

## TERMODINÂMICA DAS SOLUÇÕES

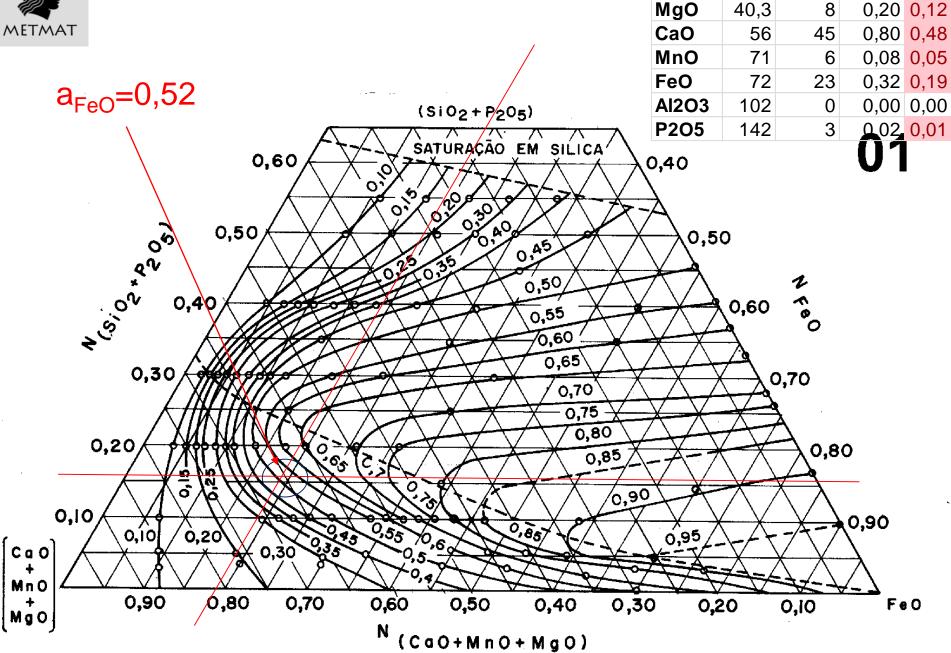


12. Calcular o teor de carbono de um aço que está em equilíbrio com a seguinte escória a 1600°C: CaO = 45%; FeO = 23%; P<sub>2</sub>O<sub>5</sub> = 3%; SiO<sub>2</sub> = 15%; MnO = 6%; MgO = 8%. Considerar a pressão de 1 atm.[61]

