose elements are excited coherently. In addition to the main beam,
copies of the main beam called grating lobes appear off to each side. For this example,
s= 1.8\ and L = 27x.

l effective length b — L. Therefore, the width of the main lobe in the m.ain
:* beam (straight ahead) and also in the grating lobes is given by Equation
- {5.46): :

—— Gh—disin*'(%)isin”(%)=2.l°
The envelope which determines the amplitude of the grating lobes
compared to the main beam is given by the directional factor H, of one of
the individual (assumed identical) elements, multiplied by a factor cos ¢,
{which is due to the lack of a reinforcing rigid baffle surrounding the ele-
ments and which has a major effect only near +90°). Therefore, using
Equation (5.45) for H,,
sin[(kbsin ¢,)/2]
(kbsing,)/2
since each element has a width of b (refer to Figure 5.23a). This envelope
will possess zeros just like the main-beam directional factor, but they will
be at much larger angles since & € L. The positions of the zeros of the
envelope (in addition to =90° from the cos ¢, term) may be obtained from
Equation (5.46):

Envelope {amplitude) = 0S¢, (5.57)

Grating loie
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. A
¢xe=sm*‘(’7) m==x1,%2,... (5.38)

Noue that the closer to unity the ratio b/s is (“fill factor™), the closer the
grazing lobe angle from Equation (5.56) will be to a zero angle of the
enwzlope from Equation (5.58), thus reducing the peak amplitude of
the grating lobe. For the example of Figure 5.24, b = 0.67s = 1.21X, and
the envelope has the shape shown with zeros at £56°.

An interesting envelope occurs for the special case of § = 2b corre-
spomding to a “square wave” array whose element’s active width is just
one-half the spacing between element centers. For this case, the angle of

the second grating lobe
Gz =5in~! A =sin~’ A
8 K3 b

fallz at the first zero in the envelope

re = sin*‘(%)

and the second grating lobe essentially vanishes. In fact, all even-order
grazing lobes disappear, leaving only the main beam and odd-order grating
lobzs. ) '

Grsting Lobe Reduction N
Redduction in the number and amplitude of the grating lobes is desirable
sincz grating lobes represent potential sources of ambiguity in determining
the direction of the echoes returned to the transducer. The principle of
reczprocity applies under most circumstances to acoustic wave propagation,
so “he transducer’s receiver sensitivity pattern will usually have the same
shape as the transmitier radiation patiern, Therefore, grating lobes (and,
1o = lesser degree, side lobes) give off-axis sensitivity to a transducer used

- both as source and receiver. Reflecting points at the grating lobe angles are

irradiated, and the receiver is sensitive to echoes coming from these angles
in =ddition to straight ahead. Figure 5.25 shows how a single point scatterer
wil'l show up at three separate angular positions of a swept array with two
grazing lobes in addition to the main beam.

The angles of the grating lobes are governed by the spacing s between
alemments of the array, and their amplitude is determined by the envelope
shzpe sat by the individual element length b. In addition, the overall width
L determines the angular width of each lobe, and the number of elements
is =iven by {L/5) + |. These array parameters ¢can be manipulated by the

5, 5.6 LINEAR ARRAYS 117

Chject

./ Location of
apparent
Angular sweep (pl}antom)
' ————a N objects
[y

- _s

/ Main beamn

Grating lobe

Figure 5.25 When the transducer is rotated, the grat-
_ing lobes produce multiple responses from a single ob-
ject, confusing the interpretation of object position.

- designer to optimize one feature or another, depending upon thc_ desired
# application, but they all interact. For example, to move the grating lob.c
;- angle as far away from 0° as possible, the spacing s between ¢lements is

- made small. However, for a fixed number of elements, this reduces the

array width L, which in turn increases the angular width of the main beam,
worsening lateral resolution. Problem 5.22 gives other examples of the
tradeoffs encountered in array design.

There is a temporal way to partially reduce the maghnitude of the
grating lobes in the transmitted patiern; it is based upon using very shf:;rt
transmitter pulses. As explained above, grating lobes are due to constructive
interference occurring at selected angles between waves from neighboring
elements. If the waves are really pulses of short duration (little more than

- one cycle), the pulse from one clement propagating at the grating lobe

angle will have decayed considerably by the time it is joined by the pulse
from its neighbor, amounting to less than total constructive interference;
this is diagrammed in Figure 5.26. When pulses from all the elements are
considered, the skew in timing may significantly reduce the grating lobe
response. The pattern in the forward direction remains essentially unaltered,
however, since all pulses coincide in this direction, providing total con-
structive interference.

