Fluxo de água no solo

Pef-5805
Percolação e adensamento
Programa de pós-graduação em
Engenharia Civil

Fluxo unidimensional de água no solo

$$Q = kiA$$
 ou $V = ki$

(Lei de Darcy, 1856)

Q ... vazão

k ... coeficiente de permeabilidade

i ... gradiente hidráulico

A ... área total da seção transversal de solo

v ... velocidade aparente de fluxo

$$k = K \gamma / \mu$$

k ... coeficiente de permeabilidade

K ... permeabilidade intrínseca do solo

γ ... peso específico do fluido

μ ... viscosidade dinâmica do fluido

Fluxo através do solo

Hipótese:

fluxo não modifica o solo

$$J_{i} = L_{ii} X_{i}$$

J_i velocidade de fluxo

L_{ii} coeficiente de condutividade

X_i agente motriz

$$v = -k \frac{\partial H}{\partial z}$$
 Lei de Darcy fluido

$$J = -K_T \frac{\partial T}{\partial z}$$
 Lei de Fourier calor

$$i = -\frac{1}{R} \frac{\partial V}{\partial z}$$
 Lei de Ohm eletricidade

$$J = -D_d \frac{\partial c}{\partial z}$$
 Lei de Fick substâncias químicas

Os coeficientes das equações acima são quantidades diretamente mensuráveis.

Fluxos acoplados

Fluxos simultâneos de tipos diferentes com um único agente motriz.

$$J_{i} = L_{ij} X_{j}$$

L_{ii} coeficiente de acoplamento

Exemplo: gradiente hidráulico em água contaminada causa fluxo advectivo.

	GRADIENTE						
FLUXO	Carga hidráulica	Temperatura	Eletricidade	Concen- tração química			
Fluido	Lei de Darcy	Termo-osmose	Eletro-osmose	Osmose química			
Calor	Transferência de calor isotérmica	Lei de Fourier	Efeito Peltier	Efeito Dufour			
Corrente	Corrente	Termo-eletricidade: efeito de Seebeck	Lei de Ohm	Potenciais de membrana e difusão			
Íon Advecção		Difusão térmica de eletrólito: efeito Soret	Eletro-forese	Lei de Fick			

Lei de Darcy para material anisotrópico

$$\underline{\mathbf{v}} = -\underline{\mathbf{k}} \ \underline{\nabla} \mathbf{h}$$

$$\underline{\mathbf{v}} = \mathbf{v}_1 \ \underline{\mathbf{e}}_1 + \mathbf{v}_2 \ \underline{\mathbf{e}}_2 + \mathbf{v}_3 \ \underline{\mathbf{e}}_3$$

Gradiente hidráulico

- dh/dx para pequenas distâncias
- ∂h/∂x fluxo não unidimensional
- operador gradiente (aponta no sentido de h crescente):

$$\underline{\nabla} h = \frac{\partial h}{\partial x_1} \underline{e}_1 + \frac{\partial h}{\partial x_2} \underline{e}_2 + \frac{\partial h}{\partial x_3} \underline{e}_3$$

$$\underline{\nabla} h = \frac{\partial h}{\partial x_i} \underline{e}_i$$

Lei de Darcy para material anisotrópico

$$-v_{1} = k_{11} \frac{\partial h}{\partial x_{1}} + k_{12} \frac{\partial h}{\partial x_{2}} + k_{13} \frac{\partial h}{\partial x_{3}}$$

$$-v_{2} = k_{21} \frac{\partial h}{\partial x_{1}} + k_{22} \frac{\partial h}{\partial x_{2}} + k_{23} \frac{\partial h}{\partial x_{3}}$$

$$-v_{3} = k_{31} \frac{\partial h}{\partial x_{1}} + k_{32} \frac{\partial h}{\partial x_{2}} + k_{33} \frac{\partial h}{\partial x_{3}}$$