$$\{Fe\} + \underline{O} = (FeO)_{esc}$$

$$2\underline{P} + 5\underline{O} = (P_2O_5)_{esc}$$

$$\underline{Si} + 2\underline{O} = (SiO_2)_{esc}$$


$$\underline{Mn} + \underline{O} = (MnO)_{esc}$$

$$(Mg) + \underline{O} = (MgO)_{esc}$$

$$(Ca) + \underline{O} = (CaO)_{esc}$$

$$\underline{C} + \underline{O} = (CO)$$





%

15

moles

X

0,25 0,15

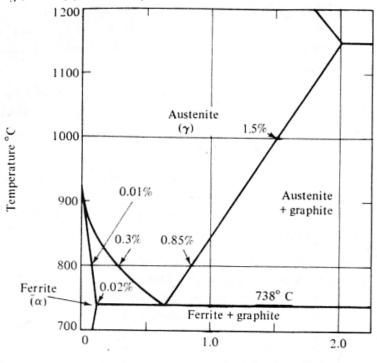
M

60

**SiO2** 

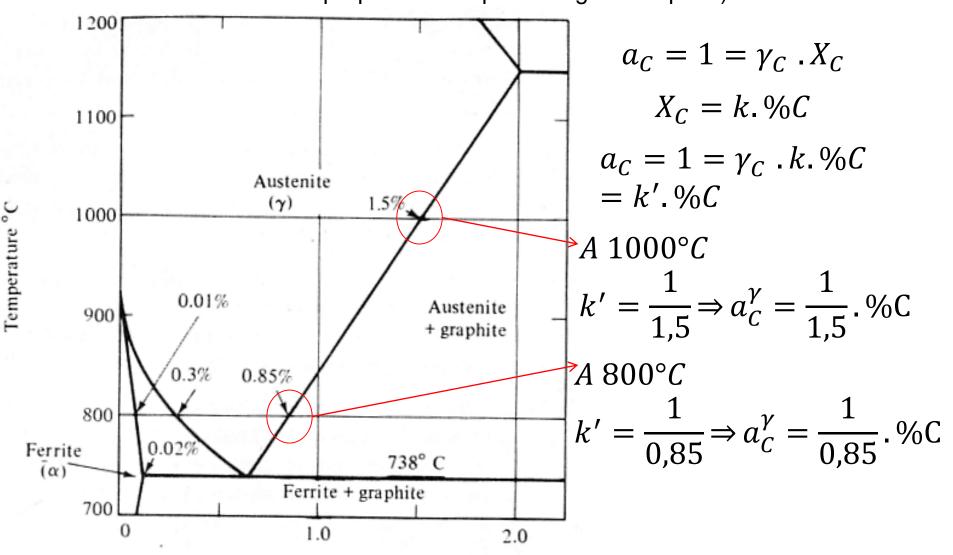


12. Tem-se uma escória com 40,93% CaO; 45,81% SiO $_2$  e 13,26% Al $_2$ O $_3$  a 1550°C. Qual será a atividade de SiO $_2$  nesta escória? Indicar o estado de referência adotado. (0,18; sólida pura)


|              | M    | %     | moles | X    |
|--------------|------|-------|-------|------|
| SiO2         | 60   | 45,81 | 0,76  | 0,47 |
| MgO          | 40,3 | 0     | 0,00  | 0,00 |
| CaO          | 56   | 40,93 | 0,73  | 0,45 |
| MnO          | 71   | 0     | 0,00  | 0,00 |
| FeO          | 72   | 0     | 0,00  | 0,00 |
| <b>AI2O3</b> | 102  | 13,26 | 0,13  | 0,08 |
| P205         | 142  | 0     | 0,00  | 0,00 |
| Fe2O3        | 160  | 0     | 0,00  | 0,00 |
| Na2O         | 62   | 0     | 0,00  | 0,00 |
| K20          | 94   | 0     | 0,00  | 0,00 |

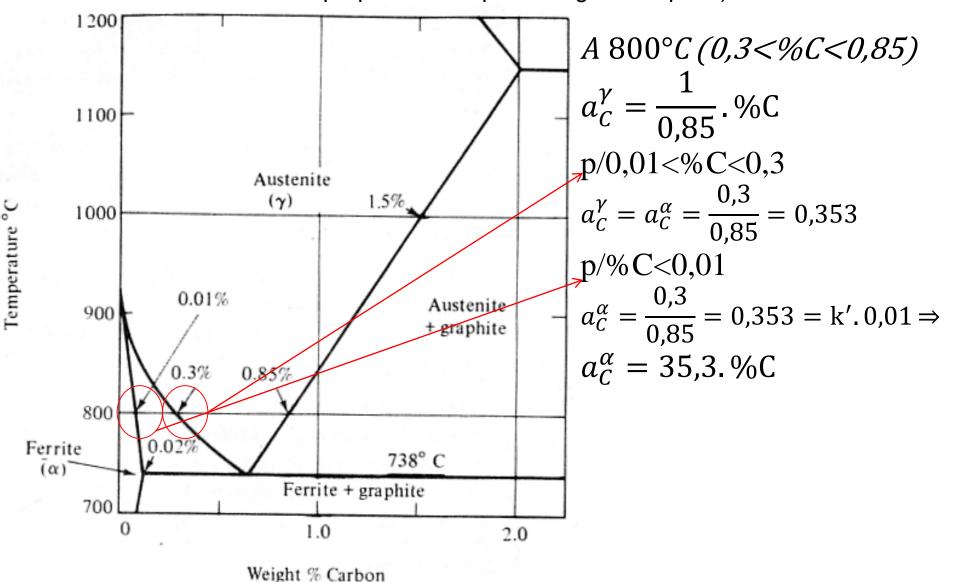







- A figura a seguir mostra o campo da austenita no sistema Fe-C estável.
  - Assumindo que a lei de Henry é válida dentro dos campos α e γ, estime a atividade do C relativa a grafita a 800°C e 1000°C como uma função da composição; (a baixas concentrações a fração molar pode ser considerada proporcional à porcentagem em peso)
  - b. Um aço com 0,5%C deve sofrer um recozimento brilhante a 800°C numa atmosfera CO-CO<sub>2</sub>. Estime a relação  $p^2_{CO}/p_{CO2}$  que estaria em equilíbrio com o aço quando a constante de equilíbrio da reação  $C_{gra} + CO_2 = 2CO$  for igual a 6 a 800°C. Estime também a composição do gás se  $p_{CO} + p_{CO2} = 0,2$ ;
  - c. Calcule a variação de energia livre da reação  $C_{gra} = C_{1\%}$  a 800°C e 1000°C sobre a hipótese anterior e calcule a atividade  $h_C$  na saturação em grafita;
  - d. Na realidade o C mostra desvio positivo. Em que direção este fato afetará os valores do item c;
  - e. Sabe-se que a adição de Si aumenta o coeficiente de atividade do carbono. Como a adição de Si afetará o limite de solubilidade do C na γ?
  - f. Para a reação  $C_{qra} = C_{dia} \Delta G^{\circ}_{1273} = 1,75$  kcal. Estime a solubilidade do diamante na  $\gamma$