Thus, the ratio of grating lobe response to main lobe response de-
creases with decreasing pulse length (and therefore with decreasing trans-
ducer (). For example, for a 16-element array with an interelement spfacing
of b = 2.4, the ratio of first grating lobe amplitude to main lobe amplitude
is 0.2 when Q = 9.4 but only 0.08 when Q = 3.1. Unfortunately, th_is
reduction in peak grating lobe response is accompanied by an increase in
the angular width of the grating lobe.
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Figure 5.26 If short pulses are emitied
from the elements of a linear array, thei;
origins are skewed when summed at ag
angle. At the grating lobe angle ¢, some
constructive interference takes place, by
it is less than for continuous waves due
to the decaying envelopes summed from
neighboring pulses.

There is yet another way to attempt to reduce grating lobe response

(for fixed L and for a given number of elements), The spacing between
elements can be made nonuniform, defeating some of the constructive
interference effects at off-axis propagation angles. This randomization of
element spacing, however, is of minor benefit (especially for short pulses)

. and also increases the width of the grating lobe, so it is probably not worlh
the effort.

PROBLEMS

5.1.

5.2.

5.3.

What is the thickness of a barium titanate transducer whose fundamental
frequency of resonance is 5 MHz? How thick would it be if its third harmonic
were 5 MHz?

A cw voltage with a peak magnitude of 10 V is impressed across a barium
titanate transducer at its fundamental frequency of 1 MHz. The arez of the
transducer face is 1 cm?. How much power is radiated into a layer of muscle
in contact with the transducer?

Using the configuration shown in Figure 5.4, derive Equation (5.6) for the
velocity of the transducer faces when excited at resonance by an electric field
E;. (Hint: Let the four traveling waves be displacement waves of the form

£ = A cos(wi+ ko)
£ = B cos(wt — k2)
£y = Ccos{wt + k,z)
Es= D cos(wt — k2)

where ¢ is the displacement of the material’s particles from equilibdum and
k, k, and k, are the propagation constants in the transducer, region 1, and
region 2, respectively. Particle velocity u is given by 8£/37. Match particle
velocity w and pressure p at each interfage following the sign conventions

5.1

Alr

Cut quartz
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used in Section 3.4.2, The przssure just inside the transducer face is given
by Equation (5.3) for a piezoclectne matenal. The net displacement inside
the transducer (to calculate strain) is given by £, + £,. Remember, at the
frequency of fundamental resonance, A = 2/ in the transducer, so & = =,
Solve for ;= —wD sin(er — 2 f).

. Use Equation (5.12) to solve for the equivalent electrical circuit of an air-

backed transducer at resonamze. Procedure: Substitute Equation (5.5) into
Equation (5.12), then integrace with respect to z from z = 0 to z = /. The
integral of electric field is voltzge (V' = f E; dz) and let o; be a constant. Solve
for the total charge g = Ao, in terms of " and the displacements £ of the two
faces. Then, find the current J = dg/di. Here, you will need to remember
that d#/dr = u,of the faces (gEven by Equation (5.6} with opposite signs for
the two faces) and let ¥ = 17 cos wi, 50 E; = (V cos wf)/l. The electrical
admittance is finally given by I/¥. Show that the admittance is the sum of
two parts, one due to a capacitance with an admittance of magnitude ¢,
(90° out of phase from ¥}, and the other due to a resistor with admittance
1/R,, tin phase with ¥}. Check your answers for Cp and R,, with Equations
(5.16) and (5.17).

. An air-backed PZT transducer is radiating into water at its fundamental

resonant frequency of 3 MHz. F1 has a surface area of 5 crn®. Find its equivalent
electrical circuit, including valnes for the components {(assume it is internally
lossless). When driven with & sinusoidal peak voltage of 10 V, use R,, to
calculate how much power is tadiated by this transducer.

. Using Figure 5.9, derive Equeztion (5.24) for axial resolution. Find an ap-

proximate numerical value (EZncluding units) for the axial resolution of a

bioinstrument whaose transducer has a frequency i = 2.25 MHz and a

Q=5 : .