$$-v_i = k_{ij} \frac{\partial h}{\partial x_i}$$
 $i = 1,2,3$

Lei de Darcy para material anisotrópico

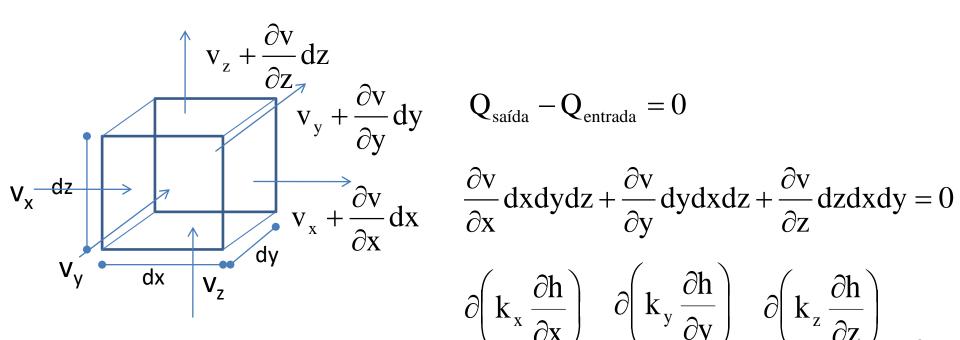
$$\underline{\mathbf{v}} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix} \qquad \underline{\mathbf{k}} = \begin{bmatrix} \mathbf{k}_{11} \ \mathbf{k}_{12} \ \mathbf{k}_{13} \\ \mathbf{k}_{21} \ \mathbf{k}_{22} \ \mathbf{k}_{23} \\ \mathbf{k}_{31} \ \mathbf{k}_{32} \ \mathbf{k}_{33} \end{bmatrix} \qquad \underline{\nabla}\mathbf{h} = \begin{bmatrix} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_1} \\ \frac{\partial \mathbf{h}}{\partial \mathbf{x}_2} \\ \frac{\partial \mathbf{h}}{\partial \mathbf{x}_3} \end{bmatrix}$$

k tensor das permeabilidades

 Resultados experimentais indicam que k_{ij}=k_{ji}.

 Com os eixos orientados nas direções principais

$$\underline{\mathbf{k}} = \begin{bmatrix} \mathbf{k}_1 & 0 & 0 \\ 0 & \mathbf{k}_2 & 0 \\ 0 & 0 & \mathbf{k}_3 \end{bmatrix}$$


Lei de Darcy para material isotrópico

$$\underline{\mathbf{k}} = \mathbf{k} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\underline{\mathbf{v}} = -\mathbf{k}\underline{\nabla}\mathbf{h}$$

$$-\mathbf{v}_1 = \mathbf{k} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_1}; -\mathbf{v}_2 = \mathbf{k} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_2}; -\mathbf{v}_3 = \mathbf{k} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_3}$$

Fluxo permanente e equação da continuidade

$$Q_{\text{saida}} - Q_{\text{entrada}} = 0$$

$$\frac{\partial v}{\partial x} dxdydz + \frac{\partial v}{\partial y} dydxdz + \frac{\partial v}{\partial z} dzdxdy = 0$$

$$\frac{\partial \left(k_{x} \frac{\partial h}{\partial x}\right)}{\partial x} + \frac{\partial \left(k_{y} \frac{\partial h}{\partial y}\right)}{\partial y} + \frac{\partial \left(k_{z} \frac{\partial h}{\partial z}\right)}{\partial z} = 0$$

$$k_{x} \frac{\partial^{2} h}{\partial x^{2}} + k_{y} \frac{\partial^{2} h}{\partial y^{2}} + k_{z} \frac{\partial^{2} h}{\partial z^{2}} = 0$$

 Fluxo permanente e equação da continuidade Solo anisotrópico

$$k_x \frac{\partial^2 h}{\partial x^2} + k_y \frac{\partial^2 h}{\partial y^2} + k_z \frac{\partial^2 h}{\partial z^2} = 0$$

Fluxo permanente e equação da continuidade
 Solo isotrópico

$$\frac{\partial^2 \mathbf{h}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{h}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{h}}{\partial \mathbf{z}^2} = 0$$

 Fluxo permanente e bidimensional, equação da continuidade, solo isotrópico

$$\frac{\partial^2 \mathbf{h}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{h}}{\partial \mathbf{z}^2} = 0$$
 Equação de Laplace