a. Assumindo que a lei de Henry é válida dentro dos campos  $\alpha$  e  $\gamma$ , estime a atividade do C relativa a grafita a 800°C e 1000°C como uma função da composição; (a baixas concentrações a fração molar pode ser considerada proporcional à porcentagem em peso)





a. Assumindo que a lei de Henry é válida dentro dos campos  $\alpha$  e  $\gamma$ , estime a atividade do C relativa a grafita a 800°C e 1000°C como uma função da composição; (a baixas concentrações a fração molar pode ser considerada proporcional à porcentagem em peso)





b. Um aço com 0,5%C deve sofrer um recozimento brilhante a  $800^{\circ}$ C numa atmosfera CO-CO<sub>2</sub>. Estime a relação  $p^2_{CO}/p_{CO2}$  que estaria em equilíbrio com o aço quando a constante de equilíbrio da reação  $C_{gra} + CO_2 = 2CO$  for igual a 6 a  $800^{\circ}$ C. Estime também a composição do gás se  $p_{CO} + p_{CO2} = 0,2$ ;

$$< C > + (CO_2) = 2(CO)$$

$$K = 6 = \frac{p_{CO}^2}{p_{CO2}} \cdot \frac{1}{a_C} = \frac{p_{CO}^2}{p_{CO2}} \cdot \frac{1}{(\frac{1}{0.85}.0.5)} \Rightarrow \frac{p_{CO}^2}{p_{CO2}} = 3.53 = \frac{p_{CO}^2}{0.2 - p_{CO}} \Rightarrow p_{CO2} = 0.19 \ e \ p_{CO2} = 0.01$$



c. Calcule a variação de energia livre da reação  $C_{gra} = C_{1\%}$  a 800°C e 1000°C sobre a hipótese anterior e calcule a atividade  $h_C$  na saturação em grafita;

A 1000°C, k'=1,5:

$$\Delta G^{\circ} = -1,987.1273. \ln \frac{1}{\frac{1}{1.5}} = -1025,6 \text{ cal}$$

A 800°C, %C=1, está saturado em C, portanto, a<sub>C</sub>=1:

$$\Delta G^{\circ} = 0 \ cal$$



- d. Na realidade o C mostra desvio positivo. Em que direção este fato afetará os valores do item c;
- e. Sabe-se que a adição de Si aumenta o coeficiente de atividade do carbono. Como a adição de Si afetará o limite de solubilidade do C na γ?
- f. Para a reação  $C_{gra} = C_{dia} \Delta G^{\circ}_{1273} = 1,75$  kcal. Estime a solubilidade do diamante na  $\gamma$

$$fc > 1 \Rightarrow \uparrow hc \Rightarrow \Delta G^{\circ} \uparrow$$

$$\uparrow Si \Rightarrow \uparrow \gamma_C \Rightarrow Se \ a_C = 1 = \gamma_C . \ X_C \Rightarrow \uparrow \gamma_C \rightarrow \downarrow X_C$$

$$\langle C \rangle_{graf} = \underline{C}_{dia}$$

$$\Delta G^{\circ} = 1750 = -R. T. \ln K \Rightarrow K = \exp\left(-\frac{1750}{1,987.1273}\right) = 0,501 = \frac{a_{dia}^{\gamma}}{a_{graf}^{\gamma}} = \frac{1}{\frac{1}{1,5}.\%C} \Rightarrow \%C = 2.996$$



## PARA CASA

Desoxidação pelo carbono sob vácuo é uma opção interessante quando se desejam elevados níveis de limpeza interna (baixa quantidade de inclusões não-metálicas).[2]

- a) Por quê?
- b) Para um aço contendo 0.4% de C, tratado em um desgaseificador a 1600°C com p<sub>CO</sub>=1mmHg, qual o teor de oxigênio que se pode obter através de desoxidação pelo carbono sob vácuo?



## PARA CASA

Um aço para molas de válvula contém 1% Si e deve conter no máximo 0,0004% de Al para evitar a precipitação de inclusões de  $Al_2O_3$ . Ajustou-se a composição de uma escória no sistema  $CaO-Al_2O_3-SiO_2$  de modo a que a relação  $a_{SiO_2}/(a_{Al2O_3})^{2/3}$  fosse de  $\cong$  100. Após o tratamento com esta escória, observou-se que o teor de Al no aço era de 0,0015%, superior, portanto, ao desejado. Indique, qualitativamente, qual alteração deveria ser feita na escória.[101]