{a) Find the approximats @ of the following quartz transducer arrangement
at its fundamental frequency of 2 MHz by using Equation (5.18):

Tissue

Assume that the internal losses of the transducer are zero, so that losses
are due entirely to the wansmission of power through the transducer
faces. (Hint: Assume an tmternal wave with intensity J, is bouncing back
and forth between the faces. Determine how much intensity is lost during
one period of the furdamental frequency. Let the stored intensity be an
average of before and afier the bounces.)

(b) Calculate the axial resoliztion tor this quariz transducer.
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5.8. To investigate the reasons for adding an absorber to the back face of a trans.
ducer, redo Problem 5.7 for the same frequency and quartz material, bui
replace the air with a backing material made of an absorber whose acoustic
impedance Z = 3 X 10 kg/m? s is closer to quartz. Assume that all power
radiated into the absorber is lost. Find the new ¢ and the axial resolution,

5.9. Redo Problem 5.7 for the same frequency and air backing, but use BVDF
as the transducer material instead of quartz. What are the 0 and the axial
resolution now?

5.10. Applying the method outlined in Problem 5.7 to 2 general transducer with
impedance Z, radiating on one side only into a medium with impedance Z,,
show that an approximate expression for the transducer’s Q at its fundamenta
frequency is given by

Zer

Tz,

o

when Z_» Z,.
5.11. Using geometry in Figure 5.11, show that +* is given by Equation (5.26).
5.12, Derive Equation (5.30) for the on-axis pressure field of a cireular transducer
starting from Equation (5.29) and following the steps outlined in the text,

5.13. Derive Equation (5.37) from Equation {5.36) using the integral relationship
between J, and J, given in the text,

5.14. Integrate Equation (5.34) over a rectangular source of dimensions b X 4 using

the geometry shown in Figure 5.16a to get the pressure radiation pattern of
Equation (5.44) along the x, axis,

5.15. (a) Plot the pattern (similar to Figure 5. L5a) of intensity measured on a plane
50 ¢m away from a 2-MHz unfocused circular transducer whose diameter
is | inch, Find the diameter of the closest null ring surrounding the
central peak of the pattern.

(b) Estimate the FWHM diameter of the central peak as given by the width
to the —3-dB points on either side of the peak.

Find the near-field to far-field transition distance and the far-field divergence
angle for each of the unfocused transducers listed below:

(a) Diam. = [ cm, frequency = 1| MHz

(b) Diam. = 3 cm, frequency = | MHz

(c) Diam. =1 ¢m, frequency = 2,25 MHz

5.16

5.17. An unfocused circular transducer is used in the following configuration at a
frequency of 3 MHz:

Transducer

Fat Muscle
1 cm

—_—

Ilem

5.22,
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5.19.

Estimate the power which the transducer must radiate into the tissue in order
to receive 2 X 1078 W back at its face from the echo due to the fat/muscle
interface, Include the effects of beam spreading and list any simplifying as-
sumptions you make,

. Use Snell’s law and ray racing to show that the focal length of a plano-

concave lens is given by Equation (5.48). (#Hint: Consider a ray entering
parallel to the axis and use the small-angle approximation to find the distance
where it intersects the axis.)

How large a diameter would a focused circular transducer of frequency 1.3

MHz have to be to give a focused spot size of 1 mm at a distance of 10 cm
from the transducer? What would be the depth of focus of this beam?

. Find the theoretical axial resolution and lateral resolution at a distance of 6

cm from a circular unfocused transducer whaose frequency is 3 MHz, whose
diameter is 1.5 cm, and whose @ is 10.

. In echocardiography it is desirable 10 image the mitral valve leaflets with a

resolution of approximately 2 mm. The distance from the chest wall to the

valve is about 7 cm. To aveid excessive attenuation, a frequency of 2.25

MHz is used. ] o

(a) Determine the maximum @ zallowed for the transducer which will give
the required resolution.

{b) Determine the minimum diameter of the lens (and therefore the trans-
ducer) which will give the required resolution, assuming focusing on the
valve.

(a) Sketch a rough polar power density plot for a coherently excited linear
array composed of 16 sguare elements, each 1 mim wide with a center-
to-center spacing of 2 mm. The frequency is 2.25 MHz. Calculate the
following three important features: width of main lobe; angular positions
of the grating lobe(s); and ratio of peak power density in first grating lobe
to peak power density in main lobe.

(b) Explain qualitatively how each of the above three pattern features would
change if each of the following modification was made independently in
the array {all other parameters stay as specified):

(i) The wavelength was decreasad. )
(if} The spacing between elements was decreased,
(iii) The number of elements was decreased to eight,
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