Teorema do divergente – fluxo permanente

$$\int_{V} \underline{\nabla} \underline{v} \, dV = \int_{A} \underline{v} \underline{n} \, dA$$

Na superfície de área A do volume de controle V:

$$\underline{\mathbf{v}} = \mathbf{v}_{\mathsf{n}} \ \underline{\mathsf{n}} + \mathbf{v}_{\mathsf{t}} \ \underline{\mathsf{t}}$$

$$\underline{\mathbf{v}}.\underline{\mathbf{n}} = \mathbf{v}_{\mathbf{n}}$$

 Se o fluxo (regime) for permanente, não há variação de volume.

$$\underline{\nabla} \cdot \underline{v} = 0$$

$$\int \underline{\nabla} \, \underline{v} \, dV = 0$$

• Se valer a Lei de Darcy e o solo for isotrópico: $\int \underline{\nabla} (-k\underline{\nabla} h)\,dV = 0$

Se o solo for homogêneo:

$$-k \int_{V} \underline{\nabla} (\underline{\nabla} h) \, dV = 0$$
$$\int_{V} \nabla^{2} h \, dV = 0$$

• Como o volume V escolhido foi arbitrário: $\nabla^2 h = 0$

• Equação de Laplace

$$\frac{\partial^2 h}{\partial x_1^2} + \frac{\partial^2 h}{\partial x_2^2} + \frac{\partial^2 h}{\partial x_3^2} = 0$$

Regime permanente e validade da lei de Darcy:

$$\underline{\nabla} \cdot (-\underline{k}\underline{\nabla}h) = 0$$

• Material anisotrópico e não homogêneo:

$$\underline{\nabla} \cdot (-\underline{k}\underline{\nabla}h) = -\underline{k}\underline{\nabla}^2 h - \underline{\nabla}\underline{k}\underline{\nabla}h = 0$$

Material anisotrópico e homogêneo

$$-\underline{k}\nabla^2 h = 0$$

• Material isotrópico e não homogêneo:

$$\nabla \cdot (-k\nabla h) = 0 \qquad \qquad \mathbf{ou} \quad \underline{\nabla} \cdot \underline{v} = -k\nabla^2 h - \underline{\nabla} k\underline{\nabla} h = 0$$

Material isotrópico e homogêneo:

$$-k\nabla^2 h = 0$$
 ou $\nabla^2 h = 0$

Utilizando eixos orientados segundo as direções principais:

$$\underline{v} = -k_1 \frac{\partial h}{\partial x_1} \underline{e}_1 - k_2 \frac{\partial h}{\partial x_2} \underline{e}_2 - k_3 \frac{\partial h}{\partial x_3} \underline{e}_3$$

• Material anisotrópico mas homogêneo:

$$\underline{\nabla v} = -k_1 \frac{\partial^2 h}{\partial x_1^2} - k_2 \frac{\partial^2 h}{\partial x_2^2} - k_3 \frac{\partial^2 h}{\partial x_3^2} = 0$$

• Material isotrópico e homogêneo:

$$\underline{\nabla v} = \frac{\partial^2 h}{\partial x_1^2} + \frac{\partial^2 h}{\partial x_2^2} + \frac{\partial^2 h}{\partial x_3^2} = 0$$

 Em materiais isotrópicos, a permeabilidade não interessa para saber a distribuição de cargas. Em materiais anisotrópicos, para saber a distribuição de cargas é necessário conhecer a relação entre as permeabilidades nas direções principais.

Métodos de resolução

- Equação de Laplace: método gráfico, solução analítica para problemas simples.
- Material anisotrópico e homogêneo: mudança de coordenadas e tratar como Laplace.
- Material heterogêneo com heterogeneidades descontínuas: impondo continuidade na fronteira. (vazão que chega por um canal de fluxo é igual à que sai pelo outro) ou $k_a / k_b = \tan \alpha_a / \tan \alpha_b$
- Materiais quaisquer: métodos numéricos (elementos finitos e diferenças finitas) e analogia (elétrica, térmica).

Fluido ideal

- O movimento de um fluido real é muito complexo. Para simplificar sua descrição considera-se o comportamento de um fluido ideal cujas características são:
- Fluido não viscoso (é desprezível o atrito interno no fluido)
- Fluido incompressível (a densidade do fluido permanece constante com o tempo)
- Fluxo estacionário (a velocidade do fluido em um ponto é constante com o tempo)
- Fluxo irrotacional (não apresenta turbilhões, logo, não há momento angular do fluido relativo a qualquer ponto)

Equação de Bernoulli

 Comportamento de um fluido ideal ao longo de um tubo

$$\frac{v^2}{2} + gh + \frac{p}{\rho_w} = constante$$

$$\frac{v^2}{2g} + h + \frac{p}{\gamma_w} = constante$$

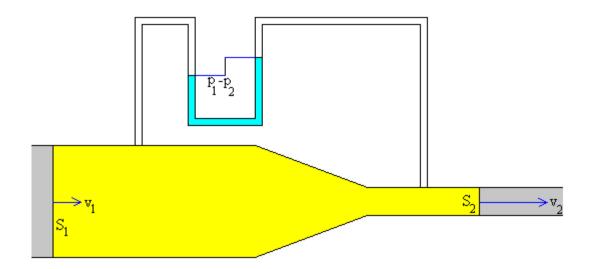
$$\frac{mv^2}{2} + mgh + \frac{mp}{\rho_w} = constante$$

Onde:

v = velocidade do fluido ao longo do conduto

g = aceleração da gravidade

h = altura com relação a um referencial


p = pressão ao longo do recipiente

ρ = densidade do fluido

- Se a velocidade de uma partícula de um fluido aumenta enquanto ela escoa ao longo de uma linha de corrente, a pressão do fluido deve diminuir e vice-versa.
- A equação de Bernoulli relaciona variação de pressão, variação de altura e variação de velocidade em um fluido incompressível num escoamento estacionário. Ela é obtida como uma conseqüência da conservação da energia.

O medidor de Venturi:

É um aparelho usado para medir a velocidade de escoamento de um fluido em um tubo. O medidor é conectado entre dois tubos de secções transversais diferentes. No escoamento de líquido por um tubo de diâmetros diferentes: sendo o diâmetro da parte central do tubo menor que nas duas extremidades, o escoamento é mais rápido na região mais estreita e a pressão menor. O *medidor de venturi* permite calcular a velocidade de um fluido em um tubo horizontal, por meio da diferença de pressão nos tubos verticais.

Líquidos reais têm viscosidade:

$$\frac{{v_1}^2}{2g} + z_1 + \frac{p_1}{\gamma_w} = \frac{{v_2}^2}{2g} + z_2 + \frac{p_2}{\gamma_w} + \Delta h$$

 Δh = perda de carga

 Esta perda de energia é devida ao atrito com as paredes do tubo e devida à viscosidade do líquido em escoamento

Número de Reynolds

- Quando a velocidade de um fluido que escoa em um tubo excede certo valor crítico, o regime de escoamento passa de lamelar para turbulento, exceto em uma camada extremamente fina junto à parede do tubo, chamada camada limite, onde o escoamento permanece laminar.
- No escoamento turbulento, o movimento do fluido é altamente irregular, caracterizado por vórtices locais e um grande aumento na resistência ao escoamento.

Número de Reynolds

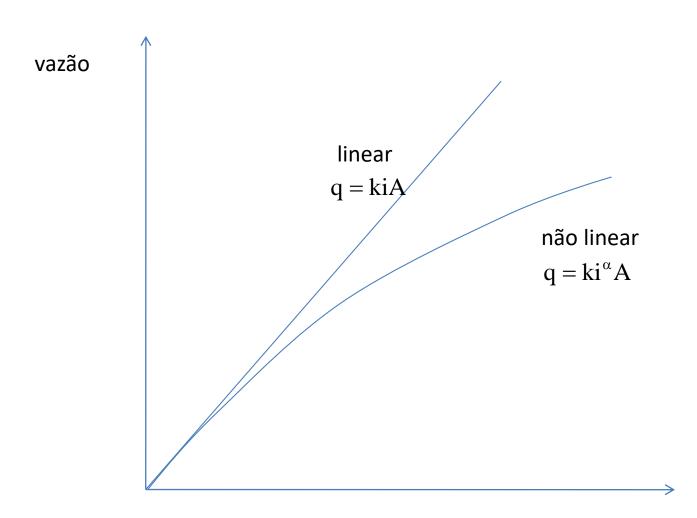
 O regime de escoamento, se lamelar ou turbulento, é determinado pelo número de Reynolds:

$$N_R = \rho Dv / \mu$$

 ρ = densidade do fluido

 μ = viscosidade dinâmica do fluido

v = módulo da velocidade média de escoamento


D = diâmetro do tubo

• Verifica-se experimentalmente que o escoamento de um fluido é:

lamelar se N_R < 2.000 (linhas de fluxo paralelas)

turbulento se $N_R > 3.000$

instável, isto é, mudando de um regime para outro, se $2.000 < N_R < 3.000$

gradiente hidráulico

Água

Viscosidade cinemática:

```
Sua unidade no S.I. é stoke (1stoke = 1cm²/s).
```

Viscosidade da água a 20°C: $v = 1,01.10^{-6} \text{m}^2/\text{s}$

• Viscosidade dinâmica: poise (1 poise = $0,1N.s/m^2$). Água fria: $\mu = 1,03.10^{-4} \text{ kgf.s/m}^2$

Densidade e viscosidade da água sob condições normais de pressão

Temperatura - q (°C)	Temperatura - q (°C) Densidade absoluta - r (kg/m³)*		Viscosidade cinemática - n (10 ⁻ ⁶ m²/s)	Densidade relativa - d	
0 (gelo)	917,0	-	-	0,9170	
0(água)	999,8	1,781	1,785	0,9998	
4	1000,0	1,558	1,558	1,0000	
5	1000,0	1,518	1,519	1,0000	
10	999,7	1,307	1,308	0,9997	
15	999,1	1,139	1,140	0,9991	
20	998,2	1,002	1,003	0,9982	
25	997,0	0,890	0,893	0,9970	
30	995,7	0,798	0,801	0,9967	
40	992,2	0,653	0,658	0,9922	
50	988,0	0,547	0,553	0,9880	
60	983,2	0,466	0,474	0,9832	
70	977,8	0,404	0,413	0,9788	
80	971,8	0,354	0,364	0,9728	
90	965,3	0,315	0,326	0,9653	
100	958,4	0,282	0,294	0,9584	
/*\ Dara cor	worter para kaf c2	/m4 divido so o valo	or tahalada nar 0 90	1665	

^(*) Para converter para kgf.s²/m⁴ divide-se o valor tabelado por 9,80665

Densidade da água em função da temperatura

	Décimos de grau									
°C	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0,9999	0,9999	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9999	0,9998
10	0,9997	0,9996	0,9995	0,9994	0,9993	0,9991	0,9990	0,9988	0,9986	0,9984
20	0,9982	0,9980	0,9978	0,9976	0,9973	0,9971	0,9968	0,9965	0,9963	0,9960
30	0,9957	0,9954	0,9951	0,9947	0,9944	0,9941	0,9937	0,9934	0,9930	0,9926
40	0,9922	0,9919	0,9915	0,9911	0,9907	0,9902	0,9898	0,9894	0,9890	0,9885
50	0,9881	0,9876	0,9872	0,9867	0,9862	0,9857	0,9852	0,9848	0,9842	0,9838
60	0,9832	0,9827	0,9822	0,9817	0,9811	0,9806	0,9800	0,9765	0,9789	0,9784
70	0,9778	0,9772	0,9767	0,9761	0,9755	0,9749	0,9743	0,9737	0,9731	0,9724
80	0,9718	0,9712	0,9706	0,9699	0,9693	0,9686	0,9680	0,9673	0,9667	0,9660
90	0,9653	0,9647	0,9640	0,9633	0,9626	0,9619	0,9612	0,9605	0,9598	0,9591